Liu-Hy's picture
Add files using upload-large-folder tool
6f366b0 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Thymoma"
cohort = "GSE42977"
# Input paths
in_trait_dir = "../DATA/GEO/Thymoma"
in_cohort_dir = "../DATA/GEO/Thymoma/GSE42977"
# Output paths
out_data_file = "./output/preprocess/3/Thymoma/GSE42977.csv"
out_gene_data_file = "./output/preprocess/3/Thymoma/gene_data/GSE42977.csv"
out_clinical_data_file = "./output/preprocess/3/Thymoma/clinical_data/GSE42977.csv"
json_path = "./output/preprocess/3/Thymoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info, this is a microarray study, so gene expression data should be available
is_gene_available = True
# 2.1 Data Availability
# From sample characteristics dictionary, trait (Thymoma) data is in row 0
trait_row = 0
# Age and gender data are not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if pd.isna(value):
return None
# Extract value after "tissue: "
value = value.split("tissue: ")[-1].strip()
# Convert to binary - 1 for Thymoma/Metastatic Thymoma, 0 for others
if value in ["Thymoma", "Metastatic Thymoma"]:
return 1
return 0
def convert_age(value):
return None # Age data not available
def convert_gender(value):
return None # Gender data not available
# 3. Save Metadata
# Perform initial validation (is_final=False)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("\nPreview of extracted clinical features:")
print(preview_df(clinical_features))
# Save clinical features to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# These are Illumina probe IDs (starting with ILMN_), not human gene symbols
# They will need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 1. Observe the identifiers
# Gene expression data uses probe IDs starting with "ILMN_"
# In gene annotation, these IDs are under the 'ID' column
# Gene symbols are under the 'Symbol' column
# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# 3. Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Print shape and preview to verify the conversion
print("\nGene expression data shape:", gene_data.shape)
print("\nPreview of gene expression data:")
print(preview_df(gene_data))
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)