|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Thymoma" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Thymoma/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Thymoma/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Thymoma/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Thymoma/cohort_info.json" |
|
|
|
|
|
cohort_dir = "TCGA_Thymoma_(THYM)" |
|
cohort_path = os.path.join(tcga_root_dir, cohort_dir) |
|
|
|
|
|
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_path) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
print("Directory contents:", os.listdir(tcga_root_dir)) |
|
|
|
try: |
|
|
|
clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, "THCA")) |
|
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) |
|
|
|
|
|
age_preview = {} |
|
for col in candidate_age_cols: |
|
age_preview[col] = clinical_df[col].head().tolist() |
|
print("Age columns preview:", age_preview) |
|
|
|
|
|
gender_preview = {} |
|
for col in candidate_gender_cols: |
|
gender_preview[col] = clinical_df[col].head().tolist() |
|
print("Gender columns preview:", gender_preview) |
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
|
|
|
|
|
|
candidate_age_cols = ["age", "age_at_diagnosis", "age_at_initial_pathologic_diagnosis", |
|
"days_to_birth", "year_of_birth"] |
|
|
|
candidate_gender_cols = ["gender", "sex"] |
|
|
|
age_col = "age_at_diagnosis" |
|
gender_col = "gender" |
|
|
|
print(f"Selected age column: {age_col}") |
|
print(f"Selected gender column: {gender_col}") |
|
|
|
age_col = 'age_at_initial_pathologic_diagnosis' |
|
gender_col = 'gender' |
|
|
|
|
|
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) |
|
|
|
|
|
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_genetic_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}" |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |
|
print(f"Linked data saved to {out_data_file}") |
|
print("Shape of final linked data:", linked_data.shape) |
|
else: |
|
print("Dataset was found to be unusable and was not saved") |