|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Vitamin_D_Levels" |
|
cohort = "GSE86406" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Vitamin_D_Levels" |
|
in_cohort_dir = "../DATA/GEO/Vitamin_D_Levels/GSE86406" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Vitamin_D_Levels/GSE86406.csv" |
|
out_gene_data_file = "./output/preprocess/3/Vitamin_D_Levels/gene_data/GSE86406.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Vitamin_D_Levels/clinical_data/GSE86406.csv" |
|
json_path = "./output/preprocess/3/Vitamin_D_Levels/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Data Shape:", clinical_data.shape) |
|
print("\nFirst few rows of Clinical Data:") |
|
print(clinical_data.head()) |
|
|
|
print("\nSample Characteristics:") |
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = 1 |
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(x): |
|
return None |
|
|
|
def convert_age(x): |
|
if not isinstance(x, str) or ':' not in x: |
|
return None |
|
try: |
|
return float(x.split(':')[1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
if not isinstance(x, str) or ':' not in x: |
|
return None |
|
gender = x.split(':')[1].strip().upper() |
|
if gender == 'F': |
|
return 0 |
|
elif gender == 'M': |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=False |
|
) |
|
|
|
|
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_data.index[:20])) |
|
|
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_annotation) |
|
print("Gene annotation preview:") |
|
print(preview) |
|
print("\nAll column names:") |
|
print(list(gene_annotation.columns)) |
|
|
|
|
|
|
|
|
|
|
|
mapping_data = gene_annotation[['ID', 'SPOT_ID']].copy() |
|
mapping_data['Gene'] = mapping_data['SPOT_ID'].apply(lambda x: x.split(':')[0] if isinstance(x, str) else None) |
|
mapping_data = mapping_data.dropna() |
|
|
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("Gene data shape:", gene_data.shape) |
|
print("\nFirst few chromosomal regions (index):") |
|
print(list(gene_data.index[:10])) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
empty_df = pd.DataFrame() |
|
|
|
|
|
is_trait_biased = True |
|
|
|
|
|
note = "Unable to properly map gene identifiers to gene symbols. The dataset uses RefSeq accessions but mapping failed to produce valid gene symbols." |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=is_trait_biased, |
|
df=empty_df, |
|
note=note |
|
) |
|
|
|
|