Liu-Hy's picture
Add files using upload-large-folder tool
4144951 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Von_Hippel_Lindau"
cohort = "GSE33093"
# Input paths
in_trait_dir = "../DATA/GEO/Von_Hippel_Lindau"
in_cohort_dir = "../DATA/GEO/Von_Hippel_Lindau/GSE33093"
# Output paths
out_data_file = "./output/preprocess/3/Von_Hippel_Lindau/GSE33093.csv"
out_gene_data_file = "./output/preprocess/3/Von_Hippel_Lindau/gene_data/GSE33093.csv"
out_clinical_data_file = "./output/preprocess/3/Von_Hippel_Lindau/clinical_data/GSE33093.csv"
json_path = "./output/preprocess/3/Von_Hippel_Lindau/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on series description, this is a gene expression study
is_gene_available = True
# 2.1 Data Availability
# Looking at sample characteristics, no explicit trait/age/gender data found in the rows
# The data does not contain VHL status information needed for the trait
trait_row = None
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# No VHL status data available, function not used
return None
def convert_age(x):
# Age conversion function not used since data not available
return None
def convert_gender(x):
# Gender conversion function not used since data not available
return None
# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Skip since trait_row is None, indicating no clinical data available
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
for i, line in enumerate(f):
if i < 10: # Print first 10 lines
print(line.strip())
elif "!series_matrix_table_begin" in line:
print("\nFound table marker at line", i)
# Print next 3 lines after marker
for _ in range(3):
print(next(f).strip())
break
# The gene identifiers appear to be simple numeric indices (1,2,3...) rather than official gene symbols
# This indicates they are likely probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file with adjusted prefix filtering
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!Platform_table_begin', '!Platform_table_end'])
# Preview both headers and first few rows
print("Gene annotation column names:")
print(gene_annotation.columns.tolist())
print("\nGene annotation preview:")
preview = preview_df(gene_annotation)
print(preview)
# Also check raw file content around platform table section
print("\nChecking raw SOFT file content around platform table:")
with gzip.open(soft_file_path, 'rt') as f:
in_platform_table = False
for i, line in enumerate(f):
if '!Platform_table_begin' in line:
print(f"\nFound table begin at line {i}:")
in_platform_table = True
# Print header and first few lines
for _ in range(5):
print(next(f).strip())
break
# Since the SOFT file seems to have a non-standard format, let's examine the raw file first
platform_data_lines = []
with gzip.open(soft_file_path, 'rt') as f:
in_platform_table = False
for line in f:
if '!Platform_table_begin' in line:
in_platform_table = True
continue
elif '!Platform_table_end' in line:
in_platform_table = False
break
elif in_platform_table:
platform_data_lines.append(line.strip())
# Check if we got any platform data
if len(platform_data_lines) > 0:
# Convert platform data to dataframe
platform_data = pd.read_csv(io.StringIO('\n'.join(platform_data_lines)), sep='\t', low_memory=False)
# Print columns to verify we have the platform data
print("Platform data columns:", platform_data.columns.tolist())
print("\nFirst few rows of platform data:")
print(platform_data.head())
# Create mapping and apply it if we have the required columns
id_col = [col for col in platform_data.columns if 'ID' in col.upper()][0] if any('ID' in col.upper() for col in platform_data.columns) else None
gene_col = [col for col in platform_data.columns if 'GENE' in col.upper() and 'SYMBOL' in col.upper()][0] if any('GENE' in col.upper() and 'SYMBOL' in col.upper() for col in platform_data.columns) else None
if id_col and gene_col:
mapping_df = get_gene_mapping(platform_data, prob_col=id_col, gene_col=gene_col)
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Save gene expression data
if gene_data is not None:
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape:", gene_data.shape)
print("First few genes and their expression values:")
print(gene_data.head())
else:
print("Could not identify ID and Gene Symbol columns in platform data")
gene_data = None
else:
print("Failed to extract platform table with probe-gene mappings")
gene_data = None