|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Von_Hippel_Lindau" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Von_Hippel_Lindau/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Von_Hippel_Lindau/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Von_Hippel_Lindau/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Von_Hippel_Lindau/cohort_info.json" |
|
|
|
|
|
cohorts = os.listdir(tcga_root_dir) |
|
cohorts = [c for c in cohorts if not c.startswith('.') and not c.endswith('.ipynb')] |
|
|
|
|
|
selected_cohort = "TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)" |
|
cohort_dir = os.path.join(tcga_root_dir, selected_cohort) |
|
|
|
|
|
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=selected_cohort, |
|
info_path=json_path, |
|
is_gene_available=len(genetic_df.columns) > 0, |
|
is_trait_available=len(clinical_df.columns) > 0 |
|
) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
import os |
|
print("Directory contents:", os.listdir(tcga_root_dir)) |
|
|
|
|
|
files = os.listdir(tcga_root_dir) |
|
clinical_files = [f for f in files if 'clinicalmatrix' in f.lower()] |
|
|
|
if clinical_files: |
|
clinical_file_path = os.path.join(tcga_root_dir, clinical_files[0]) |
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0) |
|
|
|
|
|
age_preview = clinical_df[candidate_age_cols].head(5).to_dict(orient='list') |
|
print("\nAge columns preview:") |
|
print(age_preview) |
|
|
|
|
|
gender_preview = clinical_df[candidate_gender_cols].head(5).to_dict(orient='list') |
|
print("\nGender columns preview:") |
|
print(gender_preview) |
|
else: |
|
print("No clinical data files found in directory") |
|
|
|
age_col = None |
|
gender_col = None |
|
|
|
|
|
print(f"Selected age column: {age_col}") |
|
print(f"Selected gender column: {gender_col}") |
|
|
|
age_col = 'age_at_initial_pathologic_diagnosis' |
|
gender_col = 'gender' |
|
|
|
|
|
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) |
|
|
|
|
|
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_genetic_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}" |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=selected_cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
print(f"Data saved to {out_data_file}") |
|
print("Shape of final linked data:", linked_data.shape) |
|
else: |
|
print("Dataset was found to be unusable and was not saved") |