Liu-Hy commited on
Commit
0815237
·
verified ·
1 Parent(s): b5650f0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +16 -0
  2. p1/preprocess/COVID-19/GSE212865.csv +3 -0
  3. p1/preprocess/COVID-19/GSE212866.csv +3 -0
  4. p1/preprocess/COVID-19/gene_data/GSE212865.csv +3 -0
  5. p1/preprocess/COVID-19/gene_data/GSE212866.csv +3 -0
  6. p1/preprocess/Crohns_Disease/GSE169568.csv +3 -0
  7. p1/preprocess/Crohns_Disease/gene_data/GSE169568.csv +3 -0
  8. p1/preprocess/Crohns_Disease/gene_data/GSE186963.csv +3 -0
  9. p1/preprocess/Crohns_Disease/gene_data/GSE207022.csv +3 -0
  10. p1/preprocess/Crohns_Disease/gene_data/GSE83448.csv +0 -0
  11. p1/preprocess/Cystic_Fibrosis/GSE100521.csv +3 -0
  12. p1/preprocess/Cystic_Fibrosis/GSE107846.csv +0 -0
  13. p1/preprocess/Cystic_Fibrosis/GSE129168.csv +0 -0
  14. p1/preprocess/Cystic_Fibrosis/clinical_data/GSE100521.csv +4 -0
  15. p1/preprocess/Cystic_Fibrosis/clinical_data/GSE107846.csv +4 -0
  16. p1/preprocess/Cystic_Fibrosis/clinical_data/GSE129168.csv +2 -0
  17. p1/preprocess/Cystic_Fibrosis/clinical_data/GSE67698.csv +2 -0
  18. p1/preprocess/Cystic_Fibrosis/code/GSE100521.py +213 -0
  19. p1/preprocess/Cystic_Fibrosis/code/GSE107846.py +184 -0
  20. p1/preprocess/Cystic_Fibrosis/code/GSE129168.py +169 -0
  21. p1/preprocess/Cystic_Fibrosis/code/GSE139038.py +192 -0
  22. p1/preprocess/Cystic_Fibrosis/code/GSE142610.py +100 -0
  23. p1/preprocess/Cystic_Fibrosis/code/GSE53543.py +185 -0
  24. p1/preprocess/Cystic_Fibrosis/code/GSE60690.py +165 -0
  25. p1/preprocess/Cystic_Fibrosis/code/GSE67698.py +178 -0
  26. p1/preprocess/Cystic_Fibrosis/code/GSE71799.py +125 -0
  27. p1/preprocess/Cystic_Fibrosis/code/GSE76347.py +144 -0
  28. p1/preprocess/Cystic_Fibrosis/code/TCGA.py +54 -0
  29. p1/preprocess/Cystic_Fibrosis/gene_data/GSE100521.csv +3 -0
  30. p1/preprocess/Cystic_Fibrosis/gene_data/GSE107846.csv +0 -0
  31. p1/preprocess/Cystic_Fibrosis/gene_data/GSE129168.csv +0 -0
  32. p1/preprocess/Cystic_Fibrosis/gene_data/GSE139038.csv +0 -0
  33. p1/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv +3 -0
  34. p1/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv +3 -0
  35. p1/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv +3 -0
  36. p1/preprocess/Cystic_Fibrosis/gene_data/GSE76347.csv +3 -0
  37. p1/preprocess/Depression/GSE110298.csv +0 -0
  38. p1/preprocess/Depression/GSE208668.csv +0 -0
  39. p1/preprocess/Depression/GSE99725.csv +0 -0
  40. p1/preprocess/Depression/clinical_data/GSE110298.csv +4 -0
  41. p1/preprocess/Depression/clinical_data/GSE201332.csv +4 -0
  42. p1/preprocess/Depression/clinical_data/GSE208668.csv +4 -0
  43. p1/preprocess/Depression/clinical_data/GSE99725.csv +2 -0
  44. p1/preprocess/Depression/code/GSE110298.py +224 -0
  45. p1/preprocess/Depression/code/GSE128387.py +106 -0
  46. p1/preprocess/Depression/code/GSE135524.py +166 -0
  47. p1/preprocess/Depression/code/GSE138297.py +147 -0
  48. p1/preprocess/Depression/code/GSE149980.py +125 -0
  49. p1/preprocess/Depression/code/GSE201332.py +241 -0
  50. p1/preprocess/Depression/code/GSE208668.py +223 -0
.gitattributes CHANGED
@@ -1032,3 +1032,19 @@ p1/preprocess/COVID-19/gene_data/GSE185658.csv filter=lfs diff=lfs merge=lfs -te
1032
  p1/preprocess/COVID-19/gene_data/GSE213313.csv filter=lfs diff=lfs merge=lfs -text
1033
  p1/preprocess/Crohns_Disease/GSE207022.csv filter=lfs diff=lfs merge=lfs -text
1034
  p1/preprocess/Cervical_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
  p1/preprocess/COVID-19/gene_data/GSE213313.csv filter=lfs diff=lfs merge=lfs -text
1033
  p1/preprocess/Crohns_Disease/GSE207022.csv filter=lfs diff=lfs merge=lfs -text
1034
  p1/preprocess/Cervical_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1035
+ p1/preprocess/COVID-19/GSE212865.csv filter=lfs diff=lfs merge=lfs -text
1036
+ p1/preprocess/COVID-19/GSE212866.csv filter=lfs diff=lfs merge=lfs -text
1037
+ p1/preprocess/Crohns_Disease/gene_data/GSE207022.csv filter=lfs diff=lfs merge=lfs -text
1038
+ p1/preprocess/Crohns_Disease/GSE169568.csv filter=lfs diff=lfs merge=lfs -text
1039
+ p1/preprocess/Crohns_Disease/gene_data/GSE186963.csv filter=lfs diff=lfs merge=lfs -text
1040
+ p1/preprocess/Cystic_Fibrosis/GSE100521.csv filter=lfs diff=lfs merge=lfs -text
1041
+ p1/preprocess/COVID-19/gene_data/GSE212865.csv filter=lfs diff=lfs merge=lfs -text
1042
+ p1/preprocess/COVID-19/gene_data/GSE212866.csv filter=lfs diff=lfs merge=lfs -text
1043
+ p1/preprocess/Cystic_Fibrosis/gene_data/GSE100521.csv filter=lfs diff=lfs merge=lfs -text
1044
+ p1/preprocess/Crohns_Disease/gene_data/GSE169568.csv filter=lfs diff=lfs merge=lfs -text
1045
+ p1/preprocess/Cystic_Fibrosis/gene_data/GSE76347.csv filter=lfs diff=lfs merge=lfs -text
1046
+ p1/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv filter=lfs diff=lfs merge=lfs -text
1047
+ p1/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv filter=lfs diff=lfs merge=lfs -text
1048
+ p1/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv filter=lfs diff=lfs merge=lfs -text
1049
+ p1/preprocess/Depression/gene_data/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
1050
+ p1/preprocess/Depression/gene_data/GSE149980.csv filter=lfs diff=lfs merge=lfs -text
p1/preprocess/COVID-19/GSE212865.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb042e755616c53d4990b419a105ad11e2532e37aab30e3fa0f45aae0070503e
3
+ size 51823778
p1/preprocess/COVID-19/GSE212866.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb042e755616c53d4990b419a105ad11e2532e37aab30e3fa0f45aae0070503e
3
+ size 51823778
p1/preprocess/COVID-19/gene_data/GSE212865.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adb0aac4837a250cbb20bc4c1ca80e27ba417f7ffff99bdd849b49805c8a32cc
3
+ size 51823225
p1/preprocess/COVID-19/gene_data/GSE212866.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adb0aac4837a250cbb20bc4c1ca80e27ba417f7ffff99bdd849b49805c8a32cc
3
+ size 51823225
p1/preprocess/Crohns_Disease/GSE169568.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f25a25a74716d1efc79f6bfaa0ad07115cfbef83094de8a7b51869c109ff74e0
3
+ size 38295205
p1/preprocess/Crohns_Disease/gene_data/GSE169568.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49bdc43ec969dd89b6a8063c43713a6aa25567edd04f0b3ebd4bc03adc0e156d
3
+ size 38292518
p1/preprocess/Crohns_Disease/gene_data/GSE186963.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fb5425699f7cacb17c55ffb49a08c0808fe0ffce2821001b47184b0d5230427
3
+ size 25484219
p1/preprocess/Crohns_Disease/gene_data/GSE207022.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:209048a473969d55d990dabecb6545c7f60f0e58a27061dd21378272959356bf
3
+ size 19292986
p1/preprocess/Crohns_Disease/gene_data/GSE83448.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Cystic_Fibrosis/GSE100521.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f1e611df5e91917f2323b9f896cec66c19db812b5b1b564896bbce42882e5e5
3
+ size 18339664
p1/preprocess/Cystic_Fibrosis/GSE107846.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Cystic_Fibrosis/GSE129168.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Cystic_Fibrosis/clinical_data/GSE100521.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2685867,GSM2685868,GSM2685869,GSM2685870,GSM2685871,GSM2685872,GSM2685873,GSM2685874,GSM2685875,GSM2685876,GSM2685877,GSM2685878,GSM2685879,GSM2685880,GSM2685881,GSM2685882,GSM2685883,GSM2685884,GSM2685885,GSM2685886,GSM2685887,GSM2685888,GSM2685889,GSM2685890,GSM2685891,GSM2685892,GSM2685893,GSM2685894,GSM2685895,GSM2685896,GSM2685897,GSM2685898,GSM2685899,GSM2685900,GSM2685901,GSM2685902,GSM2685903,GSM2685904,GSM2685905,GSM2685906,GSM2685907,GSM2685908,GSM2685909,GSM2685910,GSM2685911,GSM2685912,GSM2685913,GSM2685914,GSM2685915,GSM2685916,GSM2685917,GSM2685918,GSM2685919,GSM2685920,GSM2685921,GSM2685922,GSM2685923,GSM2685924,GSM2685925,GSM2685926,GSM2685927,GSM2685928,GSM2685929,GSM2685930,GSM2685931,GSM2685932,GSM2685933,GSM2685934,GSM2685935,GSM2685936,GSM2685937,GSM2685938
2
+ Cystic_Fibrosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,28.0,27.0,26.0,31.0,21.0,25.0,28.0,27.0,26.0,31.0,21.0,25.0,28.0,27.0,26.0,31.0,21.0,25.0,28.0,27.0,26.0,31.0,21.0,25.0,28.0,27.0,26.0,31.0,21.0,25.0,28.0,27.0,26.0,31.0,21.0,25.0,27.0,27.0,29.0,27.0,29.0,32.0,27.0,27.0,29.0,27.0,29.0,32.0,27.0,27.0,29.0,27.0,29.0,32.0,27.0,27.0,29.0,27.0,29.0,32.0,27.0,27.0,29.0,27.0,29.0,32.0,27.0,27.0,29.0,27.0,29.0,32.0
4
+ Gender,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0
p1/preprocess/Cystic_Fibrosis/clinical_data/GSE107846.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM2881538,GSM2881539,GSM2881540,GSM2881541,GSM2881542,GSM2881543,GSM2881544,GSM2881545,GSM2881546,GSM2881547,GSM2881548,GSM2881549,GSM2881550,GSM2881551,GSM2881552,GSM2881553,GSM2881554,GSM2881555,GSM2881556,GSM2881557,GSM2881558,GSM2881559,GSM2881560,GSM2881561,GSM2881562,GSM2881563,GSM2881564,GSM2881565,GSM2881566,GSM2881567,GSM2881568,GSM2881569,GSM2881570,GSM2881571,GSM2881572,GSM2881573,GSM2881574,GSM2881575,GSM2881576,GSM2881577
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ 9.0,3.8,5.1,3.4,7.0,2.8,4.3,2.3,9.9,7.8,2.3,3.4,7.25,4.0,2.333,1.917,8.583,6.8,2.667,9.917,1.083,2.25,7.75,6.833,4.583,6.417,7.0,4.75,4.333,5.25,4.25,6.0,6.167,2.417,4.667,2.5,5.0,5.417,5.25,4.0
4
+ 0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0
p1/preprocess/Cystic_Fibrosis/clinical_data/GSE129168.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM3701915,GSM3701916,GSM3701917,GSM3701918,GSM3701919,GSM3701920,GSM3701921,GSM3701922,GSM3701923,GSM3701924,GSM3701925,GSM3701926,GSM3701927,GSM3701928,GSM3701929,GSM3701930,GSM3701931,GSM3701932,GSM3701933,GSM3701934,GSM3701935,GSM3701936,GSM3701937,GSM3701938,GSM3701939,GSM3701940,GSM3701941,GSM3701942,GSM3701943,GSM3701944,GSM3701945,GSM3701946
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Cystic_Fibrosis/clinical_data/GSE67698.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1946634,GSM1946635,GSM1946636,GSM1946637,GSM1946638,GSM1946639,GSM1946640,GSM1946641,GSM1946642,GSM1946643,GSM1946644,GSM1946645,GSM1946646,GSM1946647,GSM1946648,GSM1946649,GSM1946650,GSM1946651,GSM1946652,GSM1946653,GSM1946654,GSM1946655,GSM1946656,GSM1946657,GSM1946658,GSM1946659,GSM1946660,GSM1946661,GSM1946662,GSM1946663,GSM1946664,GSM1946665,GSM1946666,GSM1946667,GSM1946668,GSM1946669,GSM1946670,GSM1946671,GSM1946672,GSM1946673,GSM1946674,GSM1946675,GSM1946676,GSM1946677,GSM1946678,GSM1946679,GSM1946680,GSM1946681,GSM1946682,GSM1946683,GSM1946684,GSM1946685,GSM1946686,GSM1946687,GSM1946688,GSM1946689,GSM1946690,GSM1946691,GSM1946692,GSM1946693,GSM1946694,GSM1946695,GSM1946696,GSM1946697,GSM1946698,GSM1946699,GSM1946700,GSM1946701,GSM1946702,GSM1946703,GSM1946704,GSM1946705,GSM1946706,GSM1946707,GSM1946708,GSM1946709,GSM1946710,GSM1946711,GSM1946712,GSM1946713,GSM1946714,GSM1946715,GSM1946716,GSM1946717,GSM1946718,GSM1946719,GSM1946720,GSM1946721,GSM1946722,GSM1946723,GSM1946724,GSM1946725,GSM1946726,GSM1946727,GSM1946728,GSM1946729,GSM1946730,GSM1946731,GSM1946732,GSM1946733,GSM1946734,GSM1946735,GSM1946736,GSM1946737,GSM1946738,GSM1946739,GSM1946740,GSM1946741,GSM1946742,GSM1946743,GSM1946744,GSM1946745,GSM1946746,GSM1946747,GSM1946748,GSM1946749,GSM1946750,GSM1946751,GSM1946752,GSM1946753,GSM1946754,GSM1946755
2
+ Cystic_Fibrosis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Cystic_Fibrosis/code/GSE100521.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE100521"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE100521"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE100521.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE100521.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE100521.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ import re
37
+ import pandas as pd
38
+
39
+ # 1. Gene Expression Data Availability
40
+ is_gene_available = True # Based on the background info, this dataset has Illumina HumanHT-12 v4 microarray data
41
+
42
+ # 2. Variable Availability and Data Type Conversion
43
+
44
+ # 2.1 Find rows for trait, age, and gender
45
+ trait_row = 0 # row 0 contains CF vs Non CF info
46
+ age_row = 1 # row 1 contains age info
47
+ gender_row = 2 # row 2 contains gender info
48
+
49
+ # 2.2 Define data conversion functions
50
+ def convert_trait(value: str):
51
+ """
52
+ Convert a string describing the subject's CF status to a binary value:
53
+ 0 for Non-CF subject, 1 for CF patient.
54
+ Unknown values => None
55
+ """
56
+ # Extract the part after the colon
57
+ parts = value.split(':')
58
+ if len(parts) < 2:
59
+ return None
60
+ val = parts[1].strip().lower()
61
+ if 'non cf subject' in val:
62
+ return 0
63
+ elif 'cf patient' in val:
64
+ return 1
65
+ else:
66
+ return None
67
+
68
+ def convert_age(value: str):
69
+ """
70
+ Convert a string describing the age to a continuous (float) value.
71
+ Unknown values => None
72
+ """
73
+ parts = value.split(':')
74
+ if len(parts) < 2:
75
+ return None
76
+ val = parts[1].strip()
77
+ # Attempt to convert to float
78
+ try:
79
+ return float(val)
80
+ except ValueError:
81
+ return None
82
+
83
+ def convert_gender(value: str):
84
+ """
85
+ Convert a string describing gender to a binary value:
86
+ female => 0, male => 1
87
+ Unknown values => None
88
+ """
89
+ parts = value.split(':')
90
+ if len(parts) < 2:
91
+ return None
92
+ val = parts[1].strip().lower()
93
+ if val == 'female':
94
+ return 0
95
+ elif val == 'male':
96
+ return 1
97
+ else:
98
+ return None
99
+
100
+ # We assume the variable "clinical_data" is available in this environment,
101
+ # containing the sample characteristics as a DataFrame.
102
+
103
+ # 3. Save Metadata (initial filtering)
104
+ is_trait_available = (trait_row is not None)
105
+ is_usable = validate_and_save_cohort_info(
106
+ is_final=False,
107
+ cohort=cohort,
108
+ info_path=json_path,
109
+ is_gene_available=is_gene_available,
110
+ is_trait_available=is_trait_available
111
+ )
112
+
113
+ # 4. Clinical Feature Extraction (only if trait_row is not None)
114
+ if trait_row is not None:
115
+ selected_clinical_df = geo_select_clinical_features(
116
+ clinical_df=clinical_data,
117
+ trait=trait,
118
+ trait_row=trait_row,
119
+ convert_trait=convert_trait,
120
+ age_row=age_row,
121
+ convert_age=convert_age,
122
+ gender_row=gender_row,
123
+ convert_gender=convert_gender
124
+ )
125
+ # Preview
126
+ preview_output = preview_df(selected_clinical_df)
127
+ print("Preview of selected clinical features:", preview_output)
128
+
129
+ # Save to CSV
130
+ selected_clinical_df.to_csv(out_clinical_data_file, index=True)
131
+ # STEP3
132
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
133
+ gene_data = get_genetic_data(matrix_file)
134
+
135
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
136
+ print(gene_data.index[:20])
137
+ # Based on biomedical expertise, 'ILMN_xxxxx' identifiers are Illumina probe IDs and not human gene symbols.
138
+ # Therefore, they require mapping to gene symbols.
139
+
140
+ print("requires_gene_mapping = True")
141
+ # STEP5
142
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
143
+ gene_annotation = get_gene_annotation(soft_file)
144
+
145
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
146
+ print("Gene annotation preview:")
147
+ print(preview_df(gene_annotation))
148
+ # STEP: Gene Identifier Mapping
149
+
150
+ # 1. Identify the columns in the gene_annotation dataframe that match the probe identifiers in gene_data (ILMN_xxx)
151
+ # and those that represent gene symbols. From the annotation preview, 'ID' matches 'ILMN_xxx' and 'Symbol' is the gene symbol.
152
+
153
+ # 2. Create a gene mapping dataframe using the identified columns
154
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
155
+
156
+ # 3. Convert probe-level measurements to gene-level expression data by applying the mapping
157
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
158
+
159
+ # (Optional) Quick check - display the shape or a small preview
160
+ print("Mapped gene_data shape:", gene_data.shape)
161
+ print("Mapped gene_data head:\n", gene_data.head(5))
162
+ import pandas as pd
163
+
164
+ # STEP7
165
+
166
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
167
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
168
+ normalized_gene_data.to_csv(out_gene_data_file)
169
+
170
+ # 2. Check trait availability
171
+ is_trait_available = True
172
+
173
+ if not is_trait_available:
174
+ # If trait is unavailable, skip further processing
175
+ empty_df = pd.DataFrame()
176
+ validate_and_save_cohort_info(
177
+ is_final=True,
178
+ cohort=cohort,
179
+ info_path=json_path,
180
+ is_gene_available=True,
181
+ is_trait_available=False,
182
+ is_biased=True,
183
+ df=empty_df,
184
+ note="Trait data not available; skipping further steps."
185
+ )
186
+ else:
187
+ # Read the previously saved clinical data with index_col=0
188
+ selected_clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
189
+
190
+ # 3. Link the clinical and genetic data
191
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
192
+
193
+ # 4. Handle missing values in the linked data
194
+ linked_data = handle_missing_values(linked_data, trait)
195
+
196
+ # 5. Determine whether the trait and demographic features are severely biased
197
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
198
+
199
+ # 6. Final quality check and record the dataset info
200
+ is_usable = validate_and_save_cohort_info(
201
+ is_final=True,
202
+ cohort=cohort,
203
+ info_path=json_path,
204
+ is_gene_available=True,
205
+ is_trait_available=True,
206
+ is_biased=is_trait_biased,
207
+ df=unbiased_linked_data,
208
+ note="Final check after linking and missing-value handling."
209
+ )
210
+
211
+ # 7. If usable, save the final linked data
212
+ if is_usable:
213
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Cystic_Fibrosis/code/GSE107846.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE107846"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE107846"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE107846.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE107846.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE107846.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the GEO entry, we assume it's a gene expression dataset.
38
+
39
+ # 2. Variable Availability
40
+ trait_row = 5 # "state: CF" or "state: Healthy"
41
+ age_row = 1 # "age: ..."
42
+ gender_row = 2 # "Sex: F" / "Sex: M"
43
+
44
+ # 2.2 Data Type Conversions
45
+ def convert_trait(value: str):
46
+ # Extract the text after the first colon
47
+ val = value.split(":", 1)[1].strip() if ":" in value else value.strip()
48
+ # Convert to binary: CF -> 1, Healthy -> 0
49
+ if val.upper() == "CF":
50
+ return 1
51
+ elif val.upper() == "HEALTHY":
52
+ return 0
53
+ return None
54
+
55
+ def convert_age(value: str):
56
+ # Extract the text after the first colon
57
+ val = value.split(":", 1)[1].strip() if ":" in value else value.strip()
58
+ # Convert to float if possible
59
+ try:
60
+ return float(val)
61
+ except ValueError:
62
+ return None
63
+
64
+ def convert_gender(value: str):
65
+ # Extract the text after the first colon
66
+ val = value.split(":", 1)[1].strip() if ":" in value else value.strip()
67
+ # Convert to binary: F -> 0, M -> 1
68
+ if val.upper() == "F":
69
+ return 0
70
+ elif val.upper() == "M":
71
+ return 1
72
+ return None
73
+
74
+ # 3. Save Metadata (initial filtering)
75
+ is_trait_available = (trait_row is not None)
76
+ validate_and_save_cohort_info(
77
+ is_final=False,
78
+ cohort=cohort,
79
+ info_path=json_path,
80
+ is_gene_available=is_gene_available,
81
+ is_trait_available=is_trait_available
82
+ )
83
+
84
+ # 4. Clinical Feature Extraction if trait data is available
85
+ if trait_row is not None:
86
+ selected_clinical_df = geo_select_clinical_features(
87
+ clinical_df=clinical_data,
88
+ trait=trait,
89
+ trait_row=trait_row,
90
+ convert_trait=convert_trait,
91
+ age_row=age_row,
92
+ convert_age=convert_age,
93
+ gender_row=gender_row,
94
+ convert_gender=convert_gender
95
+ )
96
+ preview = preview_df(selected_clinical_df)
97
+ print("Preview of selected clinical features:", preview)
98
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
99
+ # STEP3
100
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
101
+ gene_data = get_genetic_data(matrix_file)
102
+
103
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
104
+ print(gene_data.index[:20])
105
+ # Based on the gene identifiers (ILMN_XXXXXX), these appear to be Illumina probe IDs.
106
+ # Therefore, they require mapping to standard gene symbols.
107
+
108
+ requires_gene_mapping = True
109
+ # STEP5
110
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
111
+ gene_annotation = get_gene_annotation(soft_file)
112
+
113
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
114
+ print("Gene annotation preview:")
115
+ print(preview_df(gene_annotation))
116
+ # STEP: Gene Identifier Mapping
117
+
118
+ # 1. Decide which key in the gene annotation corresponds to the same identifier type as in the gene expression data
119
+ # and which key corresponds to the gene symbols.
120
+ # From observation, 'ID' matches ILMN probe identifiers (e.g., "ILMN_1245321") and 'SYMBOL' stores gene symbols.
121
+
122
+ # 2. Get a gene mapping dataframe.
123
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="SYMBOL")
124
+
125
+ # 3. Convert probe-level measurements to gene expression data by applying the gene mapping.
126
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
127
+
128
+ # (gene_data now contains gene expression values indexed by gene symbols)
129
+ print("Mapped gene_data shape:", gene_data.shape)
130
+ print("First few rows of mapped gene expression data:\n", gene_data.head())
131
+ import pandas as pd
132
+
133
+ # STEP7
134
+
135
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
136
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
137
+ normalized_gene_data.to_csv(out_gene_data_file)
138
+
139
+ # Based on Step 2, we concluded trait_row=5 (thus trait data is available).
140
+ is_trait_available = True
141
+
142
+ if not is_trait_available:
143
+ # 2-4: Skip linking, missing value handling, and bias checks because trait is unavailable.
144
+ empty_df = pd.DataFrame()
145
+ validate_and_save_cohort_info(
146
+ is_final=True,
147
+ cohort=cohort,
148
+ info_path=json_path,
149
+ is_gene_available=True,
150
+ is_trait_available=False,
151
+ is_biased=True,
152
+ df=empty_df,
153
+ note="Trait data not available; skipping further steps."
154
+ )
155
+ else:
156
+ # 2. Load the clinical data. Since the CSV was saved with index=False, we first read the file,
157
+ # then manually set the row index to ["Cystic_Fibrosis","Age","Gender"].
158
+ selected_clinical_data = pd.read_csv(out_clinical_data_file, header=0)
159
+ selected_clinical_data.index = [trait, "Age", "Gender"]
160
+
161
+ # 3. Link the clinical and genetic data
162
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
163
+
164
+ # 4. Handle missing values in the linked data
165
+ linked_data = handle_missing_values(linked_data, trait)
166
+
167
+ # 5. Determine whether the trait and demographic features are severely biased
168
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
169
+
170
+ # 6. Conduct final quality validation and save the cohort information
171
+ is_usable = validate_and_save_cohort_info(
172
+ is_final=True,
173
+ cohort=cohort,
174
+ info_path=json_path,
175
+ is_gene_available=True,
176
+ is_trait_available=True,
177
+ is_biased=is_trait_biased,
178
+ df=unbiased_linked_data,
179
+ note="Final check after linking and missing-value handling."
180
+ )
181
+
182
+ # 7. If the dataset is usable, save it as CSV
183
+ if is_usable:
184
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Cystic_Fibrosis/code/GSE129168.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE129168"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE129168"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE129168.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE129168.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE129168.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Gene expression data availability
37
+ is_gene_available = True # This dataset provides transcriptome data for CF iPSCs, so we consider it as gene expression data.
38
+
39
+ # 2) Variable Availability
40
+ # Observing the sample characteristics dictionary, row=2 contains genotype info
41
+ # indicating CF vs non-CF lines (p.Phe508del vs gene-corrected/WT).
42
+ # No suitable age or gender info is present.
43
+ trait_row = 2
44
+ age_row = None
45
+ gender_row = None
46
+
47
+ # 2) Data Type Conversion
48
+ def convert_trait(value):
49
+ if not value or pd.isnull(value):
50
+ return None
51
+ val = value.split(':')[-1].strip().lower()
52
+ # Mark p.Phe508del (but not gene-corrected) as CF
53
+ if 'p.phe508del' in val and 'gene corrected' not in val:
54
+ return 1
55
+ return 0
56
+
57
+ def convert_age(value):
58
+ return None # Not available
59
+
60
+ def convert_gender(value):
61
+ return None # Not available
62
+
63
+ # 3) Save Metadata: initial filtering
64
+ is_trait_available = (trait_row is not None)
65
+ is_usable = validate_and_save_cohort_info(
66
+ is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=is_trait_available
71
+ )
72
+
73
+ # 4) Clinical Feature Extraction
74
+ # Proceed only if the trait data is available
75
+ if trait_row is not None:
76
+ selected_clinical_df = geo_select_clinical_features(
77
+ clinical_df=clinical_data,
78
+ trait=trait,
79
+ trait_row=trait_row,
80
+ convert_trait=convert_trait,
81
+ age_row=age_row,
82
+ convert_age=convert_age,
83
+ gender_row=gender_row,
84
+ convert_gender=convert_gender
85
+ )
86
+ # Preview
87
+ preview_result = preview_df(selected_clinical_df)
88
+ print("Preview of selected clinical features:", preview_result)
89
+ # Save to CSV
90
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
91
+ # STEP3
92
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
93
+ gene_data = get_genetic_data(matrix_file)
94
+
95
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
96
+ print(gene_data.index[:20])
97
+ # Based on the index names like "A_23_P100001", these are array probe IDs rather than standard human gene symbols.
98
+ # Therefore, they need to be mapped to gene symbols.
99
+ requires_gene_mapping = True
100
+ # STEP5
101
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
102
+ gene_annotation = get_gene_annotation(soft_file)
103
+
104
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
105
+ print("Gene annotation preview:")
106
+ print(preview_df(gene_annotation))
107
+ # STEP: Gene Identifier Mapping
108
+ # 1) Identify the columns in gene_annotation that correspond to the probe ID and gene symbol
109
+ probe_col = "ID"
110
+ symbol_col = "GENE_SYMBOL"
111
+
112
+ # 2) Obtain the mapping dataframe
113
+ mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col)
114
+
115
+ # 3) Convert probe-level measurements to gene expression data by applying the mapping
116
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
117
+ import pandas as pd
118
+
119
+ # STEP7
120
+
121
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
122
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
123
+ normalized_gene_data.to_csv(out_gene_data_file)
124
+
125
+ # Based on Step 2, we concluded trait_row = 2 (thus trait data is available).
126
+ is_trait_available = True
127
+
128
+ if not is_trait_available:
129
+ # 2-4: Skip linking, missing value handling, and bias checks because trait is unavailable.
130
+ empty_df = pd.DataFrame()
131
+ validate_and_save_cohort_info(
132
+ is_final=True,
133
+ cohort=cohort,
134
+ info_path=json_path,
135
+ is_gene_available=True,
136
+ is_trait_available=False,
137
+ is_biased=True,
138
+ df=empty_df,
139
+ note="Trait data not available; skipping further steps."
140
+ )
141
+ else:
142
+ # 2. Load the clinical data from the previous step and set its index to the trait name
143
+ selected_clinical_data = pd.read_csv(out_clinical_data_file)
144
+ selected_clinical_data.index = [trait]
145
+
146
+ # Link the clinical and genetic data
147
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
148
+
149
+ # 3. Handle missing values in the linked data
150
+ linked_data = handle_missing_values(linked_data, trait)
151
+
152
+ # 4. Determine whether the trait and demographic features are severely biased
153
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
154
+
155
+ # 5. Conduct final quality validation and save the cohort information
156
+ is_usable = validate_and_save_cohort_info(
157
+ is_final=True,
158
+ cohort=cohort,
159
+ info_path=json_path,
160
+ is_gene_available=True,
161
+ is_trait_available=True,
162
+ is_biased=is_trait_biased,
163
+ df=unbiased_linked_data,
164
+ note="Final check after linking and missing-value handling."
165
+ )
166
+
167
+ # 6. If the dataset is usable, save it as CSV
168
+ if is_usable:
169
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Cystic_Fibrosis/code/GSE139038.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE139038"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE139038"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE139038.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE139038.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE139038.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the series info indicating a gene expression study
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+
41
+ # Looking at the sample characteristics dictionary,
42
+ # - For "trait" (Cystic_Fibrosis), no matching or inferable data was found. So trait_row = None.
43
+ # - For "age", it appears in row 0 and has multiple unique values. So age_row = 0.
44
+ # - For "gender", row 1 has only "Female" (constant). Hence, it's not useful for association. gender_row = None.
45
+
46
+ trait_row = None
47
+ age_row = 0
48
+ gender_row = None
49
+
50
+ # Define the data conversion functions.
51
+ def convert_trait(val: str):
52
+ """
53
+ Convert trait data to binary (1/0). Return None if unknown.
54
+ """
55
+ parts = val.split(':', 1)
56
+ if len(parts) < 2:
57
+ return None
58
+ raw = parts[1].strip().lower()
59
+ # Example placeholder logic:
60
+ # If the variable explicitly indicated "cystic fibrosis," return 1;
61
+ # if it indicated "normal"/"control," return 0; else None.
62
+ if raw == "cystic fibrosis":
63
+ return 1
64
+ elif raw in ["normal", "control", "no"]:
65
+ return 0
66
+ return None
67
+
68
+ def convert_age(val: str):
69
+ """
70
+ Convert age data to continuous (float). Return None if unknown.
71
+ """
72
+ parts = val.split(':', 1)
73
+ if len(parts) < 2:
74
+ return None
75
+ raw = parts[1].strip()
76
+ try:
77
+ return float(raw)
78
+ except ValueError:
79
+ return None
80
+
81
+ def convert_gender(val: str):
82
+ """
83
+ Convert gender data to binary (female=0, male=1). Return None if unknown.
84
+ """
85
+ parts = val.split(':', 1)
86
+ if len(parts) < 2:
87
+ return None
88
+ raw = parts[1].strip().lower()
89
+ if raw == "female":
90
+ return 0
91
+ elif raw == "male":
92
+ return 1
93
+ return None
94
+
95
+ # 3. Save Metadata - Initial Filtering
96
+ # Trait data availability depends on whether trait_row is None.
97
+ is_trait_available = (trait_row is not None)
98
+
99
+ is_usable = validate_and_save_cohort_info(
100
+ is_final=False,
101
+ cohort=cohort,
102
+ info_path=json_path,
103
+ is_gene_available=is_gene_available,
104
+ is_trait_available=is_trait_available
105
+ )
106
+
107
+ # 4. Clinical Feature Extraction
108
+ # Since trait_row is None, we skip extracting clinical features.
109
+ # STEP3
110
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
111
+ gene_data = get_genetic_data(matrix_file)
112
+
113
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
114
+ print(gene_data.index[:20])
115
+ # These identifiers (e.g., "10_10_1", "10_10_10") are not standard human gene symbols.
116
+ # They appear to be platform-specific probe references, so a mapping to human gene symbols is needed.
117
+
118
+ requires_gene_mapping = True
119
+ # STEP5
120
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
121
+ gene_annotation = get_gene_annotation(soft_file)
122
+
123
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
124
+ print("Gene annotation preview:")
125
+ print(preview_df(gene_annotation))
126
+ # STEP: Gene Identifier Mapping
127
+
128
+ # 1. We have determined that the gene annotation column "ID" matches the identifier in the gene expression data index,
129
+ # and "Gene_Symbol" provides the corresponding gene symbols.
130
+
131
+ # 2. Create a gene mapping dataframe from the annotation dataframe using the appropriate columns.
132
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene_Symbol')
133
+
134
+ # 3. Apply the mapping to convert probe-level data to gene-level data.
135
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
136
+
137
+ # Optionally print shape or a small preview to verify results
138
+ print("Mapped gene_data shape:", gene_data.shape)
139
+ print(gene_data.head())
140
+ import pandas as pd
141
+
142
+ # STEP7
143
+
144
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
145
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
146
+ normalized_gene_data.to_csv(out_gene_data_file)
147
+
148
+ # Check if trait data was actually available from previous steps
149
+ # (In previous steps, we set is_trait_available = (trait_row is not None).)
150
+ # We'll assume here it's accessible in the environment, or re-derive it:
151
+ is_trait_available = False # Reflecting the outcome from prior steps
152
+
153
+ if not is_trait_available:
154
+ # 2-4: Skip linking, missing value handling, and bias checks because trait is unavailable.
155
+ # 5. Conduct final validation with an empty DataFrame, forcing the dataset to be marked not usable.
156
+ empty_df = pd.DataFrame()
157
+ validate_and_save_cohort_info(
158
+ is_final=True,
159
+ cohort=cohort,
160
+ info_path=json_path,
161
+ is_gene_available=True, # The expression data exists
162
+ is_trait_available=False, # Trait data is not available
163
+ is_biased=True, # Force as biased so the dataset is not usable
164
+ df=empty_df,
165
+ note="Trait data not available; skipping further steps."
166
+ )
167
+ else:
168
+ # 2. Define a placeholder for selected_clinical_data (if we actually had trait data).
169
+ # In this dataset, trait_row was None, so this part won't run.
170
+ selected_clinical_data = pd.DataFrame() # Placeholder if trait were available
171
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
172
+
173
+ # 3. Handle missing values in the linked data
174
+ linked_data = handle_missing_values(linked_data, trait)
175
+
176
+ # 4. Determine whether the trait and demographic features are severely biased
177
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
178
+
179
+ # 5. Conduct final quality validation and save the cohort information
180
+ is_usable = validate_and_save_cohort_info(
181
+ is_final=True,
182
+ cohort=cohort,
183
+ info_path=json_path,
184
+ is_gene_available=True,
185
+ is_trait_available=True,
186
+ is_biased=is_trait_biased,
187
+ df=unbiased_linked_data
188
+ )
189
+
190
+ # 6. If the dataset is usable, save it as CSV
191
+ if is_usable:
192
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Cystic_Fibrosis/code/GSE142610.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE142610"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE142610"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE142610.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE142610.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE142610.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if gene expression data is likely available
37
+ is_gene_available = True # Based on the series summary describing transcriptomic (gene expression) analysis
38
+
39
+ # 2. Determine data availability (trait, age, gender)
40
+ # We see that all samples are from a CF cell line without variation. Hence, trait is constant.
41
+ # No age or gender information is provided. Therefore:
42
+ trait_row = None
43
+ age_row = None
44
+ gender_row = None
45
+
46
+ # 2.2 Define conversion functions.
47
+ # Since trait_row, age_row, and gender_row are None, these functions will not be used here,
48
+ # but we provide them for completeness.
49
+
50
+ def convert_trait(raw_value: str):
51
+ return None
52
+
53
+ def convert_age(raw_value: str):
54
+ return None
55
+
56
+ def convert_gender(raw_value: str):
57
+ return None
58
+
59
+ # 3. Save metadata with initial filtering
60
+ is_trait_available = (trait_row is not None)
61
+ is_usable = validate_and_save_cohort_info(
62
+ is_final=False,
63
+ cohort=cohort,
64
+ info_path=json_path,
65
+ is_gene_available=is_gene_available,
66
+ is_trait_available=is_trait_available
67
+ )
68
+
69
+ # 4. Since trait_row is None (trait not available), we skip clinical feature extraction.
70
+ # STEP3
71
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
72
+ gene_data = get_genetic_data(matrix_file)
73
+
74
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
75
+ print(gene_data.index[:20])
76
+ # Based on inspection, some identifiers (e.g., "7A5", "A2BP1") appear to be synonyms or outdated symbols
77
+ # rather than standard HGNC gene symbols. Therefore, they may require mapping to unify them into
78
+ # current official human gene symbols.
79
+
80
+ print("Some gene identifiers are synonyms or aliases rather than current official gene symbols.")
81
+ print("requires_gene_mapping = True")
82
+ # STEP5
83
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
84
+ gene_annotation = get_gene_annotation(soft_file)
85
+
86
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
87
+ print("Gene annotation preview:")
88
+ print(preview_df(gene_annotation))
89
+ # STEP: Gene Identifier Mapping
90
+
91
+ # 1. Decide which key in the gene annotation DataFrame matches the gene expression data IDs
92
+ # and which key contains the gene symbols.
93
+ # From the preview, both "ID" and "ORF" columns appear to match the probe IDs in the expression data,
94
+ # but "ORF" likely corresponds to the gene symbol we want.
95
+
96
+ # 2. Get a gene mapping DataFrame using the library function get_gene_mapping
97
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ORF')
98
+
99
+ # 3. Convert (probe-level) gene expression data to (gene-level) data
100
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
p1/preprocess/Cystic_Fibrosis/code/GSE53543.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE53543"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE53543"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE53543.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE53543.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE53543.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the background info, this dataset contains gene expression data
38
+
39
+ # 2. Variable Availability
40
+ # After examining the sample characteristics dictionary, we see:
41
+ # - There is no row containing Cystic Fibrosis information, so trait_row = None
42
+ # - There is no row containing age information, so age_row = None
43
+ # - Row 1 contains gender information with two distinct values (Female, Male), so gender_row = 1
44
+ trait_row = None
45
+ age_row = None
46
+ gender_row = 1
47
+
48
+ # 2.2 Data Type Conversion Functions
49
+ def convert_trait(x: str):
50
+ """
51
+ Convert string to an appropriate trait value.
52
+ Since we have no trait data, the function returns None for any input.
53
+ """
54
+ return None
55
+
56
+ def convert_age(x: str):
57
+ """
58
+ Convert string to a continuous value for age.
59
+ Since age data is not available in this dataset, the function returns None for any input.
60
+ """
61
+ return None
62
+
63
+ def convert_gender(x: str):
64
+ """
65
+ Convert string to a binary value for gender: female -> 0, male -> 1.
66
+ Any unknown token returns None.
67
+ """
68
+ if not x:
69
+ return None
70
+ val = x.split(":", 1)[-1].strip().lower()
71
+ if val == "female":
72
+ return 0
73
+ elif val == "male":
74
+ return 1
75
+ return None
76
+
77
+ # 3. Save Metadata (Initial Filtering)
78
+ # Trait data availability is determined by whether trait_row is None
79
+ is_trait_available = (trait_row is not None)
80
+
81
+ is_usable = validate_and_save_cohort_info(
82
+ is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=is_trait_available
87
+ )
88
+
89
+ # 4. Clinical Feature Extraction
90
+ # This step is skipped because 'trait_row' is None
91
+ # (no trait data available to extract).
92
+ # STEP3
93
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
94
+ gene_data = get_genetic_data(matrix_file)
95
+
96
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
97
+ print(gene_data.index[:20])
98
+ # Observed gene identifiers (e.g., "ILMN_1651229") are Illumina probe IDs, not standard human gene symbols.
99
+ # They require mapping to official gene symbols.
100
+
101
+ requires_gene_mapping = True
102
+ # STEP5
103
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
104
+ gene_annotation = get_gene_annotation(soft_file)
105
+
106
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
107
+ print("Gene annotation preview:")
108
+ print(preview_df(gene_annotation))
109
+ # STEP: Gene Identifier Mapping
110
+
111
+ # 1. Identify the columns in the annotation dataframe that match the gene_expression data's probe IDs and gene symbols
112
+ probe_col = "ID" # This column in 'gene_annotation' matches the probe IDs in 'gene_data'
113
+ symbol_col = "Symbol" # This column in 'gene_annotation' holds the gene symbols
114
+
115
+ # 2. Extract the mapping info from the annotation dataframe
116
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
117
+
118
+ # 3. Apply the gene mapping to convert probe-level data to gene-level data
119
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
120
+ # STEP7
121
+ # Since trait_row = None, we have no trait data. Therefore, we cannot remove samples for a nonexistent trait,
122
+ # nor perform trait-based bias checks. We will still normalize and link the available clinical data (gender only)
123
+ # with gene data. Finally, we record that the dataset lacks trait data and is thus not fully usable.
124
+
125
+ # 1. Define the selected clinical data (which has gender info but no trait info).
126
+ selected_clinical_data = clinical_data
127
+
128
+ # 2. Normalize the obtained gene expression data using synonym information and save to CSV.
129
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
130
+ normalized_gene_data.to_csv(out_gene_data_file)
131
+
132
+ # 3. Link the (gender-only) clinical data and gene data.
133
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
134
+
135
+ # 4. We skip handle_missing_values() and bias checks because there's no trait column at all.
136
+ # Attempting them would cause a KeyError on "Cystic_Fibrosis".
137
+
138
+ # 5. Perform final validation, marking that no trait data is available. This dataset is not fully usable for
139
+ # trait-based analyses, but we still record its metadata in the JSON file.
140
+ is_usable = validate_and_save_cohort_info(
141
+ is_final=True,
142
+ cohort=cohort,
143
+ info_path=json_path,
144
+ is_gene_available=True,
145
+ is_trait_available=False,
146
+ is_biased=None,
147
+ df=None,
148
+ note="No trait data available. Only gender is present."
149
+ )
150
+
151
+ # 6. Because the dataset lacks trait data, it won't be marked as fully usable, so we do not save any final linked CSV.
152
+ # STEP8
153
+ # As determined, this dataset lacks a valid trait column ("Cystic_Fibrosis"), so we cannot run
154
+ # trait-based missing value checks or bias assessments. We will still normalize and link
155
+ # the data, then record that the dataset is not fully usable (no trait data).
156
+
157
+ # 1. Normalize the obtained gene data
158
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
159
+ normalized_gene_data.to_csv(out_gene_data_file)
160
+
161
+ # 2. Link the clinical (gender-only) and genetic data
162
+ # Assuming 'selected_clinical_data' is simply 'clinical_data' from our previous steps.
163
+ selected_clinical_data = clinical_data
164
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
165
+
166
+ # 3. Because there is no 'Cystic_Fibrosis' column, we skip handle_missing_values() and bias checks.
167
+
168
+ # 4. Conduct the final quality validation and record metadata.
169
+ # The trait is not available, so we pass `is_trait_available=False`. The function requires is_biased to be boolean.
170
+ # We set it to False to fulfill the function's requirements and note that the dataset lacks trait-based analysis.
171
+ is_usable = validate_and_save_cohort_info(
172
+ is_final=True,
173
+ cohort=cohort,
174
+ info_path=json_path,
175
+ is_gene_available=True,
176
+ is_trait_available=False,
177
+ is_biased=False, # Manually setting to False; no trait data => no trait bias check
178
+ df=linked_data,
179
+ note="No trait column found; cannot perform trait-based analysis. Only gender is present."
180
+ )
181
+
182
+ # 5. If the dataset were usable for trait-based analysis, we would save the final linked CSV.
183
+ # But since it's not, we skip saving to `out_data_file`.
184
+ if is_usable:
185
+ linked_data.to_csv(out_data_file)
p1/preprocess/Cystic_Fibrosis/code/GSE60690.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE60690"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE60690"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE60690.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE60690.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE60690.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ # From the background info ("global gene expression was measured in RNA from LCLs"),
38
+ # it is clear that the dataset contains gene expression data.
39
+ is_gene_available = True
40
+
41
+ # 2. Variable Availability and Data Type Conversion
42
+ # 2.1 Data Availability
43
+ # - The "trait" here is "Cystic_Fibrosis", but the background indicates
44
+ # this dataset is entirely CF patients (no variation). Hence treat as not available.
45
+ trait_row = None
46
+
47
+ # - Age is found in row 2 ("age of enrollment: ...").
48
+ age_row = 2
49
+
50
+ # - Gender is found in row 0 ("Sex: Male", "Sex: Female").
51
+ gender_row = 0
52
+
53
+ # 2.2 Data Type Conversion
54
+ import re
55
+
56
+ def convert_trait(value: str) -> int:
57
+ """
58
+ Although trait_row is None (trait not available),
59
+ define a function for completeness.
60
+ Returns None if called, as there's no variation here.
61
+ """
62
+ return None
63
+
64
+ def convert_age(value: str) -> float:
65
+ """
66
+ Convert 'age of enrollment: 38.2' -> 38.2 (float).
67
+ If 'NA', return None.
68
+ """
69
+ # Extract the portion after the colon
70
+ parts = value.split(':')
71
+ if len(parts) < 2:
72
+ return None
73
+ age_str = parts[1].strip()
74
+ if age_str.upper() == 'NA':
75
+ return None
76
+ try:
77
+ return float(age_str)
78
+ except ValueError:
79
+ return None
80
+
81
+ def convert_gender(value: str) -> int:
82
+ """
83
+ Convert 'Sex: Male' -> 1
84
+ 'Sex: Female' -> 0
85
+ Otherwise return None.
86
+ """
87
+ parts = value.split(':')
88
+ if len(parts) < 2:
89
+ return None
90
+ gender_str = parts[1].strip().lower()
91
+ if gender_str == 'male':
92
+ return 1
93
+ elif gender_str == 'female':
94
+ return 0
95
+ return None
96
+
97
+ # 3. Save Metadata
98
+ # trait data availability depends on trait_row.
99
+ is_trait_available = trait_row is not None
100
+
101
+ usable_status = validate_and_save_cohort_info(
102
+ is_final=False,
103
+ cohort=cohort,
104
+ info_path=json_path,
105
+ is_gene_available=is_gene_available,
106
+ is_trait_available=is_trait_available
107
+ )
108
+
109
+ # 4. Clinical Feature Extraction
110
+ # Skip this step because trait_row is None (no trait variation).
111
+ # Thus, we do not call geo_select_clinical_features.
112
+ # STEP3
113
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
114
+ gene_data = get_genetic_data(matrix_file)
115
+
116
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
117
+ print(gene_data.index[:20])
118
+ print("requires_gene_mapping = True")
119
+ # STEP5
120
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
121
+ gene_annotation = get_gene_annotation(soft_file)
122
+
123
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
124
+ print("Gene annotation preview:")
125
+ print(preview_df(gene_annotation))
126
+ # STEP6: Gene Identifier Mapping
127
+
128
+ # 1. Identify the columns in 'gene_annotation' that match the probe IDs in 'gene_data'
129
+ # and the column that stores gene symbols. Based on inspection, "ID" aligns with
130
+ # the probe identifiers in the expression data, and "gene_assignment" stores gene symbols.
131
+ probe_col = "ID"
132
+ gene_symbol_col = "gene_assignment"
133
+
134
+ # 2. Extract a mapping dataframe containing these two columns
135
+ mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)
136
+
137
+ # 3. Apply the mapping to convert the probe-level expression data to gene-level data
138
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
139
+ # STEP 7
140
+
141
+ # 1) Normalize the gene symbols in the obtained gene expression data
142
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
143
+ normalized_gene_data.to_csv(out_gene_data_file)
144
+
145
+ # The dataset lacks trait variation (only CF patients), so no clinical data can be used for association.
146
+ # We skip linking to clinical data and skip further steps requiring trait info.
147
+
148
+ # 2) Final validation and saving metadata
149
+ # The library requires non-None boolean for 'is_biased' when is_final=True.
150
+ # Since there's no trait variation, we consider it "biased" for association.
151
+ is_biased = True
152
+
153
+ _ = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=False,
159
+ is_biased=is_biased,
160
+ df=pd.DataFrame(), # Passing an empty DataFrame as the dataset for final validation
161
+ note="All samples are CF patients; no variation in the trait."
162
+ )
163
+
164
+ # 3) Because the trait is unavailable for association, the dataset is not usable.
165
+ # We therefore do not create or save any linked data CSV file.
p1/preprocess/Cystic_Fibrosis/code/GSE67698.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE67698"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE67698"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE67698.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE67698.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE67698.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # "Transcriptional profiling" implies likely RNA gene expression
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+ # Based on the sample characteristics dictionary, row=1 has two unique values indicating
41
+ # deltaF508 CFTR or wildtype CFTR, which can be mapped to the trait (Cystic_Fibrosis vs. not).
42
+ # Age and gender do not appear to be present.
43
+
44
+ trait_row = 1
45
+ age_row = None
46
+ gender_row = None
47
+
48
+ def convert_trait(value: str) -> Optional[int]:
49
+ """
50
+ Convert the trait (CF vs. non-CF) to a binary integer.
51
+ Values containing 'deltaF508' -> 1 (CF)
52
+ Values containing 'wildtype' -> 0 (non-CF)
53
+ Otherwise -> None
54
+ """
55
+ # Attempt to split by colon, keep the part after it
56
+ parts = value.split(':', 1)
57
+ if len(parts) == 2:
58
+ val = parts[1].strip().lower()
59
+ else:
60
+ val = value.strip().lower()
61
+
62
+ if 'deltaf508' in val:
63
+ return 1
64
+ elif 'wildtype' in val:
65
+ return 0
66
+ return None
67
+
68
+ def convert_age(value: str) -> Optional[float]:
69
+ # Age data not available, return None
70
+ return None
71
+
72
+ def convert_gender(value: str) -> Optional[int]:
73
+ # Gender data not available, return None
74
+ return None
75
+
76
+ # 3. Save Metadata (initial filtering)
77
+ is_trait_available = (trait_row is not None)
78
+ is_usable = validate_and_save_cohort_info(
79
+ is_final=False,
80
+ cohort=cohort,
81
+ info_path=json_path,
82
+ is_gene_available=is_gene_available,
83
+ is_trait_available=is_trait_available
84
+ )
85
+
86
+ # 4. Clinical Feature Extraction
87
+ if trait_row is not None:
88
+ selected_clinical_df = geo_select_clinical_features(
89
+ clinical_df=clinical_data,
90
+ trait=trait,
91
+ trait_row=trait_row,
92
+ convert_trait=convert_trait,
93
+ age_row=age_row,
94
+ convert_age=convert_age,
95
+ gender_row=gender_row,
96
+ convert_gender=convert_gender
97
+ )
98
+ # Preview the extracted clinical features
99
+ preview = preview_df(selected_clinical_df)
100
+ print("Preview of selected clinical features:", preview)
101
+
102
+ # Save the clinical dataframe to CSV
103
+ selected_clinical_df.to_csv(out_clinical_data_file)
104
+ # STEP3
105
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
106
+ gene_data = get_genetic_data(matrix_file)
107
+
108
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
109
+ print(gene_data.index[:20])
110
+ # Based on observation, the identifiers (e.g., "A_23_P100001") are not standard human gene symbols.
111
+ # They appear to be array probe IDs that need to be mapped to gene symbols.
112
+ print("requires_gene_mapping = True")
113
+ # STEP5
114
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
115
+ gene_annotation = get_gene_annotation(soft_file)
116
+
117
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
118
+ print("Gene annotation preview:")
119
+ print(preview_df(gene_annotation))
120
+ # STEP6: Gene Identifier Mapping
121
+
122
+ # 1. Identify the columns in the annotation that match the expression data's probe IDs and human gene symbols.
123
+ # From inspection, 'ID' matches the "A_23_P..." probe IDs, and 'GENE_SYMBOL' holds the human gene symbols.
124
+
125
+ # 2. Build a gene mapping dataframe using these columns.
126
+ mapping_df = get_gene_mapping(
127
+ annotation=gene_annotation,
128
+ prob_col="ID",
129
+ gene_col="GENE_SYMBOL"
130
+ )
131
+
132
+ # 3. Convert probe-level measurements to gene-level expression data by applying the gene mapping.
133
+ gene_data = apply_gene_mapping(
134
+ expression_df=gene_data,
135
+ mapping_df=mapping_df
136
+ )
137
+
138
+ # (Optional) Display some basic information about the newly mapped gene_data.
139
+ print("Mapped gene_data shape:", gene_data.shape)
140
+ print("First 5 rows of mapped gene_data:")
141
+ print(gene_data.head())
142
+ import os
143
+ import pandas as pd
144
+
145
+ # STEP 7 (Corrected)
146
+
147
+ # 1) Normalize gene symbols in the obtained gene expression data
148
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
149
+ normalized_gene_data.to_csv(out_gene_data_file)
150
+
151
+ # 2) Instead of reloading the clinical data from CSV (which was saved without index),
152
+ # we directly use the in-memory DataFrame "selected_clinical_df" from earlier steps.
153
+ # That DataFrame already has the trait as a row label, which is required downstream.
154
+
155
+ # 3) Link the clinical and genetic data on sample IDs
156
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
157
+
158
+ # 4) Handle missing values in the linked data
159
+ linked_data = handle_missing_values(linked_data, trait)
160
+
161
+ # 5) Check for biased features (including the trait)
162
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
163
+
164
+ # 6) Final validation and saving metadata
165
+ is_usable = validate_and_save_cohort_info(
166
+ is_final=True,
167
+ cohort=cohort,
168
+ info_path=json_path,
169
+ is_gene_available=True,
170
+ is_trait_available=True,
171
+ is_biased=trait_biased,
172
+ df=linked_data,
173
+ note="Data from GSE123086, trait is Crohn's disease."
174
+ )
175
+
176
+ # 7) If the dataset is usable, save the linked data
177
+ if is_usable:
178
+ linked_data.to_csv(out_data_file)
p1/preprocess/Cystic_Fibrosis/code/GSE71799.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE71799"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE71799"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE71799.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE71799.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE71799.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ # According to the background summary, gene expression analysis was performed, so:
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+
42
+ # Based on the sample characteristics dictionary:
43
+ # {0: ['responder cells: UPN727 cells']}
44
+ # There's a single key (0) with the same value for all samples, which does not provide trait,
45
+ # age, or gender variability. Therefore, all three are considered not available.
46
+
47
+ trait_row = None
48
+ age_row = None
49
+ gender_row = None
50
+
51
+ # Define conversion functions (though they won't be used due to None rows).
52
+ def convert_trait(value: str):
53
+ # No actual data keys to parse, return None
54
+ return None
55
+
56
+ def convert_age(value: str):
57
+ # No actual data keys to parse, return None
58
+ return None
59
+
60
+ def convert_gender(value: str):
61
+ # No actual data keys to parse, return None
62
+ return None
63
+
64
+ # 3. Save metadata with initial filtering
65
+ # Trait availability depends on whether trait_row is None.
66
+ is_trait_available = (trait_row is not None)
67
+ is_usable = validate_and_save_cohort_info(
68
+ is_final=False,
69
+ cohort=cohort,
70
+ info_path=json_path,
71
+ is_gene_available=is_gene_available,
72
+ is_trait_available=is_trait_available
73
+ )
74
+
75
+ # 4. Clinical Feature Extraction
76
+ # Since trait_row is None, we skip this step.
77
+ # STEP3
78
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
79
+ gene_data = get_genetic_data(matrix_file)
80
+
81
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
82
+ print(gene_data.index[:20])
83
+ print("requires_gene_mapping = True")
84
+ # STEP5
85
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
86
+ gene_annotation = get_gene_annotation(soft_file)
87
+
88
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
89
+ print("Gene annotation preview:")
90
+ print(preview_df(gene_annotation))
91
+ # STEP: Gene Identifier Mapping
92
+
93
+ # 1. Identify columns in the annotation dataframe: 'ID' for probe identifiers and 'Gene Symbol' for gene symbols
94
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
95
+
96
+ # 2. Convert probe-level expression data to gene-level expression data
97
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
98
+ import os
99
+ import pandas as pd
100
+
101
+ # STEP 7 (Revised with dummy DataFrame for final validation)
102
+
103
+ # 1) Normalize gene symbols in the obtained gene expression data
104
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
105
+ normalized_gene_data.to_csv(out_gene_data_file)
106
+
107
+ # Because trait_row is None, there's no clinical data to link, so we skip trait-related steps.
108
+
109
+ # 2) Provide a dummy DataFrame and is_biased flag for final validation
110
+ dummy_df = pd.DataFrame()
111
+ dummy_is_biased = False
112
+
113
+ # 3) Final validation
114
+ is_usable = validate_and_save_cohort_info(
115
+ is_final=True,
116
+ cohort=cohort,
117
+ info_path=json_path,
118
+ is_gene_available=True,
119
+ is_trait_available=False,
120
+ is_biased=dummy_is_biased,
121
+ df=dummy_df,
122
+ note="No trait data in GSE71799, only gene expression data."
123
+ )
124
+
125
+ # 4) Since the dataset is not usable due to no trait data, do not save any linked data.
p1/preprocess/Cystic_Fibrosis/code/GSE76347.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+ cohort = "GSE76347"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
10
+ in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE76347"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE76347.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE76347.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE76347.csv"
16
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if gene expression data is available
37
+ is_gene_available = True # Microarray data is mentioned in the background
38
+
39
+ # 2. Determine availability of trait, age, and gender
40
+ # and define data conversion functions
41
+
42
+ # From the sample characteristics dictionary, there is only one unique trait value ("CF"),
43
+ # so it is effectively constant (not useful for association), thus not available.
44
+ trait_row = None
45
+
46
+ # No information about age or gender in the dictionary, so set them to None
47
+ age_row = None
48
+ gender_row = None
49
+
50
+ # Define the data conversion functions
51
+ def convert_trait(x: str):
52
+ # Since trait_row is None, we won't actually use this, but defining for completeness
53
+ parts = x.split(':', 1)
54
+ if len(parts) < 2:
55
+ return None
56
+ val = parts[1].strip().lower()
57
+ # If trait were variable, we'd map values accordingly, but it's constant in this dataset
58
+ return None
59
+
60
+ def convert_age(x: str):
61
+ # Since age_row is None, we won't actually use this, but defining for completeness
62
+ parts = x.split(':', 1)
63
+ if len(parts) < 2:
64
+ return None
65
+ val = parts[1].strip().lower()
66
+ # Normally, parse to a float/int if valid; otherwise None
67
+ return None
68
+
69
+ def convert_gender(x: str):
70
+ # Since gender_row is None, we won't actually use this, but defining for completeness
71
+ parts = x.split(':', 1)
72
+ if len(parts) < 2:
73
+ return None
74
+ val = parts[1].strip().lower()
75
+ # Typically, 'female' -> 0, 'male' -> 1; else None
76
+ return None
77
+
78
+ # 3. Save Metadata (initial filtering)
79
+ is_trait_available = (trait_row is not None)
80
+ is_usable = validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=is_trait_available
86
+ )
87
+
88
+ # 4. Clinical Feature Extraction
89
+ # Only proceed if trait_row is available (not None), otherwise skip
90
+ if trait_row is not None:
91
+ selected_clinical_df = geo_select_clinical_features(
92
+ clinical_data,
93
+ trait=trait,
94
+ trait_row=trait_row,
95
+ convert_trait=convert_trait,
96
+ age_row=age_row,
97
+ convert_age=convert_age,
98
+ gender_row=gender_row,
99
+ convert_gender=convert_gender
100
+ )
101
+ print("Preview of extracted clinical features:")
102
+ print(preview_df(selected_clinical_df))
103
+ selected_clinical_df.to_csv(out_clinical_data_file)
104
+ # STEP3
105
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
106
+ gene_data = get_genetic_data(matrix_file)
107
+
108
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
109
+ print(gene_data.index[:20])
110
+ # Observing the IDs: they appear to be numeric probe identifiers (e.g., from an array platform).
111
+ # These are not standard human gene symbols and likely need to be mapped to gene symbols.
112
+
113
+ print("requires_gene_mapping = True")
114
+ # STEP5
115
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
116
+ gene_annotation = get_gene_annotation(soft_file)
117
+
118
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
119
+ print("Gene annotation preview:")
120
+ print(preview_df(gene_annotation))
121
+ # STEP: Gene Identifier Mapping
122
+
123
+ # 1. Identify which columns correspond to the probe IDs and gene symbols in the annotation
124
+ # - The "ID" column in gene_annotation matches the probe IDs in gene_data
125
+ # - The "gene_assignment" column contains gene symbol information
126
+
127
+ # 2. Get a gene mapping dataframe
128
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
129
+
130
+ # 3. Convert probe-level measurements into gene expression data
131
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
132
+ import os
133
+ import pandas as pd
134
+
135
+ # STEP 7
136
+
137
+ # 1) Normalize gene symbols in the obtained gene expression data
138
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ normalized_gene_data.to_csv(out_gene_data_file)
140
+
141
+ # Since we have no trait data (trait_row was None), we skip linking clinical data,
142
+ # missing value handling, bias checks, and final validation for this dataset.
143
+ # The partial validation has already been done previously (is_final=False), indicating
144
+ # that trait data is missing and thus the dataset is not usable for associative studies.
p1/preprocess/Cystic_Fibrosis/code/TCGA.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cystic_Fibrosis"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Cystic_Fibrosis/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify subdirectories under tcga_root_dir
20
+ subdirectories = os.listdir(tcga_root_dir)
21
+
22
+ # Attempt to locate a subdirectory related to "Cystic_Fibrosis"
23
+ # (Looking for any name containing "cystic" or "fibrosis")
24
+ trait_subdir = None
25
+ for d in subdirectories:
26
+ lower_d = d.lower().replace('_', ' ')
27
+ if "cystic" in lower_d and "fibrosis" in lower_d:
28
+ trait_subdir = d
29
+ break
30
+
31
+ # If none found, skip this trait
32
+ if not trait_subdir:
33
+ print("No suitable subdirectory found for trait 'Cystic_Fibrosis'. Skipping...")
34
+ is_gene_available = False
35
+ is_trait_available = False
36
+ validate_and_save_cohort_info(
37
+ is_final=False,
38
+ cohort="TCGA",
39
+ info_path=json_path,
40
+ is_gene_available=is_gene_available,
41
+ is_trait_available=is_trait_available
42
+ )
43
+ else:
44
+ # 2. Identify paths to the clinical and genetic data files
45
+ full_subdir_path = os.path.join(tcga_root_dir, trait_subdir)
46
+ clinical_path, genetic_path = tcga_get_relevant_filepaths(full_subdir_path)
47
+
48
+ # 3. Load data into DataFrames
49
+ clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t')
50
+ genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t')
51
+
52
+ # 4. Print the column names of the clinical data for inspection
53
+ print("Clinical Data Columns:")
54
+ print(clinical_df.columns.tolist())
p1/preprocess/Cystic_Fibrosis/gene_data/GSE100521.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:755c1b82840b6f6d1048b7cf2c18b982b6c839f3356e2e0064e58ba0f5b45250
3
+ size 18338705
p1/preprocess/Cystic_Fibrosis/gene_data/GSE107846.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Cystic_Fibrosis/gene_data/GSE129168.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Cystic_Fibrosis/gene_data/GSE139038.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b3d31e790d43703fae5e61d5b9a7f004629a173084bed93d0ef0286a56a80f1
3
+ size 24255296
p1/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5debcb1fde444713779eb28ea53e4d9bb3422da7eba5bf8fadcc86b4796e403
3
+ size 20220285
p1/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7903e22d5fcdd3b3d196dbbb637d009e3b76e76aa4d59a6d5c5f3bad17e810a1
3
+ size 25978567
p1/preprocess/Cystic_Fibrosis/gene_data/GSE76347.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:866242e882712a8615ea58dd5bed82bc0b2f914495d634793cb9a23d783b1598
3
+ size 11628157
p1/preprocess/Depression/GSE110298.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Depression/GSE208668.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Depression/GSE99725.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Depression/clinical_data/GSE110298.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM2985507,GSM2985508,GSM2985509,GSM2985510,GSM2985511,GSM2985512,GSM2985513,GSM2985514,GSM2985515,GSM2985516,GSM2985517,GSM2985518,GSM2985519,GSM2985520,GSM2985521,GSM2985522,GSM2985523,GSM2985524,GSM2985525,GSM2985526,GSM2985527,GSM2985528,GSM2985529,GSM2985530,GSM2985531,GSM2985532,GSM2985533,GSM2985534,GSM2985535,GSM2985536,GSM2985537,GSM2985538,GSM2985539,GSM2985540
2
+ 0.0,0.0,2.0,0.0,0.0,2.0,8.0,1.0,1.0,2.0,3.0,0.0,0.0,4.0,0.0,0.0,1.0,0.0,0.0,1.0,3.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,3.0,1.0,3.0,1.0,0.0
3
+ 89.0,95.0,84.0,76.0,86.0,96.0,80.0,101.0,85.0,92.0,92.0,78.0,85.0,86.0,88.0,89.0,81.0,91.0,89.0,88.0,99.0,89.0,92.0,80.0,86.0,81.0,89.0,92.0,85.0,79.0,93.0,76.0,87.0,95.0
4
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0
p1/preprocess/Depression/clinical_data/GSE201332.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM6058641,GSM6058642,GSM6058643,GSM6058644,GSM6058645,GSM6058646,GSM6058647,GSM6058648,GSM6058649,GSM6058650,GSM6058651,GSM6058652,GSM6058653,GSM6058654,GSM6058655,GSM6058656,GSM6058657,GSM6058658,GSM6058659,GSM6058660,GSM6058661,GSM6058662,GSM6058663,GSM6058664,GSM6058665,GSM6058666,GSM6058667,GSM6058668,GSM6058669,GSM6058670,GSM6058671,GSM6058672,GSM6058673,GSM6058674,GSM6058675,GSM6058676,GSM6058677,GSM6058678,GSM6058679,GSM6058680
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ 48.0,33.0,43.0,24.0,24.0,45.0,36.0,59.0,51.0,51.0,26.0,25.0,24.0,26.0,43.0,32.0,32.0,39.0,41.0,43.0,52.0,24.0,43.0,43.0,53.0,44.0,22.0,36.0,32.0,45.0,47.0,25.0,54.0,47.0,25.0,28.0,52.0,33.0,30.0,51.0
4
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0
p1/preprocess/Depression/clinical_data/GSE208668.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM6360934,GSM6360935,GSM6360936,GSM6360937,GSM6360938,GSM6360939,GSM6360940,GSM6360941,GSM6360942,GSM6360943,GSM6360944,GSM6360945,GSM6360946,GSM6360947,GSM6360948,GSM6360949,GSM6360950,GSM6360951,GSM6360952,GSM6360953,GSM6360954,GSM6360955,GSM6360956,GSM6360957,GSM6360958,GSM6360959,GSM6360960,GSM6360961,GSM6360962,GSM6360963,GSM6360964,GSM6360965,GSM6360966,GSM6360967,GSM6360968,GSM6360969,GSM6360970,GSM6360971,GSM6360972,GSM6360973,GSM6360974,GSM6360975
2
+ 1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0
3
+ 65.0,75.0,77.0,64.0,60.0,67.0,72.0,62.0,73.0,74.0,73.0,68.0,62.0,73.0,70.0,60.0,61.0,66.0,69.0,62.0,67.0,62.0,71.0,63.0,62.0,61.0,67.0,78.0,79.0,72.0,73.0,77.0,72.0,62.0,70.0,65.0,63.0,74.0,71.0,80.0,78.0,65.0
4
+ 0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0
p1/preprocess/Depression/clinical_data/GSE99725.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM2650879,GSM2650880,GSM2650881,GSM2650882,GSM2650883,GSM2650884,GSM2650885,GSM2650886,GSM2650887,GSM2650888,GSM2650889,GSM2650890,GSM2650891,GSM2650892,GSM2650893,GSM2650894,GSM2650895,GSM2650896,GSM2650897,GSM2650898,GSM2650899,GSM2650900,GSM2650901,GSM2650902,GSM2650903,GSM2650904,GSM2650905,GSM2650906,GSM2650907,GSM2650908,GSM2650909,GSM2650910,GSM2650911,GSM2650912,GSM2650913,GSM2650914,GSM2650915,GSM2650916,GSM2650917,GSM2650918,GSM2650919,GSM2650920,GSM2650921,GSM2650922,GSM2650923,GSM2650924,GSM2650925,GSM2650926,GSM2650927,GSM2650928,GSM2650929,GSM2650930,GSM2650931,GSM2650932,GSM2650933,GSM2650934,GSM2650935
2
+ Depression,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0
p1/preprocess/Depression/code/GSE110298.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE110298"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE110298"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Depression/GSE110298.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Depression/gene_data/GSE110298.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Depression/clinical_data/GSE110298.csv"
16
+ json_path = "./output/preprocess/1/Depression/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ import re
37
+
38
+ # 1. Gene Expression Data Availability
39
+ is_gene_available = True # Based on the background info ("microarrays" mentioned, suggesting gene expression data)
40
+
41
+ # 2. Variable Availability and Data Type Conversion
42
+
43
+ # 2.1 Data Availability
44
+ # From the sample characteristics dictionary, depression data is at key=6, age at key=2, gender at key=1
45
+ trait_row = 6
46
+ age_row = 2
47
+ gender_row = 1
48
+
49
+ # 2.2 Data Type Conversion
50
+
51
+ def convert_trait(value: str):
52
+ """Convert the depression value (after colon) into a float/int. Unknown -> None."""
53
+ parts = value.split(":")
54
+ if len(parts) < 2:
55
+ return None
56
+ raw = parts[-1].strip()
57
+ # Attempt to convert to a float or integer
58
+ try:
59
+ return float(raw)
60
+ except ValueError:
61
+ return None
62
+
63
+ def convert_age(value: str):
64
+ """Convert the age value (after colon) into an integer. Unknown -> None."""
65
+ parts = value.split(":")
66
+ if len(parts) < 2:
67
+ return None
68
+ raw = parts[-1].strip()
69
+ try:
70
+ return int(raw)
71
+ except ValueError:
72
+ return None
73
+
74
+ def convert_gender(value: str):
75
+ """Convert gender to 0 (female) or 1 (male). Unknown -> None."""
76
+ parts = value.split(":")
77
+ if len(parts) < 2:
78
+ return None
79
+ raw = parts[-1].strip().lower()
80
+ if raw == "female":
81
+ return 0
82
+ elif raw == "male":
83
+ return 1
84
+ else:
85
+ return None
86
+
87
+ # 3. Save Metadata (Initial Filtering)
88
+ is_trait_available = (trait_row is not None)
89
+ is_usable = validate_and_save_cohort_info(
90
+ is_final=False,
91
+ cohort=cohort,
92
+ info_path=json_path,
93
+ is_gene_available=is_gene_available,
94
+ is_trait_available=is_trait_available
95
+ )
96
+
97
+ # 4. Clinical Feature Extraction (only if trait_row is not None)
98
+ if trait_row is not None:
99
+ # Suppose 'clinical_data' is the DataFrame we obtained from previous parsing steps
100
+ selected_clinical_df = geo_select_clinical_features(
101
+ clinical_df=clinical_data,
102
+ trait=trait,
103
+ trait_row=trait_row,
104
+ convert_trait=convert_trait,
105
+ age_row=age_row,
106
+ convert_age=convert_age,
107
+ gender_row=gender_row,
108
+ convert_gender=convert_gender
109
+ )
110
+
111
+ # Preview and save
112
+ print(preview_df(selected_clinical_df, n=5))
113
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
114
+ # STEP3
115
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
116
+ gene_data = get_genetic_data(matrix_file)
117
+
118
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
119
+ print(gene_data.index[:20])
120
+ # We observe that the gene identifiers look like Affymetrix probe set IDs rather than
121
+ # standard gene symbols. Therefore, they likely require mapping to gene symbols.
122
+
123
+ print("The gene identifiers appear to be Affymetrix probe IDs and are not standard gene symbols.")
124
+ print("requires_gene_mapping = True")
125
+ # STEP5
126
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
127
+ gene_annotation = get_gene_annotation(soft_file)
128
+
129
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
130
+ print("Gene annotation preview:")
131
+ print(preview_df(gene_annotation))
132
+ # STEP: Gene Identifier Mapping
133
+
134
+ # 1 & 2. Identify the columns in 'gene_annotation' corresponding to the probe IDs and gene symbols
135
+ # and extract them into a mapping dataframe.
136
+ mapping_df = get_gene_mapping(
137
+ annotation=gene_annotation,
138
+ prob_col="ID",
139
+ gene_col="Gene Symbol"
140
+ )
141
+
142
+ # 3. Convert probe-level measurements to gene expression data using the mapping dataframe.
143
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
144
+
145
+ # For verification, let's display the new gene_data dimensions and the first few gene symbols.
146
+ print("Gene expression dataframe shape:", gene_data.shape)
147
+ print("First few gene symbols in the processed gene_data index:")
148
+ print(gene_data.index.tolist()[:20])
149
+ import pandas as pd
150
+
151
+ # STEP 7 (Corrected)
152
+
153
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
154
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
155
+ normalized_gene_data.to_csv(out_gene_data_file)
156
+
157
+ # 2. Load the final clinical data generated in Step 2 (it contains the "Depression" row).
158
+ # This file was saved without an index, so we read it with index_col=0 to restore
159
+ # the row index as ["Depression", "Age", "Gender"] and sample IDs as columns.
160
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
161
+
162
+ # 3. Link the clinical and genetic data on sample IDs.
163
+ linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
164
+
165
+ # 4. Handle missing values in the linked dataset, including removal and imputation.
166
+ final_data = handle_missing_values(linked_data, trait_col=trait)
167
+
168
+ # 5. Determine whether the trait and some demographic features in the dataset are severely biased.
169
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
170
+
171
+ # 6. Perform final validation and record dataset metadata.
172
+ is_usable = validate_and_save_cohort_info(
173
+ is_final=True,
174
+ cohort=cohort,
175
+ info_path=json_path,
176
+ is_gene_available=True,
177
+ is_trait_available=True,
178
+ is_biased=trait_biased,
179
+ df=final_data,
180
+ note="Trait data is present and has undergone final preprocessing."
181
+ )
182
+
183
+ # 7. If the dataset is usable, save the final linked data; otherwise, skip.
184
+ if is_usable:
185
+ final_data.to_csv(out_data_file)
186
+ import pandas as pd
187
+
188
+ # STEP 8 (Corrected)
189
+
190
+ # 1. Normalize gene symbols in the obtained gene expression data.
191
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
192
+ normalized_gene_data.to_csv(out_gene_data_file)
193
+
194
+ # 2. Read the final clinical data that was saved in a previous step
195
+ # It was saved with index=False, so we read it normally and then manually set the row index.
196
+ temp_clinical_df = pd.read_csv(out_clinical_data_file)
197
+ # The dataframe should have shape (3, number_of_samples).
198
+ # Assign the row index to ["Depression", "Age", "Gender"].
199
+ temp_clinical_df.index = ["Depression", "Age", "Gender"]
200
+
201
+ # 3. Link clinical and genetic data on sample IDs.
202
+ linked_data = geo_link_clinical_genetic_data(temp_clinical_df, normalized_gene_data)
203
+
204
+ # 4. Handle missing values in the linked dataset.
205
+ final_data = handle_missing_values(linked_data, trait_col=trait)
206
+
207
+ # 5. Determine whether the trait and some demographic features are severely biased.
208
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
209
+
210
+ # 6. Perform final validation and record dataset metadata, indicating trait availability.
211
+ is_usable = validate_and_save_cohort_info(
212
+ is_final=True,
213
+ cohort=cohort,
214
+ info_path=json_path,
215
+ is_gene_available=True,
216
+ is_trait_available=True,
217
+ is_biased=trait_biased,
218
+ df=final_data,
219
+ note="Successfully linked and processed GSE110298 with trait='Depression'."
220
+ )
221
+
222
+ # 7. If the dataset is deemed usable, save the final linked data.
223
+ if is_usable:
224
+ final_data.to_csv(out_data_file)
p1/preprocess/Depression/code/GSE128387.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE128387"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE128387"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Depression/GSE128387.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Depression/gene_data/GSE128387.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Depression/clinical_data/GSE128387.csv"
16
+ json_path = "./output/preprocess/1/Depression/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # The dataset uses Affymetrix microarrays, indicating gene expression data.
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+
41
+ # Looking at the sample characteristics dictionary, we see:
42
+ # 0: ['tissue: Blood']
43
+ # 1: ['illness: Major Depressive Disorder']
44
+ # 2: ['age: 16', 'age: 13', 'age: 12', 'age: 14', 'age: 17', 'age: 15']
45
+ # 3: ['Sex: female', 'Sex: male']
46
+
47
+ # - The trait "Depression" is constant across all samples (everyone has Major Depressive Disorder).
48
+ # Hence there is no meaningful variation in the trait for association studies.
49
+ trait_row = None
50
+
51
+ # - Age is available at row index 2 with multiple distinct values.
52
+ age_row = 2
53
+
54
+ # - Gender is available at row index 3 with two distinct values.
55
+ gender_row = 3
56
+
57
+ # Define conversion functions as required:
58
+ def convert_trait(x: str) -> int:
59
+ """
60
+ Since 'trait' is effectively unavailable (no variation),
61
+ we define a placeholder function that returns None.
62
+ """
63
+ return None
64
+
65
+ def convert_age(x: str) -> float:
66
+ """
67
+ Convert 'age: XX' to a continuous float.
68
+ Unknown or invalid values return None.
69
+ """
70
+ parts = x.split(':')
71
+ if len(parts) < 2:
72
+ return None
73
+ val_str = parts[1].strip()
74
+ try:
75
+ return float(val_str)
76
+ except ValueError:
77
+ return None
78
+
79
+ def convert_gender(x: str) -> int:
80
+ """
81
+ Convert 'Sex: male' to 1 and 'Sex: female' to 0.
82
+ Unknown or invalid values return None.
83
+ """
84
+ parts = x.split(':')
85
+ if len(parts) < 2:
86
+ return None
87
+ val_str = parts[1].strip().lower()
88
+ if val_str == 'female':
89
+ return 0
90
+ elif val_str == 'male':
91
+ return 1
92
+ else:
93
+ return None
94
+
95
+ # 3. Save Metadata (Initial Filtering)
96
+ is_trait_available = (trait_row is not None)
97
+ is_usable = validate_and_save_cohort_info(
98
+ is_final=False,
99
+ cohort=cohort,
100
+ info_path=json_path,
101
+ is_gene_available=is_gene_available,
102
+ is_trait_available=is_trait_available
103
+ )
104
+
105
+ # 4. Clinical Feature Extraction
106
+ # Skip this step because trait_row is None (the trait is not available).
p1/preprocess/Depression/code/GSE135524.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE135524"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE135524"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Depression/GSE135524.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Depression/gene_data/GSE135524.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Depression/clinical_data/GSE135524.csv"
16
+ json_path = "./output/preprocess/1/Depression/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if the dataset has gene expression data
37
+ is_gene_available = True # Based on the series title indicating "Gene expression"
38
+
39
+ # 2. Identify data availability for trait, age, and gender
40
+ # The dataset seems to contain only depressed patients, so no variation in "Depression" => None
41
+ trait_row = None
42
+ age_row = 1
43
+ gender_row = 2
44
+
45
+ # 2.2 Create conversion functions
46
+
47
+ def convert_trait(x: str) -> int:
48
+ """
49
+ Convert depression trait to some numeric or binary code if available.
50
+ However, we have concluded there is no variation in the depression trait for this dataset,
51
+ so we'll just return None for completeness.
52
+ """
53
+ return None
54
+
55
+ def convert_age(x: str) -> Optional[float]:
56
+ """
57
+ Parse the age after the colon and convert to float.
58
+ Unknown values or malformed inputs => None
59
+ Example: "age: 55" -> 55.0
60
+ """
61
+ try:
62
+ # Extract the substring after "age:"
63
+ parts = x.split(":", 1)
64
+ if len(parts) < 2:
65
+ return None
66
+ val = parts[1].strip()
67
+ return float(val)
68
+ except:
69
+ return None
70
+
71
+ def convert_gender(x: str) -> Optional[int]:
72
+ """
73
+ Convert gender to binary: female -> 0, male -> 1.
74
+ Example: "Sex: Male" -> 1, "Sex: Female" -> 0
75
+ Unknown or malformed -> None
76
+ """
77
+ parts = x.split(":", 1)
78
+ if len(parts) < 2:
79
+ return None
80
+ val = parts[1].strip().lower()
81
+ if val in ["female"]:
82
+ return 0
83
+ elif val in ["male"]:
84
+ return 1
85
+ return None
86
+
87
+ # Since 'trait_row' is None, trait is not available (no variation).
88
+ is_trait_available = (trait_row is not None)
89
+
90
+ # 3. Perform initial filtering and save info
91
+ is_usable = validate_and_save_cohort_info(
92
+ is_final=False,
93
+ cohort=cohort,
94
+ info_path=json_path,
95
+ is_gene_available=is_gene_available,
96
+ is_trait_available=is_trait_available
97
+ )
98
+
99
+ # 4. Because trait_row is None, we skip the clinical feature extraction step.
100
+ # No further action is needed for substep 4.
101
+ # STEP3
102
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
103
+ gene_data = get_genetic_data(matrix_file)
104
+
105
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
106
+ print(gene_data.index[:20])
107
+ # These ILMN_ identifiers are Illumina probe IDs, not human gene symbols
108
+ # They require mapping to gene symbols.
109
+ print("requires_gene_mapping = True")
110
+ # STEP5
111
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
112
+ gene_annotation = get_gene_annotation(soft_file)
113
+
114
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
115
+ print("Gene annotation preview:")
116
+ print(preview_df(gene_annotation))
117
+ # STEP: Gene Identifier Mapping
118
+ # 1. Identify the columns in the gene_annotation dataframe that match the probe IDs (in gene_data.index)
119
+ # and the gene symbols. From the preview, 'ID' stores Illumina probe IDs, and 'Symbol' stores gene symbols.
120
+ probe_col = "ID"
121
+ gene_col = "Symbol"
122
+
123
+ # 2. Get the gene mapping by extracting the two relevant columns.
124
+ mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_col)
125
+
126
+ # 3. Convert probe-level measurements to gene-level expression data using the mapping,
127
+ # distributing each probe's expression equally across its mapped genes.
128
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
129
+ import pandas as pd
130
+
131
+ # STEP7
132
+
133
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
134
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
135
+ normalized_gene_data.to_csv(out_gene_data_file)
136
+
137
+ # 2. Link the clinical and genetic data on sample IDs, even if the trait is missing.
138
+ linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)
139
+
140
+ # 3. Because the trait is unavailable (trait_row=None), ensure a placeholder column exists for it
141
+ # so that the missing-value handling and bias checking can still run.
142
+ if trait not in linked_data.columns:
143
+ linked_data[trait] = None
144
+
145
+ # 4. Handle missing values (will remove samples missing the trait, which are all samples in this case)
146
+ final_data = handle_missing_values(linked_data, trait_col=trait)
147
+
148
+ # 5. Determine whether the trait is severely biased (the function requires a trait column).
149
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
150
+
151
+ # 6. Perform final validation and record dataset metadata. Since trait is not available,
152
+ # the dataset will not be marked as usable for trait-based analysis.
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True, # We do have gene expression data
158
+ is_trait_available=False, # but the trait is absent
159
+ is_biased=trait_biased,
160
+ df=final_data,
161
+ note="The dataset lacks trait data, but partial preprocessing was still performed."
162
+ )
163
+
164
+ # 7. If the dataset is somehow deemed usable, save the final linked data; otherwise, skip.
165
+ if is_usable:
166
+ final_data.to_csv(out_data_file)
p1/preprocess/Depression/code/GSE138297.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE138297"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE138297"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Depression/GSE138297.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Depression/gene_data/GSE138297.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Depression/clinical_data/GSE138297.csv"
16
+ json_path = "./output/preprocess/1/Depression/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene expression data availability
37
+ is_gene_available = True # Based on microarray analysis mentioned in the summary
38
+
39
+ # 2.1 Variable availability
40
+ # No row for Depression (trait) found; multiple unique values for age (row 3) and gender (row 1)
41
+ trait_row = None
42
+ age_row = 3
43
+ gender_row = 1
44
+
45
+ # 2.2 Data type conversion functions
46
+ def convert_trait(value: str):
47
+ # For this dataset, no trait data is available, but we define the function.
48
+ return None
49
+
50
+ def convert_age(value: str):
51
+ # Example format: "age (yrs): 49"
52
+ try:
53
+ val_str = value.split(":", 1)[1].strip()
54
+ return float(val_str)
55
+ except:
56
+ return None
57
+
58
+ def convert_gender(value: str):
59
+ # Example format: "sex (female=1, male=0): 1"
60
+ # We invert: female->0, male->1
61
+ try:
62
+ val_str = value.split(":", 1)[1].strip()
63
+ if val_str == "1":
64
+ return 0 # female
65
+ elif val_str == "0":
66
+ return 1 # male
67
+ else:
68
+ return None
69
+ except:
70
+ return None
71
+
72
+ # 3. Save metadata (initial filtering)
73
+ is_trait_available = (trait_row is not None)
74
+ validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=is_trait_available
80
+ )
81
+
82
+ # 4. Skip clinical feature extraction because trait_row is None
83
+ # STEP3
84
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
85
+ gene_data = get_genetic_data(matrix_file)
86
+
87
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
88
+ print(gene_data.index[:20])
89
+ # These numeric IDs are not standard human gene symbols and likely require mapping.
90
+ requires_gene_mapping = True
91
+ # STEP5
92
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
93
+ gene_annotation = get_gene_annotation(soft_file)
94
+
95
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
96
+ print("Gene annotation preview:")
97
+ print(preview_df(gene_annotation))
98
+ # STEP: Gene Identifier Mapping
99
+
100
+ # 1. Decide which key in 'gene_annotation' is the identifier that matches 'gene_data.index',
101
+ # and which key stores the gene symbol.
102
+ # Based on observation, the 'ID' column matches the probe IDs in 'gene_data.index',
103
+ # and the 'gene_assignment' column contains the gene symbols.
104
+
105
+ # 2. Extract the two columns to create the mapping dataframe.
106
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="gene_assignment")
107
+
108
+ # 3. Convert the probe-level data in 'gene_data' to gene-level data using the mapping.
109
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
110
+ import pandas as pd
111
+
112
+ # STEP7
113
+
114
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
115
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
116
+ normalized_gene_data.to_csv(out_gene_data_file)
117
+
118
+ # 2. Link the clinical and genetic data on sample IDs, even if the trait is missing.
119
+ linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)
120
+
121
+ # 3. Because the trait is unavailable (trait_row=None), ensure a placeholder column exists for it
122
+ # so that the missing-value handling and bias checking can still run.
123
+ if trait not in linked_data.columns:
124
+ linked_data[trait] = None
125
+
126
+ # 4. Handle missing values (will remove samples missing the trait, which are all samples in this case)
127
+ final_data = handle_missing_values(linked_data, trait_col=trait)
128
+
129
+ # 5. Determine whether the trait is severely biased (the function requires a trait column).
130
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
131
+
132
+ # 6. Perform final validation and record dataset metadata. Since trait is not available,
133
+ # the dataset will not be marked as usable for trait-based analysis.
134
+ is_usable = validate_and_save_cohort_info(
135
+ is_final=True,
136
+ cohort=cohort,
137
+ info_path=json_path,
138
+ is_gene_available=True, # We do have gene expression data
139
+ is_trait_available=False, # but the trait is absent
140
+ is_biased=trait_biased,
141
+ df=final_data,
142
+ note="The dataset lacks trait data, but partial preprocessing was still performed."
143
+ )
144
+
145
+ # 7. If the dataset is somehow deemed usable, save the final linked data; otherwise, skip.
146
+ if is_usable:
147
+ final_data.to_csv(out_data_file)
p1/preprocess/Depression/code/GSE149980.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE149980"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE149980"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Depression/GSE149980.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Depression/gene_data/GSE149980.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Depression/clinical_data/GSE149980.csv"
16
+ json_path = "./output/preprocess/1/Depression/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if the dataset contains suitable gene expression data
37
+ is_gene_available = True # The series background indicates whole gene expression profiling
38
+
39
+ # 2. Identify variable availability from the sample characteristics
40
+ # (All participants are depressed; there's no variation for 'Depression' as a trait here)
41
+ trait_row = None
42
+ age_row = None
43
+ gender_row = None
44
+
45
+ # 2.2 Define data type conversion functions
46
+ def convert_trait(value: str):
47
+ return None # No usable variation for the 'Depression' trait
48
+
49
+ def convert_age(value: str):
50
+ return None # Age data not available
51
+
52
+ def convert_gender(value: str):
53
+ return None # Gender data not available
54
+
55
+ # 3. Save initial metadata
56
+ is_trait_available = (trait_row is not None)
57
+ is_usable = validate_and_save_cohort_info(
58
+ is_final=False,
59
+ cohort=cohort,
60
+ info_path=json_path,
61
+ is_gene_available=is_gene_available,
62
+ is_trait_available=is_trait_available
63
+ )
64
+
65
+ # 4. Clinical feature extraction is skipped because `trait_row` is None
66
+ # STEP3
67
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
68
+ gene_data = get_genetic_data(matrix_file)
69
+
70
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
71
+ print(gene_data.index[:20])
72
+ # Observing the given identifiers, they appear to be microarray probe IDs or synthetic constructs,
73
+ # not standard human gene symbols. Therefore, they require gene symbol mapping.
74
+
75
+ print("requires_gene_mapping = True")
76
+ # STEP5
77
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
78
+ gene_annotation = get_gene_annotation(soft_file)
79
+
80
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
81
+ print("Gene annotation preview:")
82
+ print(preview_df(gene_annotation))
83
+ # 1. Define which columns correspond to the probe IDs and which correspond to gene symbols
84
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
85
+
86
+ # 2. Convert probe-level measurements to gene-level by applying the mapping
87
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
88
+ import pandas as pd
89
+
90
+ # STEP7
91
+
92
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
93
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
94
+ normalized_gene_data.to_csv(out_gene_data_file)
95
+
96
+ # 2. Link the clinical and genetic data on sample IDs, even if the trait is missing.
97
+ linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)
98
+
99
+ # 3. Because the trait is unavailable (trait_row=None), ensure a placeholder column exists for it
100
+ # so that the missing-value handling and bias checking can still run.
101
+ if trait not in linked_data.columns:
102
+ linked_data[trait] = None
103
+
104
+ # 4. Handle missing values (will remove samples missing the trait, which are all samples in this case)
105
+ final_data = handle_missing_values(linked_data, trait_col=trait)
106
+
107
+ # 5. Determine whether the trait is severely biased (the function requires a trait column).
108
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
109
+
110
+ # 6. Perform final validation and record dataset metadata. Since trait is not available,
111
+ # the dataset will not be marked as usable for trait-based analysis.
112
+ is_usable = validate_and_save_cohort_info(
113
+ is_final=True,
114
+ cohort=cohort,
115
+ info_path=json_path,
116
+ is_gene_available=True, # We do have gene expression data
117
+ is_trait_available=False, # but the trait is absent
118
+ is_biased=trait_biased,
119
+ df=final_data,
120
+ note="The dataset lacks trait data, but partial preprocessing was still performed."
121
+ )
122
+
123
+ # 7. If the dataset is somehow deemed usable, save the final linked data; otherwise, skip.
124
+ if is_usable:
125
+ final_data.to_csv(out_data_file)
p1/preprocess/Depression/code/GSE201332.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE201332"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE201332"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Depression/GSE201332.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Depression/gene_data/GSE201332.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Depression/clinical_data/GSE201332.csv"
16
+ json_path = "./output/preprocess/1/Depression/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # Step 1: Determine if gene expression data is available
37
+ is_gene_available = True # Based on "Transcriptional profiling" from the series description
38
+
39
+ # Step 2.1: Identify variable availability
40
+ trait_row = 1 # "subject status: healthy controls" vs. "subject status: MDD patients"
41
+ age_row = 3 # "age: 48y", "age: 33y", etc.
42
+ gender_row = 2 # "gender: male", "gender: female"
43
+
44
+ # Step 2.2: Define conversion functions
45
+ def convert_trait(x: str):
46
+ if ":" in x:
47
+ val = x.split(":", 1)[1].strip().lower()
48
+ if "heathy" in val or "healthy" in val:
49
+ return 0
50
+ elif "mdd" in val:
51
+ return 1
52
+ return None
53
+
54
+ def convert_age(x: str):
55
+ if ":" in x:
56
+ val = x.split(":", 1)[1].strip().lower().replace("y", "")
57
+ try:
58
+ return float(val)
59
+ except:
60
+ return None
61
+ return None
62
+
63
+ def convert_gender(x: str):
64
+ if ":" in x:
65
+ val = x.split(":", 1)[1].strip().lower()
66
+ if "female" in val:
67
+ return 0
68
+ elif "male" in val:
69
+ return 1
70
+ return None
71
+
72
+ # Step 3: Initial filtering and saving metadata
73
+ is_trait_available = (trait_row is not None)
74
+ is_usable = validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=is_trait_available
80
+ )
81
+
82
+ # Step 4: Clinical feature extraction if trait is available
83
+ if trait_row is not None:
84
+ selected_clinical_df = geo_select_clinical_features(
85
+ clinical_data,
86
+ trait=trait,
87
+ trait_row=trait_row,
88
+ convert_trait=convert_trait,
89
+ age_row=age_row,
90
+ convert_age=convert_age,
91
+ gender_row=gender_row,
92
+ convert_gender=convert_gender
93
+ )
94
+ print("Preview of selected clinical features:")
95
+ print(preview_df(selected_clinical_df))
96
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
97
+ # STEP3
98
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
99
+ gene_data = get_genetic_data(matrix_file)
100
+
101
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
102
+ print(gene_data.index[:20])
103
+ # The provided gene identifiers ("1", "2", "3", ...) are numeric indices, which are not standard human gene symbols.
104
+ # Hence, they must be mapped to gene symbols.
105
+ print("requires_gene_mapping = True")
106
+ # STEP5
107
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
108
+ gene_annotation = get_gene_annotation(soft_file)
109
+
110
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
111
+ print("Gene annotation preview:")
112
+ print(preview_df(gene_annotation))
113
+ # STEP: Gene Identifier Mapping
114
+
115
+ # 1. From the preview, the "ID" column in the gene_annotation matches the gene expression "ID" from gene_data.
116
+ # The "NAME" column in gene_annotation appears to store the gene symbol (though it contains corner controls in the preview).
117
+
118
+ # 2. Get the gene mapping dataframe
119
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='NAME')
120
+
121
+ # 3. Convert probe-level measurements into gene-level data
122
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
123
+ import pandas as pd
124
+
125
+ # STEP 7
126
+
127
+ # 1. Normalize gene symbols in the obtained gene expression data
128
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
129
+ normalized_gene_data.to_csv(out_gene_data_file)
130
+
131
+ # 2. Read the clinical data (which was saved with index=False) and reconstruct its original shape,
132
+ # i.e. row index = ['Depression','Age','Gender'] and columns = [sample IDs].
133
+ raw_df = pd.read_csv(out_clinical_data_file, header=None)
134
+ # Use the first row as column names
135
+ raw_df.columns = raw_df.iloc[0]
136
+ # Drop the first row (already used as header)
137
+ raw_df = raw_df.drop(raw_df.index[0])
138
+ # Now the first column contains the row labels 'Depression', 'Age', 'Gender'
139
+ raw_df = raw_df.set_index(raw_df.columns[0])
140
+ # Drop that column so that only sample IDs remain as columns
141
+ selected_clinical_df = raw_df.drop(raw_df.columns[0], axis=1)
142
+
143
+ # Link the clinical and genetic data
144
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
145
+
146
+ # 3. Handle missing values (drop missing trait, remove high-missing genes/samples, impute)
147
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
148
+
149
+ # 4. Determine if the trait or demographic features are severely biased
150
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Final quality validation and metadata recording
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=True,
159
+ is_biased=is_trait_biased,
160
+ df=linked_data,
161
+ note="All steps completed successfully."
162
+ )
163
+
164
+ # 6. If the dataset is usable, save the final linked data
165
+ if is_usable:
166
+ linked_data.to_csv(out_data_file)
167
+ import pandas as pd
168
+
169
+ # STEP 8
170
+
171
+ # 1. Normalize gene symbols in the obtained gene expression data
172
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
173
+ normalized_gene_data.to_csv(out_gene_data_file)
174
+
175
+ # 2. Read the clinical data that was saved with index=False, using the first column as index ('Depression','Age','Gender'),
176
+ # and the remaining columns as sample IDs.
177
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Row index will be ['Depression','Age','Gender']
178
+ # The columns should match the sample IDs.
179
+
180
+ # 3. Link clinical and gene expression data
181
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
182
+
183
+ # 4. Handle missing values (drop missing trait, remove high-missing genes/samples, impute)
184
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
185
+
186
+ # 5. Determine if the trait or demographic features are severely biased, removing biased demographics
187
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
188
+
189
+ # 6. Final quality validation and metadata recording
190
+ is_usable = validate_and_save_cohort_info(
191
+ is_final=True,
192
+ cohort=cohort,
193
+ info_path=json_path,
194
+ is_gene_available=True,
195
+ is_trait_available=True,
196
+ is_biased=is_trait_biased,
197
+ df=linked_data,
198
+ note="All steps completed successfully."
199
+ )
200
+
201
+ # 7. If the dataset is deemed usable, save the final linked data
202
+ if is_usable:
203
+ linked_data.to_csv(out_data_file)
204
+ import pandas as pd
205
+
206
+ # STEP 9
207
+
208
+ # 1. Normalize the gene data using synonyms and save it.
209
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
210
+ normalized_gene_data.to_csv(out_gene_data_file)
211
+
212
+ # 2. Read the clinical data that was saved with index=False.
213
+ # The first row in the CSV is the sample IDs, and the next rows are the values for [trait, Age, Gender].
214
+ # Restore the row index to [trait, "Age", "Gender"] so columns become sample IDs.
215
+ clinical_df = pd.read_csv(out_clinical_data_file, header=0)
216
+ clinical_df.index = [trait, "Age", "Gender"]
217
+
218
+ # 3. Link clinical and gene expression data by sample (column) alignment.
219
+ linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
220
+
221
+ # 4. Handle missing values (remove samples with missing trait, remove genes/samples with high missingness, then impute).
222
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
223
+
224
+ # 5. Determine if the trait or demographic features are severely biased, dropping biased demographics if necessary.
225
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
226
+
227
+ # 6. Final quality validation and metadata recording.
228
+ is_usable = validate_and_save_cohort_info(
229
+ is_final=True,
230
+ cohort=cohort,
231
+ info_path=json_path,
232
+ is_gene_available=True,
233
+ is_trait_available=True,
234
+ is_biased=is_trait_biased,
235
+ df=linked_data,
236
+ note="All steps completed successfully."
237
+ )
238
+
239
+ # 7. If the dataset is deemed usable, save the final linked data.
240
+ if is_usable:
241
+ linked_data.to_csv(out_data_file)
p1/preprocess/Depression/code/GSE208668.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE208668"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE208668"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Depression/GSE208668.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Depression/gene_data/GSE208668.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Depression/clinical_data/GSE208668.csv"
16
+ json_path = "./output/preprocess/1/Depression/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if gene expression data is available
37
+ # Based on the series description ("Genome-wide transcriptional profiling results"), we treat it as gene expression data
38
+ is_gene_available = True
39
+
40
+ # 2. Identify availability of variables and define their row keys
41
+ # Our trait of interest is "Depression", and we see "history of depression: yes/no" in row 9.
42
+ # Hence trait_row=9. Age is in row 1. Gender is in row 2.
43
+ trait_row = 9
44
+ age_row = 1
45
+ gender_row = 2
46
+
47
+ # 2.2 Define data type conversion functions
48
+ def convert_trait(value):
49
+ if not value or ':' not in value:
50
+ return None
51
+ val = value.split(':', 1)[1].strip().lower()
52
+ if val == 'yes':
53
+ return 1
54
+ elif val == 'no':
55
+ return 0
56
+ else:
57
+ return None
58
+
59
+ def convert_age(value):
60
+ if not value or ':' not in value:
61
+ return None
62
+ val = value.split(':', 1)[1].strip()
63
+ try:
64
+ return float(val)
65
+ except:
66
+ return None
67
+
68
+ def convert_gender(value):
69
+ if not value or ':' not in value:
70
+ return None
71
+ val = value.split(':', 1)[1].strip().lower()
72
+ if val == 'female':
73
+ return 0
74
+ elif val == 'male':
75
+ return 1
76
+ else:
77
+ return None
78
+
79
+ # 3. Conduct initial filtering on dataset usability and save metadata
80
+ is_trait_available = (trait_row is not None)
81
+
82
+ is_usable = validate_and_save_cohort_info(
83
+ is_final=False,
84
+ cohort=cohort,
85
+ info_path=json_path,
86
+ is_gene_available=is_gene_available,
87
+ is_trait_available=is_trait_available
88
+ )
89
+
90
+ # 4. If trait data is available, extract clinical features
91
+ if trait_row is not None:
92
+ df_clinical = geo_select_clinical_features(
93
+ clinical_data,
94
+ trait=trait,
95
+ trait_row=trait_row,
96
+ convert_trait=convert_trait,
97
+ age_row=age_row,
98
+ convert_age=convert_age,
99
+ gender_row=gender_row,
100
+ convert_gender=convert_gender
101
+ )
102
+
103
+ # Preview and save clinical data
104
+ preview_output = preview_df(df_clinical)
105
+ print("Preview of extracted clinical features:")
106
+ print(preview_output)
107
+
108
+ df_clinical.to_csv(out_clinical_data_file, index=False)
109
+ # STEP3
110
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
111
+ gene_data = get_genetic_data(matrix_file)
112
+
113
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
114
+ print(gene_data.index[:20])
115
+ # Based on observation, some identifiers like "7A5" appear to be alternative or outdated gene symbols.
116
+ # To ensure consistent and up-to-date identifiers, gene mapping is needed.
117
+
118
+ requires_gene_mapping = True
119
+ print(f"requires_gene_mapping = {requires_gene_mapping}")
120
+ # STEP5
121
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
122
+ gene_annotation = get_gene_annotation(soft_file)
123
+
124
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
125
+ print("Gene annotation preview:")
126
+ print(preview_df(gene_annotation))
127
+ # STEP6: Gene Identifier Mapping
128
+
129
+ # 1. Decide which columns match the gene identifiers in the expression data and which contain the gene symbols.
130
+ # From the annotation preview, "ID" matches the identifiers in gene_data's index, and "ORF" contains the gene symbols.
131
+
132
+ # 2. Get a gene mapping dataframe by selecting "ID" and "ORF" from the gene annotation.
133
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ORF')
134
+
135
+ # 3. Convert probe-level measurements to gene expression data by applying the mapping.
136
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
137
+
138
+ # For verification of shape or quick sanity check, we print the shape of the resulting gene_data dataframe
139
+ print("Mapped gene_data shape:", gene_data.shape)
140
+ import pandas as pd
141
+
142
+ # STEP7
143
+
144
+ # 1. Normalize gene symbols in the gene expression data and save the result.
145
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
146
+ normalized_gene_data.to_csv(out_gene_data_file)
147
+
148
+ # 2. Read the clinical feature data. Since it was saved with index=False (causing the first row to become headers),
149
+ # we specify header=0 and then set "Unnamed: 0" as the index. This recovers rows like "Depression", "Age", "Gender".
150
+ df_temp = pd.read_csv(out_clinical_data_file, header=0)
151
+ df_temp.set_index("Unnamed: 0", inplace=True)
152
+ df_clinical = df_temp
153
+
154
+ # 3. Link the clinical data and gene data.
155
+ linked_data = geo_link_clinical_genetic_data(df_clinical, normalized_gene_data)
156
+
157
+ # 4. Handle missing values systematically (drop missing trait, drop genes >20% missing, etc.).
158
+ linked_data = handle_missing_values(linked_data, trait)
159
+
160
+ # 5. Judge and remove biased features. If the trait is biased, we record it.
161
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
162
+
163
+ # 6. Conduct final validation and save cohort info.
164
+ is_usable = validate_and_save_cohort_info(
165
+ is_final=True,
166
+ cohort=cohort,
167
+ info_path=json_path,
168
+ is_gene_available=True,
169
+ is_trait_available=True,
170
+ is_biased=trait_biased,
171
+ df=linked_data,
172
+ note="All steps completed for GSE208668."
173
+ )
174
+
175
+ # 7. If usable, save the final linked data.
176
+ if is_usable:
177
+ linked_data.to_csv(out_data_file)
178
+ import pandas as pd
179
+
180
+ # STEP8
181
+
182
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
183
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
184
+ normalized_gene_data.to_csv(out_gene_data_file)
185
+
186
+ # 2. Read the clinical CSV. Since we saved it with index=False, the trait, age, and gender rows
187
+ # are now just 3 data rows. Hence we'll read without specifying an index, and then manually
188
+ # assign the correct row labels.
189
+ df_clinical = pd.read_csv(out_clinical_data_file)
190
+ # The DataFrame should now have shape (3, number_of_samples), with the columns being sample IDs
191
+ # and the row indices just 0,1,2. We rename them to [trait, "Age", "Gender"].
192
+ if df_clinical.shape[0] == 3:
193
+ df_clinical.index = [trait, "Age", "Gender"]
194
+ else:
195
+ # If we unexpectedly have more or fewer rows, you may need to adjust this code.
196
+ raise ValueError(f"Unexpected shape in clinical data: {df_clinical.shape}")
197
+
198
+ # 3. Link the clinical and genetic data on sample IDs.
199
+ linked_data = geo_link_clinical_genetic_data(df_clinical, normalized_gene_data)
200
+
201
+ # 4. Handle missing values systematically.
202
+ # This requires the trait to be a column in linked_data; with our structure,
203
+ # 'Depression' is indeed a column after transposing in geo_link_clinical_genetic_data.
204
+ linked_data = handle_missing_values(linked_data, trait)
205
+
206
+ # 5. Determine whether the trait is severely biased; remove biased demographic covariates.
207
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
208
+
209
+ # 6. Conduct final quality validation and save cohort metadata.
210
+ is_usable = validate_and_save_cohort_info(
211
+ is_final=True,
212
+ cohort=cohort,
213
+ info_path=json_path,
214
+ is_gene_available=True,
215
+ is_trait_available=True,
216
+ is_biased=trait_biased,
217
+ df=linked_data,
218
+ note="All steps completed for GSE208668."
219
+ )
220
+
221
+ # 7. If the dataset is usable, save the final linked data.
222
+ if is_usable:
223
+ linked_data.to_csv(out_data_file)