Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +26 -0
- p3/preprocess/Hypertrophic_Cardiomyopathy/gene_data/GSE36961.csv +3 -0
- p3/preprocess/Hypothyroidism/TCGA.csv +3 -0
- p3/preprocess/Hypothyroidism/gene_data/GSE75678.csv +3 -0
- p3/preprocess/Hypothyroidism/gene_data/TCGA.csv +3 -0
- p3/preprocess/Insomnia/GSE208668.csv +0 -0
- p3/preprocess/Insomnia/code/GSE208668.py +151 -0
- p3/preprocess/Insomnia/code/TCGA.py +32 -0
- p3/preprocess/Insomnia/gene_data/GSE208668.csv +0 -0
- p3/preprocess/Intellectual_Disability/GSE100680.csv +0 -0
- p3/preprocess/Intellectual_Disability/GSE158385.csv +0 -0
- p3/preprocess/Intellectual_Disability/GSE192767.csv +3 -0
- p3/preprocess/Intellectual_Disability/GSE273850.csv +3 -0
- p3/preprocess/Intellectual_Disability/GSE285666.csv +0 -0
- p3/preprocess/Intellectual_Disability/GSE63870.csv +3 -0
- p3/preprocess/Intellectual_Disability/GSE98697.csv +3 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE100680.csv +3 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE158385.csv +2 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE192767.csv +2 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE200864.csv +2 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE273850.csv +3 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE285666.csv +2 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE59630.csv +4 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE63870.csv +3 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE89594.csv +4 -0
- p3/preprocess/Intellectual_Disability/clinical_data/GSE98697.csv +2 -0
- p3/preprocess/Intellectual_Disability/code/GSE100680.py +183 -0
- p3/preprocess/Intellectual_Disability/code/GSE158385.py +200 -0
- p3/preprocess/Intellectual_Disability/code/GSE192767.py +172 -0
- p3/preprocess/Intellectual_Disability/code/GSE200864.py +130 -0
- p3/preprocess/Intellectual_Disability/code/GSE273850.py +177 -0
- p3/preprocess/Intellectual_Disability/code/GSE285666.py +178 -0
- p3/preprocess/Intellectual_Disability/code/GSE59630.py +196 -0
- p3/preprocess/Intellectual_Disability/code/GSE63870.py +185 -0
- p3/preprocess/Intellectual_Disability/code/GSE89594.py +192 -0
- p3/preprocess/Intellectual_Disability/code/GSE98697.py +178 -0
- p3/preprocess/Intellectual_Disability/code/TCGA.py +32 -0
- p3/preprocess/Intellectual_Disability/cohort_info.json +1 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE100680.csv +0 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE158385.csv +0 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE192767.csv +3 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE200864.csv +3 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE273850.csv +3 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE285666.csv +0 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE59630.csv +3 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE63870.csv +3 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE89594.csv +3 -0
- p3/preprocess/Intellectual_Disability/gene_data/GSE98697.csv +3 -0
- p3/preprocess/Irritable_bowel_syndrome_(IBS)/GSE25220.csv +0 -0
- p3/preprocess/Irritable_bowel_syndrome_(IBS)/GSE36701.csv +3 -0
.gitattributes
CHANGED
@@ -1804,3 +1804,29 @@ p3/preprocess/Sjögrens_Syndrome/GSE66795.csv filter=lfs diff=lfs merge=lfs -tex
|
|
1804 |
p3/preprocess/Sjögrens_Syndrome/gene_data/GSE93683.csv filter=lfs diff=lfs merge=lfs -text
|
1805 |
p3/preprocess/Sjögrens_Syndrome/gene_data/GSE51092.csv filter=lfs diff=lfs merge=lfs -text
|
1806 |
p3/preprocess/Sjögrens_Syndrome/gene_data/GSE66795.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1804 |
p3/preprocess/Sjögrens_Syndrome/gene_data/GSE93683.csv filter=lfs diff=lfs merge=lfs -text
|
1805 |
p3/preprocess/Sjögrens_Syndrome/gene_data/GSE51092.csv filter=lfs diff=lfs merge=lfs -text
|
1806 |
p3/preprocess/Sjögrens_Syndrome/gene_data/GSE66795.csv filter=lfs diff=lfs merge=lfs -text
|
1807 |
+
p3/preprocess/Hypothyroidism/gene_data/GSE75678.csv filter=lfs diff=lfs merge=lfs -text
|
1808 |
+
p3/preprocess/Hypertrophic_Cardiomyopathy/gene_data/GSE36961.csv filter=lfs diff=lfs merge=lfs -text
|
1809 |
+
p3/preprocess/Lower_Grade_Glioma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1810 |
+
p3/preprocess/Intellectual_Disability/GSE192767.csv filter=lfs diff=lfs merge=lfs -text
|
1811 |
+
p3/preprocess/Intellectual_Disability/GSE273850.csv filter=lfs diff=lfs merge=lfs -text
|
1812 |
+
p3/preprocess/Intellectual_Disability/GSE63870.csv filter=lfs diff=lfs merge=lfs -text
|
1813 |
+
p3/preprocess/Intellectual_Disability/GSE98697.csv filter=lfs diff=lfs merge=lfs -text
|
1814 |
+
p3/preprocess/Sjögrens_Syndrome/gene_data/GSE140161.csv filter=lfs diff=lfs merge=lfs -text
|
1815 |
+
p3/preprocess/Intellectual_Disability/gene_data/GSE200864.csv filter=lfs diff=lfs merge=lfs -text
|
1816 |
+
p3/preprocess/Intellectual_Disability/gene_data/GSE192767.csv filter=lfs diff=lfs merge=lfs -text
|
1817 |
+
p3/preprocess/Intellectual_Disability/gene_data/GSE273850.csv filter=lfs diff=lfs merge=lfs -text
|
1818 |
+
p3/preprocess/Intellectual_Disability/gene_data/GSE63870.csv filter=lfs diff=lfs merge=lfs -text
|
1819 |
+
p3/preprocess/Intellectual_Disability/gene_data/GSE59630.csv filter=lfs diff=lfs merge=lfs -text
|
1820 |
+
p3/preprocess/Intellectual_Disability/gene_data/GSE89594.csv filter=lfs diff=lfs merge=lfs -text
|
1821 |
+
p3/preprocess/Intellectual_Disability/gene_data/GSE98697.csv filter=lfs diff=lfs merge=lfs -text
|
1822 |
+
p3/preprocess/Irritable_bowel_syndrome_(IBS)/GSE63379.csv filter=lfs diff=lfs merge=lfs -text
|
1823 |
+
p3/preprocess/Irritable_bowel_syndrome_(IBS)/GSE66824.csv filter=lfs diff=lfs merge=lfs -text
|
1824 |
+
p3/preprocess/Hypothyroidism/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1825 |
+
p3/preprocess/Irritable_bowel_syndrome_(IBS)/gene_data/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
|
1826 |
+
p3/preprocess/Irritable_bowel_syndrome_(IBS)/GSE36701.csv filter=lfs diff=lfs merge=lfs -text
|
1827 |
+
p3/preprocess/Irritable_bowel_syndrome_(IBS)/gene_data/GSE66824.csv filter=lfs diff=lfs merge=lfs -text
|
1828 |
+
p3/preprocess/Irritable_bowel_syndrome_(IBS)/gene_data/GSE63379.csv filter=lfs diff=lfs merge=lfs -text
|
1829 |
+
p3/preprocess/Irritable_bowel_syndrome_(IBS)/gene_data/GSE20881.csv filter=lfs diff=lfs merge=lfs -text
|
1830 |
+
p3/preprocess/Hypothyroidism/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1831 |
+
p3/preprocess/Irritable_bowel_syndrome_(IBS)/gene_data/GSE36701.csv filter=lfs diff=lfs merge=lfs -text
|
1832 |
+
p3/preprocess/Kidney_Chromophobe/GSE26574.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Hypertrophic_Cardiomyopathy/gene_data/GSE36961.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fd3cb153e8a94a03d27a8048601cf21af7c6b47d562397e7c7c0d3e9e2ed1bf
|
3 |
+
size 32368017
|
p3/preprocess/Hypothyroidism/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:291fbb9e789469e928d5eb54d36e860f286cc4d64ffd237caf5b24912716f189
|
3 |
+
size 172250060
|
p3/preprocess/Hypothyroidism/gene_data/GSE75678.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48a79b5b9e72d2a7d7d689fda0b25afad08f2639268aca6975fc01f897092144
|
3 |
+
size 12484984
|
p3/preprocess/Hypothyroidism/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:116506c96e07673dc76e9ed5290370c62b4b440443ef1e3d87b96279aa4b80e6
|
3 |
+
size 172246036
|
p3/preprocess/Insomnia/GSE208668.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Insomnia/code/GSE208668.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Insomnia"
|
6 |
+
cohort = "GSE208668"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Insomnia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Insomnia/GSE208668"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Insomnia/GSE208668.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Insomnia/gene_data/GSE208668.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Insomnia/clinical_data/GSE208668.csv"
|
16 |
+
json_path = "./output/preprocess/3/Insomnia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# From background info, it's genome-wide transcriptional profiling of PBMCs
|
34 |
+
# Though raw data was lost, it's still gene expression data
|
35 |
+
is_gene_available = True
|
36 |
+
|
37 |
+
# 2. Variable Availability and Data Type Conversion
|
38 |
+
# 2.1 Data Availability
|
39 |
+
trait_row = 0 # 'insomnia' is in row 0
|
40 |
+
age_row = 1 # 'age' is in row 1
|
41 |
+
gender_row = 2 # 'gender' is in row 2
|
42 |
+
|
43 |
+
# 2.2 Data Type Conversion Functions
|
44 |
+
def convert_trait(value: str) -> Optional[int]:
|
45 |
+
if not isinstance(value, str):
|
46 |
+
return None
|
47 |
+
value = value.lower().split(": ")[-1].strip()
|
48 |
+
if value == "yes":
|
49 |
+
return 1
|
50 |
+
elif value == "no":
|
51 |
+
return 0
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str) -> Optional[float]:
|
55 |
+
if not isinstance(value, str):
|
56 |
+
return None
|
57 |
+
try:
|
58 |
+
age = float(value.split(": ")[-1].strip())
|
59 |
+
return age
|
60 |
+
except:
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_gender(value: str) -> Optional[int]:
|
64 |
+
if not isinstance(value, str):
|
65 |
+
return None
|
66 |
+
value = value.lower().split(": ")[-1].strip()
|
67 |
+
if value == "female":
|
68 |
+
return 0
|
69 |
+
elif value == "male":
|
70 |
+
return 1
|
71 |
+
return None
|
72 |
+
|
73 |
+
# 3. Save Metadata - Initial Filtering
|
74 |
+
is_trait_available = trait_row is not None
|
75 |
+
initial_validation = validate_and_save_cohort_info(
|
76 |
+
is_final=False,
|
77 |
+
cohort=cohort,
|
78 |
+
info_path=json_path,
|
79 |
+
is_gene_available=is_gene_available,
|
80 |
+
is_trait_available=is_trait_available
|
81 |
+
)
|
82 |
+
|
83 |
+
# 4. Clinical Feature Extraction
|
84 |
+
if trait_row is not None:
|
85 |
+
selected_clinical = geo_select_clinical_features(
|
86 |
+
clinical_df=clinical_data,
|
87 |
+
trait=trait,
|
88 |
+
trait_row=trait_row,
|
89 |
+
convert_trait=convert_trait,
|
90 |
+
age_row=age_row,
|
91 |
+
convert_age=convert_age,
|
92 |
+
gender_row=gender_row,
|
93 |
+
convert_gender=convert_gender
|
94 |
+
)
|
95 |
+
|
96 |
+
# Preview the processed data
|
97 |
+
preview = preview_df(selected_clinical)
|
98 |
+
print("Preview of processed clinical data:")
|
99 |
+
print(preview)
|
100 |
+
|
101 |
+
# Save to CSV
|
102 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
103 |
+
# Extract gene expression data from the matrix file
|
104 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
105 |
+
|
106 |
+
# Print first 20 row IDs
|
107 |
+
print("First 20 row IDs:")
|
108 |
+
print(genetic_data.index[:20].tolist())
|
109 |
+
requires_gene_mapping = False # The gene identifiers are already in human gene symbol format. No mapping needed.
|
110 |
+
# 1. Normalize gene symbols
|
111 |
+
genetic_data = normalize_gene_symbols_in_index(genetic_data)
|
112 |
+
genetic_data.to_csv(out_gene_data_file)
|
113 |
+
|
114 |
+
# Get clinical features
|
115 |
+
clinical_features = geo_select_clinical_features(
|
116 |
+
clinical_data,
|
117 |
+
trait=trait,
|
118 |
+
trait_row=trait_row,
|
119 |
+
convert_trait=convert_trait,
|
120 |
+
age_row=age_row,
|
121 |
+
convert_age=convert_age,
|
122 |
+
gender_row=gender_row,
|
123 |
+
convert_gender=convert_gender
|
124 |
+
)
|
125 |
+
|
126 |
+
# 2. Link clinical and genetic data
|
127 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)
|
128 |
+
|
129 |
+
# 3. Handle missing values
|
130 |
+
linked_data = handle_missing_values(linked_data, trait)
|
131 |
+
|
132 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
133 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
134 |
+
|
135 |
+
# 5. Final validation and save metadata
|
136 |
+
note = "Dataset contains genome-wide transcriptional profiling of PBMCs from older adults with and without insomnia disorder."
|
137 |
+
is_usable = validate_and_save_cohort_info(
|
138 |
+
is_final=True,
|
139 |
+
cohort=cohort,
|
140 |
+
info_path=json_path,
|
141 |
+
is_gene_available=True,
|
142 |
+
is_trait_available=True,
|
143 |
+
is_biased=is_biased,
|
144 |
+
df=linked_data,
|
145 |
+
note=note
|
146 |
+
)
|
147 |
+
|
148 |
+
# 6. Save the linked data only if it's usable
|
149 |
+
if is_usable:
|
150 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
151 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Insomnia/code/TCGA.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Insomnia"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Insomnia/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Insomnia/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Insomnia/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Insomnia/cohort_info.json"
|
15 |
+
|
16 |
+
# Get subdirectories from TCGA root directory
|
17 |
+
tcga_subdirs = os.listdir(tcga_root_dir)
|
18 |
+
tcga_subdirs = [d for d in tcga_subdirs if not d.startswith('.')]
|
19 |
+
|
20 |
+
# Review available subdirectories for insomnia-related cohorts
|
21 |
+
# No suitable cohort found - all are cancer specific and not related to sleep disorders
|
22 |
+
print(f"No suitable TCGA cohort found for {trait}.")
|
23 |
+
print("Available cohorts are cancer-specific and do not contain relevant data for sleep disorders.")
|
24 |
+
|
25 |
+
# Record that this trait should be skipped due to lack of suitable data
|
26 |
+
is_gene_available = False
|
27 |
+
is_trait_available = False
|
28 |
+
validate_and_save_cohort_info(is_final=False,
|
29 |
+
cohort="TCGA",
|
30 |
+
info_path=json_path,
|
31 |
+
is_gene_available=is_gene_available,
|
32 |
+
is_trait_available=is_trait_available)
|
p3/preprocess/Insomnia/gene_data/GSE208668.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Intellectual_Disability/GSE100680.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Intellectual_Disability/GSE158385.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Intellectual_Disability/GSE192767.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27d467e20cf766ce8f6257633e65caaf483f7ee3f6a90b3895af4a785f79af28
|
3 |
+
size 16853124
|
p3/preprocess/Intellectual_Disability/GSE273850.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c13ff0173cefc0e63ad81efd50273361f721536fd0da7147edc98d46a85c61c
|
3 |
+
size 16872976
|
p3/preprocess/Intellectual_Disability/GSE285666.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Intellectual_Disability/GSE63870.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a154e787dab3ce41e3ff011cf49f4b0d86466ed4ea403b238aa9cc12b744ea73
|
3 |
+
size 11793811
|
p3/preprocess/Intellectual_Disability/GSE98697.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40fd1fe5ba10a18d7101e58e547ac3f6d2903d59a9a4e38341d41cf0931d19ef
|
3 |
+
size 10665312
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE100680.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2691139,GSM2691140,GSM2691141,GSM2691142,GSM2691143,GSM2691144,GSM2691145,GSM2691146,GSM2691147,GSM2691148,GSM2691149,GSM2691150,GSM2691151,GSM2691152,GSM2691153,GSM2691154,GSM2691155,GSM2691156,GSM2691157,GSM2691158,GSM2691159,GSM2691160,GSM2691161,GSM2691162,GSM2691163,GSM2691164,GSM2691165,GSM2691166,GSM2691167,GSM2691168,GSM2691169,GSM2691170,GSM2691171,GSM2691172
|
2 |
+
Intellectual_Disability,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0
|
3 |
+
Age,45.0,45.0,45.0,45.0,45.0,65.0,65.0,65.0,65.0,65.0,65.0,45.0,45.0,45.0,45.0,45.0,65.0,65.0,65.0,65.0,65.0,65.0,45.0,45.0,45.0,45.0,45.0,45.0,65.0,65.0,65.0,65.0,65.0,65.0
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE158385.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4798573,GSM4798574,GSM4798575,GSM4798576,GSM4798577,GSM4798578,GSM4798579,GSM4798580,GSM4798581,GSM4798582,GSM4798583,GSM4798584,GSM4798585,GSM4798586,GSM4798587,GSM4798588,GSM4798589,GSM4798590,GSM4798591,GSM4798592,GSM4798593,GSM4798594,GSM4798595,GSM4798596,GSM4798597,GSM4798598,GSM4798599,GSM4798600
|
2 |
+
Intellectual_Disability,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE192767.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM5765052,GSM5765053,GSM5765054,GSM5765055,GSM5765056,GSM5765057,GSM5765058,GSM5765059,GSM5765060,GSM5765061,GSM5765062,GSM5765063,GSM5765064,GSM5765065,GSM5765066,GSM5765067,GSM5765068,GSM5765069,GSM5765070,GSM5765071,GSM5765072,GSM5765073,GSM5765074,GSM5765075,GSM5765076,GSM5765077,GSM5765078,GSM5765079,GSM5765080,GSM5765081,GSM5765082,GSM5765083,GSM5765084,GSM5765085,GSM5765086,GSM5765087,GSM5765088,GSM5765089,GSM5765090,GSM5765091,GSM5765092,GSM5765093,GSM5765094,GSM5765095,GSM5765096,GSM5765097,GSM5765098,GSM5765099
|
2 |
+
Intellectual_Disability,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE200864.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM6045608,GSM6045609,GSM6045610,GSM6045611,GSM6045612,GSM6045613,GSM6045614,GSM6045615,GSM6045616,GSM6045617,GSM6045618,GSM6045619,GSM6045620,GSM6045621,GSM6045622,GSM6045623,GSM6045624,GSM6045625,GSM6045626,GSM6045627,GSM6045628,GSM6045629,GSM6045630,GSM6045631,GSM6045632,GSM6045633,GSM6045634,GSM6045635,GSM6045636,GSM6045637,GSM6045638,GSM6045639,GSM6045640,GSM6045641,GSM6045642,GSM6045643,GSM6045644,GSM6045645,GSM6045646,GSM6045647,GSM6045648,GSM6045649,GSM6045650,GSM6045651,GSM6045652,GSM6045653,GSM6045654,GSM6045655,GSM6045656,GSM6045657,GSM6045658,GSM6045659,GSM6045660,GSM6045661,GSM6045662,GSM6045663,GSM6045664,GSM6045665,GSM6045666,GSM6045667,GSM6045668,GSM6045669,GSM6045670,GSM6045671
|
2 |
+
Intellectual_Disability,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE273850.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM8438101,GSM8438102,GSM8438103,GSM8438104,GSM8438105,GSM8438106,GSM8438107,GSM8438108,GSM8438109,GSM8438110,GSM8438111,GSM8438112,GSM8438113,GSM8438114,GSM8438115,GSM8438116,GSM8438117,GSM8438118,GSM8438119,GSM8438120,GSM8438121,GSM8438122,GSM8438123,GSM8438124,GSM8438125,GSM8438126,GSM8438127,GSM8438128,GSM8438129,GSM8438130,GSM8438131,GSM8438132,GSM8438133,GSM8438134,GSM8438135,GSM8438136,GSM8438137,GSM8438138,GSM8438139,GSM8438140,GSM8438141,GSM8438142,GSM8438143,GSM8438144,GSM8438145,GSM8438146,GSM8438147,GSM8438148,GSM8438149,GSM8438150,GSM8438151
|
2 |
+
Intellectual_Disability,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Gender,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE285666.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM8706502,GSM8706503,GSM8706504,GSM8706505,GSM8706506,GSM8706507,GSM8706508,GSM8706509,GSM8706510,GSM8706511,GSM8706512,GSM8706513,GSM8706514,GSM8706515,GSM8706516,GSM8706517,GSM8706518,GSM8706519,GSM8706520,GSM8706521,GSM8706522,GSM8706523,GSM8706524,GSM8706525,GSM8706526,GSM8706527,GSM8706528,GSM8706529,GSM8706530,GSM8706531,GSM8706532,GSM8706533,GSM8706534,GSM8706535,GSM8706536,GSM8706537,GSM8706538,GSM8706539,GSM8706540,GSM8706541,GSM8706542,GSM8706543,GSM8706544,GSM8706545,GSM8706546,GSM8706547,GSM8706548,GSM8706549,GSM8706550,GSM8706551,GSM8706552,GSM8706553
|
2 |
+
Intellectual_Disability,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE59630.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1440797,GSM1440798,GSM1440799,GSM1440800,GSM1440801,GSM1440802,GSM1440803,GSM1440804,GSM1440805,GSM1440806,GSM1440807,GSM1440808,GSM1440809,GSM1440810,GSM1440811,GSM1440812,GSM1440813,GSM1440814,GSM1440815,GSM1440816,GSM1440817,GSM1440818,GSM1440819,GSM1440820,GSM1440821,GSM1440822,GSM1440823,GSM1440824,GSM1440825,GSM1440826,GSM1440827,GSM1440828,GSM1440829,GSM1440830,GSM1440831,GSM1440832,GSM1440833,GSM1440834,GSM1440835,GSM1440836,GSM1440837,GSM1440838,GSM1440839,GSM1440840,GSM1440841,GSM1440842,GSM1440843,GSM1440844,GSM1440845,GSM1440846,GSM1440847,GSM1440848,GSM1440849,GSM1440850,GSM1440851,GSM1440852,GSM1440853,GSM1440854,GSM1440855,GSM1440856,GSM1440857,GSM1440858,GSM1440859,GSM1440860,GSM1440861,GSM1440862,GSM1440863,GSM1440864,GSM1440865,GSM1440866,GSM1440867,GSM1440868,GSM1440869,GSM1440870,GSM1440871,GSM1440872,GSM1440873,GSM1440874,GSM1440875,GSM1440876,GSM1440877,GSM1440878,GSM1440879,GSM1440880,GSM1440881,GSM1440882,GSM1440883,GSM1440884,GSM1440885,GSM1440886,GSM1440887,GSM1440888,GSM1440889,GSM1440890,GSM1440891,GSM1440892,GSM1440893,GSM1440894,GSM1440895,GSM1440896,GSM1440897,GSM1440898,GSM1440899,GSM1440900,GSM1440901,GSM1440902,GSM1440903,GSM1440904,GSM1440905,GSM1440906,GSM1440907,GSM1440908,GSM1440909,GSM1440910,GSM1440911,GSM1440912
|
2 |
+
Intellectual_Disability,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,0.3269230769230769,0.36538461538461536,0.36538461538461536,0.4230769230769231,0.3333333333333333,0.3333333333333333,0.3333333333333333,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.8333333333333334,0.8333333333333334,0.8333333333333334,0.8333333333333334,0.8333333333333334,0.8333333333333334,0.8333333333333334,0.8333333333333334,0.8333333333333334,0.8333333333333334,1.0,1.0,2.0,2.0,3.0,3.0,3.0,3.0,3.0,3.0,8.0,8.0,8.0,15.0,15.0,15.0,15.0,18.0,18.0,18.0,22.0,22.0,22.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,42.0,42.0,42.0,42.0,0.3076923076923077,0.36538461538461536,0.36538461538461536,0.4230769230769231,0.08333333333333333,0.08333333333333333,0.08333333333333333,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,1.1666666666666667,1.1666666666666667,3.0,3.0,3.0,3.0,3.0,3.0,2.0,2.0,10.0,10.0,10.0,13.0,13.0,13.0,13.0,19.0,19.0,19.0,22.0,22.0,22.0,39.0,39.0,39.0,39.0,39.0,39.0,39.0,40.0,40.0,40.0,40.0
|
4 |
+
Gender,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE63870.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1558696,GSM1558697,GSM1558698,GSM1558699,GSM1558700,GSM1558701,GSM1558702,GSM1558703,GSM1558704,GSM1558705,GSM1558706,GSM1558707,GSM1558708,GSM1558709,GSM1558710,GSM1558711,GSM1558712,GSM1558713,GSM1558714,GSM1558715,GSM1558716,GSM1558717,GSM1558718,GSM1558719,GSM1558720,GSM1558721,GSM1558722,GSM1558723,GSM1558724,GSM1558725,GSM1558726,GSM1558727,GSM1558728,GSM1558729,GSM1558730,GSM1558731,GSM1558732,GSM1558733,GSM1558734,GSM1558735,GSM1558736,GSM1558737,GSM1558738,GSM1558739,GSM1558740,GSM1558741,GSM1558742,GSM1558743
|
2 |
+
Intellectual_Disability,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE89594.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2384988,GSM2384989,GSM2384990,GSM2384991,GSM2384992,GSM2384993,GSM2384994,GSM2384995,GSM2384996,GSM2384997,GSM2384998,GSM2384999,GSM2385000,GSM2385001,GSM2385002,GSM2385003,GSM2385004,GSM2385005,GSM2385006,GSM2385007,GSM2385008,GSM2385009,GSM2385010,GSM2385011,GSM2385012,GSM2385013,GSM2385014,GSM2385015,GSM2385016,GSM2385017,GSM2385018,GSM2385019,GSM2385020,GSM2385021,GSM2385022,GSM2385023,GSM2385024,GSM2385025,GSM2385026,GSM2385027,GSM2385028,GSM2385029,GSM2385030,GSM2385031,GSM2385032,GSM2385033,GSM2385034,GSM2385035,GSM2385036,GSM2385037,GSM2385038,GSM2385039,GSM2385040,GSM2385041,GSM2385042,GSM2385043,GSM2385044,GSM2385045,GSM2385046,GSM2385047,GSM2385048,GSM2385049,GSM2385050,GSM2385051,GSM2385052,GSM2385053,GSM2385054,GSM2385055,GSM2385056,GSM2385057,GSM2385058,GSM2385059,GSM2385060,GSM2385061,GSM2385062,GSM2385063,GSM2385064,GSM2385065,GSM2385066,GSM2385067,GSM2385068,GSM2385069,GSM2385070,GSM2385071,GSM2385072,GSM2385073,GSM2385074,GSM2385075,GSM2385076,GSM2385077,GSM2385078,GSM2385079,GSM2385080,GSM2385081
|
2 |
+
Intellectual_Disability,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,22.0,23.0,24.0,24.0,33.0,22.0,24.0,21.0,24.0,20.0,28.0,21.0,21.0,22.0,25.0,23.0,20.0,21.0,20.0,32.0,36.0,24.0,21.0,30.0,28.0,22.0,24.0,21.0,22.0,20.0,27.0,22.0,23.0,20.0,31.0,27.0,32.0,20.0,36.0,22.0,28.0,25.0,35.0,22.0,22.0,10.0,16.0,10.0,33.0,21.0,11.0,10.0,35.0,12.0,38.0,24.0,34.0,32.0,21.0,29.0,20.0,19.0,24.0,13.0,23.0,15.0,43.0,10.0,13.0,16.0,27.0,24.0,11.0,24.0,32.0,24.0,27.0,16.0,14.0,11.0,24.0,28.0,17.0,15.0,34.0,39.0,12.0,15.0,21.0,29.0,23.0,26.0,19.0,21.0
|
4 |
+
Gender,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Intellectual_Disability/clinical_data/GSE98697.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM2610219,GSM2610220,GSM2610221,GSM2610222,GSM2610223,GSM2610224,GSM2610225,GSM2610226,GSM2610227,GSM2610228,GSM2610229,GSM2610230,GSM2610231,GSM2610232,GSM2610233,GSM2610234,GSM2610235,GSM2610236,GSM2610237,GSM2610238,GSM2610239,GSM2610240,GSM2610241,GSM2610242,GSM2610243,GSM2610244,GSM2610245,GSM2610246,GSM2610247,GSM2610248,GSM2610249,GSM2610250,GSM2610251,GSM2610252,GSM2610253,GSM2610254,GSM2610255,GSM2610256,GSM2610257,GSM2610258,GSM2610259,GSM2610260,GSM2610261,GSM2610262,GSM2610263,GSM2610264,GSM2610265,GSM2610266
|
2 |
+
Intellectual_Disability,1.0,1.0,1.0,1.0,1.0,1.0,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Intellectual_Disability/code/GSE100680.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE100680"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE100680"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE100680.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE100680.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE100680.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes, this dataset appears to contain gene expression data based on the background information
|
34 |
+
# which mentions measuring APP expression levels and genome-wide effects
|
35 |
+
is_gene_available = True
|
36 |
+
|
37 |
+
# 2. Variable Availability and Data Type Conversion
|
38 |
+
|
39 |
+
# 2.1 Data Availability
|
40 |
+
# Trait (DS vs Control) can be inferred from field 3 (description)
|
41 |
+
trait_row = 3
|
42 |
+
# Age is in field 2
|
43 |
+
age_row = 2
|
44 |
+
# Gender is not available
|
45 |
+
gender_row = None
|
46 |
+
|
47 |
+
# 2.2 Data Type Conversion Functions
|
48 |
+
def convert_trait(value):
|
49 |
+
"""Convert description to binary indicating if sample is DS (1) or control (0)"""
|
50 |
+
if not isinstance(value, str):
|
51 |
+
return None
|
52 |
+
value = value.split(': ')[-1]
|
53 |
+
if 'DS Clone' in value:
|
54 |
+
return 1
|
55 |
+
elif 'Euploid Clone' in value:
|
56 |
+
return 0
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_age(value):
|
60 |
+
"""Convert age string to numeric days"""
|
61 |
+
if not isinstance(value, str):
|
62 |
+
return None
|
63 |
+
value = value.split(': ')[-1]
|
64 |
+
if 'Day' in value:
|
65 |
+
try:
|
66 |
+
return float(value.replace('Day ', ''))
|
67 |
+
except:
|
68 |
+
return None
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(value):
|
72 |
+
"""Not used since gender data is not available"""
|
73 |
+
return None
|
74 |
+
|
75 |
+
# 3. Save Initial Metadata
|
76 |
+
is_trait_available = trait_row is not None
|
77 |
+
validate_and_save_cohort_info(
|
78 |
+
is_final=False,
|
79 |
+
cohort=cohort,
|
80 |
+
info_path=json_path,
|
81 |
+
is_gene_available=is_gene_available,
|
82 |
+
is_trait_available=is_trait_available
|
83 |
+
)
|
84 |
+
|
85 |
+
# 4. Extract Clinical Features
|
86 |
+
clinical_features = geo_select_clinical_features(
|
87 |
+
clinical_df=clinical_data,
|
88 |
+
trait=trait,
|
89 |
+
trait_row=trait_row,
|
90 |
+
convert_trait=convert_trait,
|
91 |
+
age_row=age_row,
|
92 |
+
convert_age=convert_age,
|
93 |
+
gender_row=gender_row,
|
94 |
+
convert_gender=convert_gender
|
95 |
+
)
|
96 |
+
|
97 |
+
# Preview the extracted features
|
98 |
+
preview_df(clinical_features)
|
99 |
+
|
100 |
+
# Save clinical features
|
101 |
+
clinical_features.to_csv(out_clinical_data_file)
|
102 |
+
# Extract gene expression data from the matrix file
|
103 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
104 |
+
|
105 |
+
# Print first 20 row IDs
|
106 |
+
print("First 20 row IDs:")
|
107 |
+
print(genetic_data.index[:20].tolist())
|
108 |
+
# These identifiers are ILMN (Illumina) probe IDs, not gene symbols
|
109 |
+
# The ILMN_ prefix indicates they are from an Illumina microarray platform
|
110 |
+
# They need to be mapped to official gene symbols
|
111 |
+
requires_gene_mapping = True
|
112 |
+
# Extract gene annotation data from SOFT file
|
113 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
114 |
+
|
115 |
+
# Drop rows where Symbol is null or contains phage/virus/bacteria
|
116 |
+
gene_metadata = gene_metadata[gene_metadata['Symbol'].notna()]
|
117 |
+
gene_metadata = gene_metadata[~gene_metadata['Symbol'].str.contains('phage|virus|bacteria',
|
118 |
+
case=False, na=False)]
|
119 |
+
|
120 |
+
# Display information about the annotation data
|
121 |
+
print("Column names:")
|
122 |
+
print(gene_metadata.columns.tolist())
|
123 |
+
|
124 |
+
# Look at general data statistics
|
125 |
+
print("\nData shape:", gene_metadata.shape)
|
126 |
+
|
127 |
+
# Preview the first few rows
|
128 |
+
print("\nPreview of the annotation data:")
|
129 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
130 |
+
# Get gene mapping data from annotation
|
131 |
+
# 'ID' column matches the ILMN probe IDs in expression data
|
132 |
+
# 'Symbol' column contains the gene symbols
|
133 |
+
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Symbol')
|
134 |
+
|
135 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
136 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
137 |
+
# 1. Normalize gene symbols
|
138 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
139 |
+
gene_data.to_csv(out_gene_data_file)
|
140 |
+
|
141 |
+
# Get clinical features
|
142 |
+
clinical_features = geo_select_clinical_features(
|
143 |
+
clinical_data,
|
144 |
+
trait=trait,
|
145 |
+
trait_row=trait_row,
|
146 |
+
convert_trait=convert_trait,
|
147 |
+
age_row=age_row,
|
148 |
+
convert_age=convert_age,
|
149 |
+
gender_row=gender_row,
|
150 |
+
convert_gender=convert_gender
|
151 |
+
)
|
152 |
+
|
153 |
+
# 2. Link clinical and genetic data
|
154 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
155 |
+
|
156 |
+
# 3. Handle missing values
|
157 |
+
linked_data = handle_missing_values(linked_data, trait)
|
158 |
+
|
159 |
+
# Early exit if trait values are all NaN
|
160 |
+
if linked_data[trait].isna().all():
|
161 |
+
is_biased = True
|
162 |
+
linked_data = None
|
163 |
+
else:
|
164 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
165 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
166 |
+
|
167 |
+
# 5. Final validation and save metadata
|
168 |
+
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
|
169 |
+
is_usable = validate_and_save_cohort_info(
|
170 |
+
is_final=True,
|
171 |
+
cohort=cohort,
|
172 |
+
info_path=json_path,
|
173 |
+
is_gene_available=True,
|
174 |
+
is_trait_available=True,
|
175 |
+
is_biased=is_biased,
|
176 |
+
df=linked_data,
|
177 |
+
note=note
|
178 |
+
)
|
179 |
+
|
180 |
+
# 6. Save the linked data only if it's usable
|
181 |
+
if is_usable:
|
182 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
183 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/GSE158385.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE158385"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE158385"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE158385.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE158385.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE158385.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
is_gene_available = True # Yes, this appears to be gene expression data based on the background which studies effects in human amniocytes
|
34 |
+
|
35 |
+
# 2. Variable Availability and Data Type Conversion
|
36 |
+
|
37 |
+
# 2.1 Key identification
|
38 |
+
trait_row = 2 # Karyotype indicates T21 (Trisomy 21) status which represents Intellectual Disability
|
39 |
+
age_row = None # No age data available
|
40 |
+
gender_row = None # Although gender info is embedded in karyotype, we can't reliably extract it since some patients could have multiple records
|
41 |
+
|
42 |
+
# 2.2 Data Type Conversion Functions
|
43 |
+
def convert_trait(value):
|
44 |
+
if pd.isna(value):
|
45 |
+
return None
|
46 |
+
value = value.split(': ')[-1].strip()
|
47 |
+
if '47' in value and 'T21' in value: # Trisomy 21 cases
|
48 |
+
return 1
|
49 |
+
elif '46' in value and '2N' in value: # Normal karyotype
|
50 |
+
return 0
|
51 |
+
return None
|
52 |
+
|
53 |
+
convert_age = None # No age data
|
54 |
+
convert_gender = None # No reliable gender data
|
55 |
+
|
56 |
+
# 3. Save Metadata
|
57 |
+
is_trait_available = trait_row is not None
|
58 |
+
validate_and_save_cohort_info(is_final=False,
|
59 |
+
cohort=cohort,
|
60 |
+
info_path=json_path,
|
61 |
+
is_gene_available=is_gene_available,
|
62 |
+
is_trait_available=is_trait_available)
|
63 |
+
|
64 |
+
# 4. Clinical Feature Extraction
|
65 |
+
if trait_row is not None:
|
66 |
+
clinical_features = geo_select_clinical_features(clinical_data,
|
67 |
+
trait=trait,
|
68 |
+
trait_row=trait_row,
|
69 |
+
convert_trait=convert_trait)
|
70 |
+
print("Preview of clinical features:")
|
71 |
+
print(preview_df(clinical_features))
|
72 |
+
|
73 |
+
clinical_features.to_csv(out_clinical_data_file)
|
74 |
+
# Extract gene expression data from the matrix file
|
75 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
76 |
+
|
77 |
+
# Print first 20 row IDs
|
78 |
+
print("First 20 row IDs:")
|
79 |
+
print(genetic_data.index[:20].tolist())
|
80 |
+
# The identifiers in the gene expression data appear to be Affymetrix transcript cluster IDs (TC.....hg.1)
|
81 |
+
# These are probe set IDs that need to be mapped to human gene symbols for analysis
|
82 |
+
requires_gene_mapping = True
|
83 |
+
# Identify all platform sections in the SOFT file
|
84 |
+
with gzip.open(soft_file_path, 'rt') as f:
|
85 |
+
platform_sections = []
|
86 |
+
current_platform = None
|
87 |
+
for line in f:
|
88 |
+
if line.startswith('^PLATFORM'):
|
89 |
+
if current_platform:
|
90 |
+
platform_sections.append(current_platform)
|
91 |
+
current_platform = {'id': line.strip()}
|
92 |
+
elif current_platform is not None and line.startswith('!Platform_title'):
|
93 |
+
current_platform['title'] = line.strip()
|
94 |
+
if 'human' in line.lower() or 'homo sapiens' in line.lower():
|
95 |
+
current_platform['is_human'] = True
|
96 |
+
elif not line.startswith('^'): # End of platform section
|
97 |
+
if current_platform:
|
98 |
+
platform_sections.append(current_platform)
|
99 |
+
current_platform = None
|
100 |
+
if current_platform: # Handle last platform if exists
|
101 |
+
platform_sections.append(current_platform)
|
102 |
+
|
103 |
+
print("Found Platform Sections:")
|
104 |
+
for platform in platform_sections:
|
105 |
+
print(platform)
|
106 |
+
|
107 |
+
# Look for human gene annotations
|
108 |
+
with gzip.open(soft_file_path, 'rt') as f:
|
109 |
+
human_data = []
|
110 |
+
is_human_section = False
|
111 |
+
for line in f:
|
112 |
+
if line.startswith('^PLATFORM'):
|
113 |
+
is_human_section = False
|
114 |
+
platform_id = line.strip()
|
115 |
+
elif line.startswith('!Platform_title') and ('human' in line.lower() or 'homo sapiens' in line.lower()):
|
116 |
+
is_human_section = True
|
117 |
+
print(f"\nFound human platform section: {platform_id}")
|
118 |
+
print(f"Platform title: {line.strip()}")
|
119 |
+
elif is_human_section and not line.startswith(('!', '#', '^')):
|
120 |
+
human_data.append(line)
|
121 |
+
|
122 |
+
if human_data:
|
123 |
+
# Convert human annotation data to dataframe
|
124 |
+
human_annotation_df = pd.read_csv(io.StringIO(''.join(human_data)), sep='\t')
|
125 |
+
|
126 |
+
print("\nColumn names:")
|
127 |
+
print(human_annotation_df.columns.tolist())
|
128 |
+
|
129 |
+
print("\nData shape:", human_annotation_df.shape)
|
130 |
+
|
131 |
+
print("\nPreview of the annotation data:")
|
132 |
+
print(json.dumps(preview_df(human_annotation_df), indent=2))
|
133 |
+
else:
|
134 |
+
print("\nNo human gene annotation data found in the SOFT file.")
|
135 |
+
# Extract probe and gene mapping from annotation data
|
136 |
+
prob_col = 'ID' # The gene expression data uses TC.....hg.1 identifiers, which match the ID column
|
137 |
+
gene_col = 'gene_assignment' # This column contains gene symbol information
|
138 |
+
|
139 |
+
# Get initial mapping between probes and genes
|
140 |
+
mapping_df = get_gene_mapping(human_annotation_df, prob_col, gene_col)
|
141 |
+
|
142 |
+
# Convert probe-level expression data to gene expression data
|
143 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
144 |
+
|
145 |
+
# Normalize gene symbols to ensure consistency
|
146 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
147 |
+
|
148 |
+
# Preview the result
|
149 |
+
print("\nGene expression data shape:", gene_data.shape)
|
150 |
+
print("\nFirst few gene symbols:", gene_data.index[:5].tolist())
|
151 |
+
|
152 |
+
# Save gene expression data
|
153 |
+
gene_data.to_csv(out_gene_data_file)
|
154 |
+
# 1. Normalize gene symbols
|
155 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
156 |
+
gene_data.to_csv(out_gene_data_file)
|
157 |
+
|
158 |
+
# Get clinical features
|
159 |
+
clinical_features = geo_select_clinical_features(
|
160 |
+
clinical_data,
|
161 |
+
trait=trait,
|
162 |
+
trait_row=trait_row,
|
163 |
+
convert_trait=convert_trait,
|
164 |
+
age_row=age_row,
|
165 |
+
convert_age=convert_age,
|
166 |
+
gender_row=gender_row,
|
167 |
+
convert_gender=convert_gender
|
168 |
+
)
|
169 |
+
|
170 |
+
# 2. Link clinical and genetic data
|
171 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
172 |
+
|
173 |
+
# 3. Handle missing values
|
174 |
+
linked_data = handle_missing_values(linked_data, trait)
|
175 |
+
|
176 |
+
# Early exit if trait values are all NaN
|
177 |
+
if linked_data[trait].isna().all():
|
178 |
+
is_biased = True
|
179 |
+
linked_data = None
|
180 |
+
else:
|
181 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
182 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
183 |
+
|
184 |
+
# 5. Final validation and save metadata
|
185 |
+
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
|
186 |
+
is_usable = validate_and_save_cohort_info(
|
187 |
+
is_final=True,
|
188 |
+
cohort=cohort,
|
189 |
+
info_path=json_path,
|
190 |
+
is_gene_available=True,
|
191 |
+
is_trait_available=True,
|
192 |
+
is_biased=is_biased,
|
193 |
+
df=linked_data,
|
194 |
+
note=note
|
195 |
+
)
|
196 |
+
|
197 |
+
# 6. Save the linked data only if it's usable
|
198 |
+
if is_usable:
|
199 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
200 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/GSE192767.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE192767"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE192767"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE192767.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE192767.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE192767.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes - this dataset uses Affymetrix microarrays for gene expression profiling
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
|
38 |
+
# Trait (ID) data is available in row 0 (phenotype field)
|
39 |
+
trait_row = 0
|
40 |
+
|
41 |
+
# Age data not available
|
42 |
+
age_row = None
|
43 |
+
|
44 |
+
# Gender data not available
|
45 |
+
gender_row = None
|
46 |
+
|
47 |
+
# 2.2 Data Type Conversion Functions
|
48 |
+
|
49 |
+
def convert_trait(value: str) -> int:
|
50 |
+
"""Convert ATR-X syndrome phenotype to binary values"""
|
51 |
+
if not isinstance(value, str):
|
52 |
+
return None
|
53 |
+
value = value.lower().split("phenotype:")[-1].strip()
|
54 |
+
if "atr-x syndrome" in value:
|
55 |
+
return 1
|
56 |
+
elif "unaffected" in value:
|
57 |
+
return 0
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(value: str) -> float:
|
61 |
+
"""Convert age to float - not used since age not available"""
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_gender(value: str) -> int:
|
65 |
+
"""Convert gender to binary - not used since gender not available"""
|
66 |
+
return None
|
67 |
+
|
68 |
+
# 3. Save metadata with initial filtering
|
69 |
+
validate_and_save_cohort_info(is_final=False,
|
70 |
+
cohort=cohort,
|
71 |
+
info_path=json_path,
|
72 |
+
is_gene_available=is_gene_available,
|
73 |
+
is_trait_available=(trait_row is not None))
|
74 |
+
|
75 |
+
# 4. Extract clinical features
|
76 |
+
if trait_row is not None:
|
77 |
+
clinical_features = geo_select_clinical_features(
|
78 |
+
clinical_df=clinical_data,
|
79 |
+
trait=trait,
|
80 |
+
trait_row=trait_row,
|
81 |
+
convert_trait=convert_trait,
|
82 |
+
age_row=age_row,
|
83 |
+
convert_age=convert_age,
|
84 |
+
gender_row=gender_row,
|
85 |
+
convert_gender=convert_gender
|
86 |
+
)
|
87 |
+
|
88 |
+
# Preview the extracted features
|
89 |
+
print("Preview of clinical features:")
|
90 |
+
print(preview_df(clinical_features))
|
91 |
+
|
92 |
+
# Save to CSV
|
93 |
+
clinical_features.to_csv(out_clinical_data_file)
|
94 |
+
# Extract gene expression data from the matrix file
|
95 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
96 |
+
|
97 |
+
# Print first 20 row IDs
|
98 |
+
print("First 20 row IDs:")
|
99 |
+
print(genetic_data.index[:20].tolist())
|
100 |
+
# These are Affymetrix probe IDs from HuGene arrays that need to be mapped to gene symbols
|
101 |
+
requires_gene_mapping = True
|
102 |
+
# Extract gene annotation data from SOFT file
|
103 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
104 |
+
|
105 |
+
# Display information about the annotation data
|
106 |
+
print("Column names:")
|
107 |
+
print(gene_metadata.columns.tolist())
|
108 |
+
|
109 |
+
# Look at general data statistics
|
110 |
+
print("\nData shape:", gene_metadata.shape)
|
111 |
+
|
112 |
+
# Preview the first few rows
|
113 |
+
print("\nPreview of the annotation data:")
|
114 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
115 |
+
# 1. Identify the columns for mapping
|
116 |
+
# 'ID' in gene_metadata matches the probe IDs in genetic_data
|
117 |
+
# 'Gene Symbol' contains the gene symbols we want to map to
|
118 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
|
119 |
+
|
120 |
+
# 2. Apply gene mapping
|
121 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
122 |
+
|
123 |
+
# Preview the first few rows of the mapped data
|
124 |
+
print("\nPreview of mapped gene expression data:")
|
125 |
+
print(preview_df(gene_data))
|
126 |
+
# 1. Normalize gene symbols
|
127 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
128 |
+
gene_data.to_csv(out_gene_data_file)
|
129 |
+
|
130 |
+
# Get clinical features
|
131 |
+
clinical_features = geo_select_clinical_features(
|
132 |
+
clinical_data,
|
133 |
+
trait=trait,
|
134 |
+
trait_row=trait_row,
|
135 |
+
convert_trait=convert_trait,
|
136 |
+
age_row=age_row,
|
137 |
+
convert_age=convert_age,
|
138 |
+
gender_row=gender_row,
|
139 |
+
convert_gender=convert_gender
|
140 |
+
)
|
141 |
+
|
142 |
+
# 2. Link clinical and genetic data
|
143 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
144 |
+
|
145 |
+
# 3. Handle missing values
|
146 |
+
linked_data = handle_missing_values(linked_data, trait)
|
147 |
+
|
148 |
+
# Early exit if trait values are all NaN
|
149 |
+
if linked_data[trait].isna().all():
|
150 |
+
is_biased = True
|
151 |
+
linked_data = None
|
152 |
+
else:
|
153 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
154 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
155 |
+
|
156 |
+
# 5. Final validation and save metadata
|
157 |
+
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
|
158 |
+
is_usable = validate_and_save_cohort_info(
|
159 |
+
is_final=True,
|
160 |
+
cohort=cohort,
|
161 |
+
info_path=json_path,
|
162 |
+
is_gene_available=True,
|
163 |
+
is_trait_available=True,
|
164 |
+
is_biased=is_biased,
|
165 |
+
df=linked_data,
|
166 |
+
note=note
|
167 |
+
)
|
168 |
+
|
169 |
+
# 6. Save the linked data only if it's usable
|
170 |
+
if is_usable:
|
171 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
172 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/GSE200864.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE200864"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE200864"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE200864.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE200864.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE200864.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on Series_title and Series_overall_design mentioning Affymetrix platform and gene expression
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
|
38 |
+
# 2.1 Data Availability
|
39 |
+
# Trait: Down Syndrome mentioned in title and summary, everyone has Down Syndrome based on background info
|
40 |
+
trait_row = None # Everyone has intellectual disability (Down Syndrome), so constant feature
|
41 |
+
|
42 |
+
# Age and gender: Not available in characteristics
|
43 |
+
age_row = None
|
44 |
+
gender_row = None
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(x):
|
48 |
+
return 1 # Would return 1 for all samples since all have Down Syndrome
|
49 |
+
|
50 |
+
def convert_age(x):
|
51 |
+
return None # Not used since age data not available
|
52 |
+
|
53 |
+
def convert_gender(x):
|
54 |
+
return None # Not used since gender data not available
|
55 |
+
|
56 |
+
# 3. Save Metadata
|
57 |
+
is_trait_available = True # Although trait_row is None, we know everyone has intellectual disability
|
58 |
+
validate_and_save_cohort_info(is_final=False,
|
59 |
+
cohort=cohort,
|
60 |
+
info_path=json_path,
|
61 |
+
is_gene_available=is_gene_available,
|
62 |
+
is_trait_available=is_trait_available)
|
63 |
+
|
64 |
+
# 4. Clinical Feature Extraction
|
65 |
+
# Skip since trait_row is None (constant feature)
|
66 |
+
# Extract gene expression data from the matrix file
|
67 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
68 |
+
|
69 |
+
# Print first 20 row IDs
|
70 |
+
print("First 20 row IDs:")
|
71 |
+
print(genetic_data.index[:20].tolist())
|
72 |
+
# These indices appear to be probe set IDs from Affymetrix microarray platform
|
73 |
+
# They are not standard human gene symbols and will need to be mapped
|
74 |
+
requires_gene_mapping = True
|
75 |
+
# Extract gene annotation data from SOFT file
|
76 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
77 |
+
|
78 |
+
# Display information about the annotation data
|
79 |
+
print("Column names:")
|
80 |
+
print(gene_metadata.columns.tolist())
|
81 |
+
|
82 |
+
# Look at general data statistics
|
83 |
+
print("\nData shape:", gene_metadata.shape)
|
84 |
+
|
85 |
+
# Preview the first few rows
|
86 |
+
print("\nPreview of the annotation data:")
|
87 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
88 |
+
# Create gene mapping from probe IDs to gene symbols
|
89 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
|
90 |
+
|
91 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
92 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
93 |
+
# 1. Normalize gene symbols
|
94 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
95 |
+
gene_data.to_csv(out_gene_data_file)
|
96 |
+
|
97 |
+
# Since trait is constant (all Down Syndrome), create a clinical features dataframe of all 1's
|
98 |
+
clinical_features = pd.DataFrame(1, index=gene_data.columns, columns=['trait'])
|
99 |
+
|
100 |
+
# 2. Link clinical and genetic data
|
101 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
102 |
+
|
103 |
+
# 3. Handle missing values
|
104 |
+
linked_data = handle_missing_values(linked_data, 'trait')
|
105 |
+
|
106 |
+
# Early exit if trait values are all NaN
|
107 |
+
if linked_data['trait'].isna().all():
|
108 |
+
is_biased = True
|
109 |
+
linked_data = None
|
110 |
+
else:
|
111 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
112 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, 'trait')
|
113 |
+
|
114 |
+
# 5. Final validation and save metadata
|
115 |
+
note = "Dataset contains gene expression data from pediatric patients with Down Syndrome. Since all samples have Down Syndrome, the trait is constant (all 1's)."
|
116 |
+
is_usable = validate_and_save_cohort_info(
|
117 |
+
is_final=True,
|
118 |
+
cohort=cohort,
|
119 |
+
info_path=json_path,
|
120 |
+
is_gene_available=True,
|
121 |
+
is_trait_available=True,
|
122 |
+
is_biased=is_biased,
|
123 |
+
df=linked_data,
|
124 |
+
note=note
|
125 |
+
)
|
126 |
+
|
127 |
+
# 6. Save the linked data only if it's usable
|
128 |
+
if is_usable:
|
129 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
130 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/GSE273850.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE273850"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE273850"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE273850.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE273850.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE273850.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Affymetrix array data indicates gene expression data is available
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable and Data Type Analysis
|
37 |
+
|
38 |
+
# 2.1 Row identifiers
|
39 |
+
trait_row = 0 # Genotype info in row 0 indicates T21 vs control
|
40 |
+
gender_row = 1 # Sex info in row 1
|
41 |
+
age_row = None # Age not available
|
42 |
+
|
43 |
+
# 2.2 Conversion functions
|
44 |
+
def convert_trait(value: str) -> int:
|
45 |
+
"""Convert T21 status to binary: 1 for T21, 0 for control"""
|
46 |
+
if not value or ':' not in value:
|
47 |
+
return None
|
48 |
+
value = value.split(':')[1].strip().lower()
|
49 |
+
if 't21' in value:
|
50 |
+
return 1
|
51 |
+
elif 'euploid' in value:
|
52 |
+
return 0
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_gender(value: str) -> int:
|
56 |
+
"""Convert gender to binary: 0 for female, 1 for male"""
|
57 |
+
if not value or ':' not in value:
|
58 |
+
return None
|
59 |
+
value = value.split(':')[1].strip().lower()
|
60 |
+
if 'female' in value:
|
61 |
+
return 0
|
62 |
+
elif 'male' in value:
|
63 |
+
return 1
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_age(value: str) -> float:
|
67 |
+
"""Placeholder function since age is not available"""
|
68 |
+
return None
|
69 |
+
|
70 |
+
# 3. Save metadata
|
71 |
+
_ = validate_and_save_cohort_info(is_final=False,
|
72 |
+
cohort=cohort,
|
73 |
+
info_path=json_path,
|
74 |
+
is_gene_available=is_gene_available,
|
75 |
+
is_trait_available=trait_row is not None)
|
76 |
+
|
77 |
+
# 4. Clinical feature extraction
|
78 |
+
if trait_row is not None:
|
79 |
+
clinical_features = geo_select_clinical_features(
|
80 |
+
clinical_df=clinical_data,
|
81 |
+
trait=trait,
|
82 |
+
trait_row=trait_row,
|
83 |
+
convert_trait=convert_trait,
|
84 |
+
gender_row=gender_row,
|
85 |
+
convert_gender=convert_gender
|
86 |
+
)
|
87 |
+
|
88 |
+
# Preview the extracted features
|
89 |
+
preview = preview_df(clinical_features)
|
90 |
+
print("Clinical features preview:", preview)
|
91 |
+
|
92 |
+
# Save to CSV
|
93 |
+
clinical_features.to_csv(out_clinical_data_file)
|
94 |
+
# Extract gene expression data from the matrix file
|
95 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
96 |
+
|
97 |
+
# Print first 20 row IDs
|
98 |
+
print("First 20 row IDs:")
|
99 |
+
print(genetic_data.index[:20].tolist())
|
100 |
+
# The transcript IDs are in the format "TCxxxxxxxx.hg.1" which are not standard human gene symbols
|
101 |
+
# They appear to be transcript cluster identifiers that need mapping to gene symbols
|
102 |
+
requires_gene_mapping = True
|
103 |
+
# Extract gene annotation data from SOFT file
|
104 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
105 |
+
|
106 |
+
# Display information about the annotation data
|
107 |
+
print("Column names:")
|
108 |
+
print(gene_metadata.columns.tolist())
|
109 |
+
|
110 |
+
# Look at general data statistics
|
111 |
+
print("\nData shape:", gene_metadata.shape)
|
112 |
+
|
113 |
+
# Preview the first few rows
|
114 |
+
print("\nPreview of the annotation data:")
|
115 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
116 |
+
# 1. Identify columns for gene mapping
|
117 |
+
# Based on observation:
|
118 |
+
# - 'ID' column in gene annotation contains probe IDs like 'TC0100006437.hg.1'
|
119 |
+
# - Gene symbols are contained in 'SPOT_ID.1' column within RefSeq/ENSEMBL descriptions
|
120 |
+
|
121 |
+
# 2. Create gene mapping dataframe from the annotation data
|
122 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='SPOT_ID.1')
|
123 |
+
|
124 |
+
# 3. Apply gene mapping to convert probe-level data to gene expression data
|
125 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
126 |
+
|
127 |
+
# Preview the gene data
|
128 |
+
print("\nShape of gene expression data:", gene_data.shape)
|
129 |
+
print("\nFirst few rows of gene expression data:")
|
130 |
+
print(preview_df(gene_data))
|
131 |
+
# 1. Normalize gene symbols
|
132 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
133 |
+
gene_data.to_csv(out_gene_data_file)
|
134 |
+
|
135 |
+
# Get clinical features
|
136 |
+
clinical_features = geo_select_clinical_features(
|
137 |
+
clinical_data,
|
138 |
+
trait=trait,
|
139 |
+
trait_row=trait_row,
|
140 |
+
convert_trait=convert_trait,
|
141 |
+
age_row=age_row,
|
142 |
+
convert_age=convert_age,
|
143 |
+
gender_row=gender_row,
|
144 |
+
convert_gender=convert_gender
|
145 |
+
)
|
146 |
+
|
147 |
+
# 2. Link clinical and genetic data
|
148 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
149 |
+
|
150 |
+
# 3. Handle missing values
|
151 |
+
linked_data = handle_missing_values(linked_data, trait)
|
152 |
+
|
153 |
+
# Early exit if trait values are all NaN
|
154 |
+
if linked_data[trait].isna().all():
|
155 |
+
is_biased = True
|
156 |
+
linked_data = None
|
157 |
+
else:
|
158 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
159 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
160 |
+
|
161 |
+
# 5. Final validation and save metadata
|
162 |
+
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
|
163 |
+
is_usable = validate_and_save_cohort_info(
|
164 |
+
is_final=True,
|
165 |
+
cohort=cohort,
|
166 |
+
info_path=json_path,
|
167 |
+
is_gene_available=True,
|
168 |
+
is_trait_available=True,
|
169 |
+
is_biased=is_biased,
|
170 |
+
df=linked_data,
|
171 |
+
note=note
|
172 |
+
)
|
173 |
+
|
174 |
+
# 6. Save the linked data only if it's usable
|
175 |
+
if is_usable:
|
176 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
177 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/GSE285666.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE285666"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE285666"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE285666.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE285666.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE285666.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene expression availability - Yes, it uses Affymetrix exon arrays
|
33 |
+
is_gene_available = True
|
34 |
+
|
35 |
+
# 2.1 Get row numbers for clinical features
|
36 |
+
trait_row = 0 # disease state row
|
37 |
+
age_row = None # age not available
|
38 |
+
gender_row = None # gender not available
|
39 |
+
|
40 |
+
# 2.2 Define conversion functions
|
41 |
+
def convert_trait(value: str) -> int:
|
42 |
+
"""Convert disease state to binary: 1 for Williams syndrome, 0 for control"""
|
43 |
+
if pd.isna(value) or value is None:
|
44 |
+
return None
|
45 |
+
if ':' in value:
|
46 |
+
value = value.split(':')[1].strip().lower()
|
47 |
+
if 'williams syndrome' in value:
|
48 |
+
return 1
|
49 |
+
elif 'unaffected' in value or 'control' in value:
|
50 |
+
return 0
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_age(value: str) -> float:
|
54 |
+
"""Placeholder function since age is not available"""
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_gender(value: str) -> int:
|
58 |
+
"""Placeholder function since gender is not available"""
|
59 |
+
return None
|
60 |
+
|
61 |
+
# 3. Save metadata about dataset usability
|
62 |
+
is_trait_available = trait_row is not None
|
63 |
+
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
|
64 |
+
is_gene_available=is_gene_available,
|
65 |
+
is_trait_available=is_trait_available)
|
66 |
+
|
67 |
+
# 4. Extract clinical features since trait data is available
|
68 |
+
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
|
69 |
+
trait=trait,
|
70 |
+
trait_row=trait_row,
|
71 |
+
convert_trait=convert_trait)
|
72 |
+
|
73 |
+
# Preview results
|
74 |
+
preview_result = preview_df(clinical_features)
|
75 |
+
print("Preview of extracted clinical features:")
|
76 |
+
print(preview_result)
|
77 |
+
|
78 |
+
# Save clinical data
|
79 |
+
clinical_features.to_csv(out_clinical_data_file)
|
80 |
+
# Extract gene expression data from the matrix file
|
81 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
82 |
+
|
83 |
+
# Print first 20 row IDs
|
84 |
+
print("First 20 row IDs:")
|
85 |
+
print(genetic_data.index[:20].tolist())
|
86 |
+
# These appear to be probe IDs from a microarray platform, not standard human gene symbols
|
87 |
+
# Examining the numeric format and length pattern confirms they need mapping
|
88 |
+
requires_gene_mapping = True
|
89 |
+
# Extract gene annotation data from SOFT file
|
90 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
91 |
+
|
92 |
+
# Display information about the annotation data
|
93 |
+
print("Column names:")
|
94 |
+
print(gene_metadata.columns.tolist())
|
95 |
+
|
96 |
+
# Look at general data statistics
|
97 |
+
print("\nData shape:", gene_metadata.shape)
|
98 |
+
|
99 |
+
# Display non-NaN value counts for key gene identifier columns
|
100 |
+
print("\nNumber of non-NaN values in key columns:")
|
101 |
+
for col in ['ID', 'gene_assignment']:
|
102 |
+
print(f"{col}: {gene_metadata[col].notna().sum()}")
|
103 |
+
|
104 |
+
# Preview rows with actual gene information
|
105 |
+
print("\nPreview of rows with gene information:")
|
106 |
+
gene_rows = gene_metadata[gene_metadata['gene_assignment'].notna()].head()
|
107 |
+
print(json.dumps(preview_df(gene_rows), indent=2))
|
108 |
+
# Get gene mapping dataframe
|
109 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
|
110 |
+
mapping_data = mapping_data[mapping_data['Gene'] != '---']
|
111 |
+
|
112 |
+
# Extract gene symbols from gene_assignment strings
|
113 |
+
def extract_gene_symbol(text):
|
114 |
+
if pd.isna(text):
|
115 |
+
return None
|
116 |
+
parts = text.split('//')
|
117 |
+
if len(parts) >= 2:
|
118 |
+
return parts[1].strip()
|
119 |
+
return None
|
120 |
+
|
121 |
+
mapping_data['Gene'] = mapping_data['Gene'].apply(extract_gene_symbol)
|
122 |
+
mapping_data = mapping_data.dropna()
|
123 |
+
|
124 |
+
# Apply gene mapping to convert probe data to gene data
|
125 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
126 |
+
|
127 |
+
# Print info about the converted data
|
128 |
+
print("Shape of probe-level data:", genetic_data.shape)
|
129 |
+
print("Shape of gene-level data:", gene_data.shape)
|
130 |
+
print("\nFirst few genes:")
|
131 |
+
print(gene_data.index[:10].tolist())
|
132 |
+
# 1. Normalize gene symbols
|
133 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
134 |
+
gene_data.to_csv(out_gene_data_file)
|
135 |
+
|
136 |
+
# Get clinical features
|
137 |
+
clinical_features = geo_select_clinical_features(
|
138 |
+
clinical_data,
|
139 |
+
trait=trait,
|
140 |
+
trait_row=trait_row,
|
141 |
+
convert_trait=convert_trait,
|
142 |
+
age_row=age_row,
|
143 |
+
convert_age=convert_age,
|
144 |
+
gender_row=gender_row,
|
145 |
+
convert_gender=convert_gender
|
146 |
+
)
|
147 |
+
|
148 |
+
# 2. Link clinical and genetic data
|
149 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
150 |
+
|
151 |
+
# 3. Handle missing values
|
152 |
+
linked_data = handle_missing_values(linked_data, trait)
|
153 |
+
|
154 |
+
# Early exit if trait values are all NaN
|
155 |
+
if linked_data[trait].isna().all():
|
156 |
+
is_biased = True
|
157 |
+
linked_data = None
|
158 |
+
else:
|
159 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
160 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
161 |
+
|
162 |
+
# 5. Final validation and save metadata
|
163 |
+
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
|
164 |
+
is_usable = validate_and_save_cohort_info(
|
165 |
+
is_final=True,
|
166 |
+
cohort=cohort,
|
167 |
+
info_path=json_path,
|
168 |
+
is_gene_available=True,
|
169 |
+
is_trait_available=True,
|
170 |
+
is_biased=is_biased,
|
171 |
+
df=linked_data,
|
172 |
+
note=note
|
173 |
+
)
|
174 |
+
|
175 |
+
# 6. Save the linked data only if it's usable
|
176 |
+
if is_usable:
|
177 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
178 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/GSE59630.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE59630"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE59630"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE59630.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE59630.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE59630.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# From the background info, we can see this is a gene expression study analyzing transcriptome, so:
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# From sample characteristics, we can find:
|
39 |
+
trait_row = 2 # 'disease status' indicates DS vs Control
|
40 |
+
age_row = 4 # Age data available
|
41 |
+
gender_row = 3 # Sex data available
|
42 |
+
|
43 |
+
# 2.2 Data Type Conversion Functions
|
44 |
+
def convert_trait(x):
|
45 |
+
"""Convert disease status to binary (0: Control, 1: DS)"""
|
46 |
+
if x is None:
|
47 |
+
return None
|
48 |
+
value = x.split(': ')[-1].strip()
|
49 |
+
if value == 'CTL':
|
50 |
+
return 0
|
51 |
+
elif value == 'DS':
|
52 |
+
return 1
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(x):
|
56 |
+
"""Convert age to continuous numeric value in years"""
|
57 |
+
if x is None:
|
58 |
+
return None
|
59 |
+
value = x.split(': ')[-1].strip().lower()
|
60 |
+
|
61 |
+
# Extract number and unit
|
62 |
+
try:
|
63 |
+
num = float(''.join(filter(str.isdigit, value)))
|
64 |
+
if 'wg' in value: # weeks of gestation
|
65 |
+
return num/52 # convert to years
|
66 |
+
elif 'mo' in value: # months
|
67 |
+
return num/12 # convert to years
|
68 |
+
elif 'yr' in value: # years
|
69 |
+
return num
|
70 |
+
return None
|
71 |
+
except:
|
72 |
+
return None
|
73 |
+
|
74 |
+
def convert_gender(x):
|
75 |
+
"""Convert gender to binary (0: Female, 1: Male)"""
|
76 |
+
if x is None:
|
77 |
+
return None
|
78 |
+
value = x.split(': ')[-1].strip()
|
79 |
+
if value == 'F':
|
80 |
+
return 0
|
81 |
+
elif value == 'M':
|
82 |
+
return 1
|
83 |
+
return None
|
84 |
+
|
85 |
+
# 3. Save Metadata
|
86 |
+
validate_and_save_cohort_info(is_final=False,
|
87 |
+
cohort=cohort,
|
88 |
+
info_path=json_path,
|
89 |
+
is_gene_available=is_gene_available,
|
90 |
+
is_trait_available=trait_row is not None)
|
91 |
+
|
92 |
+
# 4. Clinical Feature Extraction
|
93 |
+
if trait_row is not None:
|
94 |
+
clinical_features = geo_select_clinical_features(clinical_data,
|
95 |
+
trait=trait,
|
96 |
+
trait_row=trait_row,
|
97 |
+
convert_trait=convert_trait,
|
98 |
+
age_row=age_row,
|
99 |
+
convert_age=convert_age,
|
100 |
+
gender_row=gender_row,
|
101 |
+
convert_gender=convert_gender)
|
102 |
+
|
103 |
+
# Preview the extracted features
|
104 |
+
preview = preview_df(clinical_features)
|
105 |
+
print("Preview of clinical features:", preview)
|
106 |
+
|
107 |
+
# Save to CSV
|
108 |
+
clinical_features.to_csv(out_clinical_data_file)
|
109 |
+
# Extract gene expression data from the matrix file
|
110 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
111 |
+
|
112 |
+
# Print first 20 row IDs
|
113 |
+
print("First 20 row IDs:")
|
114 |
+
print(genetic_data.index[:20].tolist())
|
115 |
+
# These appear to be probe IDs from a microarray platform rather than gene symbols
|
116 |
+
# They are numeric IDs which need to be mapped to human gene symbols
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# Extract gene annotation data from SOFT file
|
119 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
120 |
+
|
121 |
+
# Display information about the annotation data
|
122 |
+
print("Column names:")
|
123 |
+
print(gene_metadata.columns.tolist())
|
124 |
+
|
125 |
+
# Look at general data statistics
|
126 |
+
print("\nData shape:", gene_metadata.shape)
|
127 |
+
|
128 |
+
# Display non-NaN value counts for key gene identifier columns
|
129 |
+
print("\nNumber of non-NaN values in key columns:")
|
130 |
+
for col in ['ID', 'gene_assignment']:
|
131 |
+
print(f"{col}: {gene_metadata[col].notna().sum()}")
|
132 |
+
|
133 |
+
# Preview rows with actual gene information
|
134 |
+
print("\nPreview of rows with gene information:")
|
135 |
+
gene_rows = gene_metadata[gene_metadata['gene_assignment'].notna()].head()
|
136 |
+
print(json.dumps(preview_df(gene_rows), indent=2))
|
137 |
+
# From the previous output, we can see:
|
138 |
+
# - Gene identifiers are in the 'ID' column
|
139 |
+
# - Gene symbols are in 'gene_assignment' column and need to be extracted
|
140 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
|
141 |
+
|
142 |
+
# Apply the mapping to convert probe-level data to gene-level data
|
143 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
144 |
+
|
145 |
+
# Print information about the mapping result
|
146 |
+
print("\nOriginal probes:", len(genetic_data))
|
147 |
+
print("Mapped genes:", len(gene_data))
|
148 |
+
print("\nPreview of first few genes and their expression values:")
|
149 |
+
print(json.dumps(preview_df(gene_data), indent=2))
|
150 |
+
# 1. Normalize gene symbols
|
151 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
152 |
+
gene_data.to_csv(out_gene_data_file)
|
153 |
+
|
154 |
+
# Get clinical features
|
155 |
+
clinical_features = geo_select_clinical_features(
|
156 |
+
clinical_data,
|
157 |
+
trait=trait,
|
158 |
+
trait_row=trait_row,
|
159 |
+
convert_trait=convert_trait,
|
160 |
+
age_row=age_row,
|
161 |
+
convert_age=convert_age,
|
162 |
+
gender_row=gender_row,
|
163 |
+
convert_gender=convert_gender
|
164 |
+
)
|
165 |
+
|
166 |
+
# 2. Link clinical and genetic data
|
167 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
168 |
+
|
169 |
+
# 3. Handle missing values
|
170 |
+
linked_data = handle_missing_values(linked_data, trait)
|
171 |
+
|
172 |
+
# Early exit if trait values are all NaN
|
173 |
+
if linked_data[trait].isna().all():
|
174 |
+
is_biased = True
|
175 |
+
linked_data = None
|
176 |
+
else:
|
177 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
178 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
179 |
+
|
180 |
+
# 5. Final validation and save metadata
|
181 |
+
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
|
182 |
+
is_usable = validate_and_save_cohort_info(
|
183 |
+
is_final=True,
|
184 |
+
cohort=cohort,
|
185 |
+
info_path=json_path,
|
186 |
+
is_gene_available=True,
|
187 |
+
is_trait_available=True,
|
188 |
+
is_biased=is_biased,
|
189 |
+
df=linked_data,
|
190 |
+
note=note
|
191 |
+
)
|
192 |
+
|
193 |
+
# 6. Save the linked data only if it's usable
|
194 |
+
if is_usable:
|
195 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
196 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/GSE63870.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE63870"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE63870"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE63870.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE63870.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE63870.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes - it's analyzing whole genome expression in white blood cells
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
trait_row = 1 # Found in "condition" field
|
39 |
+
age_row = 0 # Found in "age" field
|
40 |
+
gender_row = None # Gender data not available
|
41 |
+
|
42 |
+
# 2.2 Data Type Conversion Functions
|
43 |
+
def convert_trait(value: str) -> int:
|
44 |
+
"""Convert cognitive disability status to binary"""
|
45 |
+
if not value or ':' not in value:
|
46 |
+
return None
|
47 |
+
value = value.split(':')[1].strip().lower()
|
48 |
+
# 1 for having severe cognitive disability/dementia, 0 for without
|
49 |
+
if 'without' in value:
|
50 |
+
return 0
|
51 |
+
elif 'severe cognitive disability' in value or 'early dementia' in value:
|
52 |
+
return 1
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(value: str) -> int:
|
56 |
+
"""Convert age group to binary"""
|
57 |
+
if not value or ':' not in value:
|
58 |
+
return None
|
59 |
+
value = value.split(':')[1].strip().lower()
|
60 |
+
# Convert to binary: 0 for young, 1 for old
|
61 |
+
if value == 'young':
|
62 |
+
return 0
|
63 |
+
elif value == 'old':
|
64 |
+
return 1
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_gender(value: str) -> int:
|
68 |
+
"""Placeholder function - not used since gender data unavailable"""
|
69 |
+
return None
|
70 |
+
|
71 |
+
# 3. Save Metadata
|
72 |
+
is_trait_available = trait_row is not None
|
73 |
+
validate_and_save_cohort_info(is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=is_trait_available)
|
78 |
+
|
79 |
+
# 4. Clinical Feature Extraction
|
80 |
+
if trait_row is not None:
|
81 |
+
clinical_features = geo_select_clinical_features(
|
82 |
+
clinical_df=clinical_data,
|
83 |
+
trait=trait,
|
84 |
+
trait_row=trait_row,
|
85 |
+
convert_trait=convert_trait,
|
86 |
+
age_row=age_row,
|
87 |
+
convert_age=convert_age,
|
88 |
+
gender_row=gender_row,
|
89 |
+
convert_gender=convert_gender
|
90 |
+
)
|
91 |
+
|
92 |
+
# Preview the extracted features
|
93 |
+
preview = preview_df(clinical_features)
|
94 |
+
print("Preview of extracted clinical features:")
|
95 |
+
print(preview)
|
96 |
+
|
97 |
+
# Save to CSV
|
98 |
+
clinical_features.to_csv(out_clinical_data_file)
|
99 |
+
# Extract gene expression data from the matrix file
|
100 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
101 |
+
|
102 |
+
# Print first 20 row IDs
|
103 |
+
print("First 20 row IDs:")
|
104 |
+
print(genetic_data.index[:20].tolist())
|
105 |
+
# These identifiers are not standard human gene symbols. They appear to be Agilent microarray probe IDs.
|
106 |
+
# Probe IDs like 'A_19_P00315452' need to be mapped to gene symbols for analysis.
|
107 |
+
|
108 |
+
requires_gene_mapping = True
|
109 |
+
# Extract gene annotation data from SOFT file
|
110 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
111 |
+
|
112 |
+
# Display information about the annotation data
|
113 |
+
print("Column names:")
|
114 |
+
print(gene_metadata.columns.tolist())
|
115 |
+
|
116 |
+
# Look at general data statistics
|
117 |
+
print("\nData shape:", gene_metadata.shape)
|
118 |
+
|
119 |
+
# Display non-NaN value counts for key gene identifier columns
|
120 |
+
print("\nNumber of non-NaN values in key columns:")
|
121 |
+
for col in ['ID', 'GENE_SYMBOL']:
|
122 |
+
print(f"{col}: {gene_metadata[col].notna().sum()}")
|
123 |
+
|
124 |
+
# Preview rows with actual gene information
|
125 |
+
print("\nPreview of rows with gene information:")
|
126 |
+
gene_rows = gene_metadata[gene_metadata['GENE_SYMBOL'].notna()].head()
|
127 |
+
print(json.dumps(preview_df(gene_rows), indent=2))
|
128 |
+
# 1. Identify mapping columns
|
129 |
+
# 'ID' in gene metadata matches the identifiers in genetic_data
|
130 |
+
# 'GENE_SYMBOL' contains the target gene symbols
|
131 |
+
gene_id_col = 'ID'
|
132 |
+
gene_symbol_col = 'GENE_SYMBOL'
|
133 |
+
|
134 |
+
# 2. Get mapping dataframe
|
135 |
+
gene_mapping = get_gene_mapping(gene_metadata, gene_id_col, gene_symbol_col)
|
136 |
+
|
137 |
+
# 3. Apply gene mapping to convert probe-level data to gene expression data
|
138 |
+
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
|
139 |
+
# 1. Normalize gene symbols
|
140 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
141 |
+
gene_data.to_csv(out_gene_data_file)
|
142 |
+
|
143 |
+
# Get clinical features
|
144 |
+
clinical_features = geo_select_clinical_features(
|
145 |
+
clinical_data,
|
146 |
+
trait=trait,
|
147 |
+
trait_row=trait_row,
|
148 |
+
convert_trait=convert_trait,
|
149 |
+
age_row=age_row,
|
150 |
+
convert_age=convert_age,
|
151 |
+
gender_row=gender_row,
|
152 |
+
convert_gender=convert_gender
|
153 |
+
)
|
154 |
+
|
155 |
+
# 2. Link clinical and genetic data
|
156 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
157 |
+
|
158 |
+
# 3. Handle missing values
|
159 |
+
linked_data = handle_missing_values(linked_data, trait)
|
160 |
+
|
161 |
+
# Early exit if trait values are all NaN
|
162 |
+
if linked_data[trait].isna().all():
|
163 |
+
is_biased = True
|
164 |
+
linked_data = None
|
165 |
+
else:
|
166 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
167 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
168 |
+
|
169 |
+
# 5. Final validation and save metadata
|
170 |
+
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
|
171 |
+
is_usable = validate_and_save_cohort_info(
|
172 |
+
is_final=True,
|
173 |
+
cohort=cohort,
|
174 |
+
info_path=json_path,
|
175 |
+
is_gene_available=True,
|
176 |
+
is_trait_available=True,
|
177 |
+
is_biased=is_biased,
|
178 |
+
df=linked_data,
|
179 |
+
note=note
|
180 |
+
)
|
181 |
+
|
182 |
+
# 6. Save the linked data only if it's usable
|
183 |
+
if is_usable:
|
184 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
185 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/GSE89594.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE89594"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE89594"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE89594.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE89594.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE89594.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on background info, this is a gene expression study using peripheral blood
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
trait_row = 0 # "diagnosis" in row 0 contains trait info
|
38 |
+
age_row = 2 # "age" in row 2
|
39 |
+
gender_row = 3 # "gender" in row 3
|
40 |
+
|
41 |
+
# 2.2 Data Type Conversion Functions
|
42 |
+
def convert_trait(x):
|
43 |
+
"""Convert trait status to binary"""
|
44 |
+
if not isinstance(x, str):
|
45 |
+
return None
|
46 |
+
value = x.split(': ')[-1].lower()
|
47 |
+
# Williams Syndrome is intellectual disability
|
48 |
+
if 'williams syndrome' in value or 'ws' in value:
|
49 |
+
return 1
|
50 |
+
elif 'control' in value:
|
51 |
+
return 0
|
52 |
+
# ASD samples counted as None since not relevant
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(x):
|
56 |
+
"""Convert age to continuous values"""
|
57 |
+
if not isinstance(x, str):
|
58 |
+
return None
|
59 |
+
value = x.split(': ')[-1].lower()
|
60 |
+
try:
|
61 |
+
# Extract numeric value before 'y'
|
62 |
+
return float(value.replace('y',''))
|
63 |
+
except:
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_gender(x):
|
67 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
68 |
+
if not isinstance(x, str):
|
69 |
+
return None
|
70 |
+
value = x.split(': ')[-1].lower()
|
71 |
+
if 'female' in value:
|
72 |
+
return 0
|
73 |
+
elif 'male' in value:
|
74 |
+
return 1
|
75 |
+
return None
|
76 |
+
|
77 |
+
# 3. Save Metadata
|
78 |
+
is_trait_available = trait_row is not None
|
79 |
+
validate_and_save_cohort_info(is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=is_trait_available)
|
84 |
+
|
85 |
+
# 4. Clinical Feature Extraction
|
86 |
+
if trait_row is not None:
|
87 |
+
clinical_features = geo_select_clinical_features(
|
88 |
+
clinical_df=clinical_data,
|
89 |
+
trait=trait,
|
90 |
+
trait_row=trait_row,
|
91 |
+
convert_trait=convert_trait,
|
92 |
+
age_row=age_row,
|
93 |
+
convert_age=convert_age,
|
94 |
+
gender_row=gender_row,
|
95 |
+
convert_gender=convert_gender
|
96 |
+
)
|
97 |
+
|
98 |
+
# Preview the processed clinical data
|
99 |
+
preview = preview_df(clinical_features)
|
100 |
+
print("Preview of processed clinical data:")
|
101 |
+
print(preview)
|
102 |
+
|
103 |
+
# Save clinical features
|
104 |
+
clinical_features.to_csv(out_clinical_data_file)
|
105 |
+
# Extract gene expression data from the matrix file
|
106 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
107 |
+
|
108 |
+
# Print first 20 row IDs
|
109 |
+
print("First 20 row IDs:")
|
110 |
+
print(genetic_data.index[:20].tolist())
|
111 |
+
# Based on the provided sample row IDs which are just sequential numbers,
|
112 |
+
# we need to map these identifiers to proper gene symbols
|
113 |
+
requires_gene_mapping = True
|
114 |
+
# Extract gene annotation data from SOFT file
|
115 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
116 |
+
|
117 |
+
# Display information about the annotation data
|
118 |
+
print("Column names:")
|
119 |
+
print(gene_metadata.columns.tolist())
|
120 |
+
|
121 |
+
# Look at general data statistics
|
122 |
+
print("\nData shape:", gene_metadata.shape)
|
123 |
+
|
124 |
+
# Display non-NaN value counts for key gene identifier columns
|
125 |
+
print("\nNumber of non-NaN values in key columns:")
|
126 |
+
for col in ['ID', 'GENE_SYMBOL']:
|
127 |
+
print(f"{col}: {gene_metadata[col].notna().sum()}")
|
128 |
+
|
129 |
+
# Preview rows with actual gene information
|
130 |
+
print("\nPreview of rows with gene information:")
|
131 |
+
gene_rows = gene_metadata[gene_metadata['GENE_SYMBOL'].notna()].head()
|
132 |
+
print(json.dumps(preview_df(gene_rows), indent=2))
|
133 |
+
# 1. Identify mapping columns
|
134 |
+
# ID in expression data corresponds to ID in annotation
|
135 |
+
# GENE_SYMBOL contains gene symbols for mapping
|
136 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
137 |
+
|
138 |
+
# 2. Apply mapping and aggregate to get gene expression data
|
139 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
140 |
+
|
141 |
+
# Preview the processed data
|
142 |
+
print("\nPreview of mapped gene expression data:")
|
143 |
+
print(f"Shape: {gene_data.shape}")
|
144 |
+
print("\nFirst few gene symbols:")
|
145 |
+
print(gene_data.index[:10].tolist())
|
146 |
+
# 1. Normalize gene symbols
|
147 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
148 |
+
gene_data.to_csv(out_gene_data_file)
|
149 |
+
|
150 |
+
# Get clinical features
|
151 |
+
clinical_features = geo_select_clinical_features(
|
152 |
+
clinical_data,
|
153 |
+
trait=trait,
|
154 |
+
trait_row=trait_row,
|
155 |
+
convert_trait=convert_trait,
|
156 |
+
age_row=age_row,
|
157 |
+
convert_age=convert_age,
|
158 |
+
gender_row=gender_row,
|
159 |
+
convert_gender=convert_gender
|
160 |
+
)
|
161 |
+
|
162 |
+
# 2. Link clinical and genetic data
|
163 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
164 |
+
|
165 |
+
# 3. Handle missing values
|
166 |
+
linked_data = handle_missing_values(linked_data, trait)
|
167 |
+
|
168 |
+
# Early exit if trait values are all NaN
|
169 |
+
if linked_data[trait].isna().all():
|
170 |
+
is_biased = True
|
171 |
+
linked_data = None
|
172 |
+
else:
|
173 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
174 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
175 |
+
|
176 |
+
# 5. Final validation and save metadata
|
177 |
+
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
|
178 |
+
is_usable = validate_and_save_cohort_info(
|
179 |
+
is_final=True,
|
180 |
+
cohort=cohort,
|
181 |
+
info_path=json_path,
|
182 |
+
is_gene_available=True,
|
183 |
+
is_trait_available=True,
|
184 |
+
is_biased=is_biased,
|
185 |
+
df=linked_data,
|
186 |
+
note=note
|
187 |
+
)
|
188 |
+
|
189 |
+
# 6. Save the linked data only if it's usable
|
190 |
+
if is_usable:
|
191 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
192 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/GSE98697.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
cohort = "GSE98697"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE98697"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE98697.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE98697.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE98697.csv"
|
16 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes - the dataset contains both coding and non-coding gene expression data according to title and design
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Row Numbers
|
37 |
+
# Trait: Not directly given but subtype shows Down syndrome cases, can infer from aml subtype
|
38 |
+
trait_row = 2
|
39 |
+
# Age not available
|
40 |
+
age_row = None
|
41 |
+
# Gender not available
|
42 |
+
gender_row = None
|
43 |
+
|
44 |
+
# 2.2 Type Conversion Functions
|
45 |
+
def convert_trait(x):
|
46 |
+
# Extract value after colon
|
47 |
+
if ':' in x:
|
48 |
+
x = x.split(':', 1)[1].strip()
|
49 |
+
# Convert to binary - 1 for Down syndrome AMKL, 0 for other types
|
50 |
+
if 'Down-syndrome' in x:
|
51 |
+
return 1
|
52 |
+
elif 'aml' in x.lower(): # Other AML types
|
53 |
+
return 0
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(x):
|
57 |
+
return None # Not used as age is not available
|
58 |
+
|
59 |
+
def convert_gender(x):
|
60 |
+
return None # Not used as gender is not available
|
61 |
+
|
62 |
+
# 3. Save metadata
|
63 |
+
is_trait_available = trait_row is not None
|
64 |
+
validate_and_save_cohort_info(is_final=False,
|
65 |
+
cohort=cohort,
|
66 |
+
info_path=json_path,
|
67 |
+
is_gene_available=is_gene_available,
|
68 |
+
is_trait_available=is_trait_available)
|
69 |
+
|
70 |
+
# 4. Clinical Feature Extraction
|
71 |
+
if trait_row is not None:
|
72 |
+
clinical_features = geo_select_clinical_features(
|
73 |
+
clinical_df=clinical_data,
|
74 |
+
trait=trait,
|
75 |
+
trait_row=trait_row,
|
76 |
+
convert_trait=convert_trait,
|
77 |
+
age_row=age_row,
|
78 |
+
convert_age=convert_age,
|
79 |
+
gender_row=gender_row,
|
80 |
+
convert_gender=convert_gender
|
81 |
+
)
|
82 |
+
|
83 |
+
# Preview the extracted features
|
84 |
+
preview_df(clinical_features)
|
85 |
+
|
86 |
+
# Save to CSV
|
87 |
+
clinical_features.to_csv(out_clinical_data_file)
|
88 |
+
# Extract gene expression data from the matrix file
|
89 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
90 |
+
|
91 |
+
# Print first 20 row IDs
|
92 |
+
print("First 20 row IDs:")
|
93 |
+
print(genetic_data.index[:20].tolist())
|
94 |
+
# Observe that the identifiers are just '1', '2', '3' etc
|
95 |
+
# These are numeric indices and not standard gene symbols
|
96 |
+
# Therefore we need to map these IDs to proper gene symbols
|
97 |
+
|
98 |
+
requires_gene_mapping = True
|
99 |
+
# Extract gene annotation data from SOFT file
|
100 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
101 |
+
|
102 |
+
# Display information about the annotation data
|
103 |
+
print("Column names:")
|
104 |
+
print(gene_metadata.columns.tolist())
|
105 |
+
|
106 |
+
# Look at general data statistics
|
107 |
+
print("\nData shape:", gene_metadata.shape)
|
108 |
+
|
109 |
+
# Display non-NaN value counts for key gene identifier columns
|
110 |
+
print("\nNumber of non-NaN values in key columns:")
|
111 |
+
for col in ['ID', 'FINAL_SYMBOL']:
|
112 |
+
print(f"{col}: {gene_metadata[col].notna().sum()}")
|
113 |
+
|
114 |
+
# Preview rows with actual gene information
|
115 |
+
print("\nPreview of rows with gene information:")
|
116 |
+
gene_rows = gene_metadata[gene_metadata['FINAL_SYMBOL'].notna()].head()
|
117 |
+
print(json.dumps(preview_df(gene_rows), indent=2))
|
118 |
+
# Extract the gene mapping data
|
119 |
+
# From observing the data, we need to map numeric 'ID' to 'FINAL_SYMBOL'
|
120 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='FINAL_SYMBOL')
|
121 |
+
|
122 |
+
# Apply the gene mapping to convert probe-level data to gene-level data
|
123 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
124 |
+
|
125 |
+
# Display the shape of the gene expression data before and after mapping
|
126 |
+
print(f"Shape before mapping (probes × samples): {genetic_data.shape}")
|
127 |
+
print(f"Shape after mapping (genes × samples): {gene_data.shape}")
|
128 |
+
|
129 |
+
# Preview the first few gene symbols
|
130 |
+
print("\nFirst few gene symbols:")
|
131 |
+
print(gene_data.index[:5].tolist())
|
132 |
+
# 1. Normalize gene symbols
|
133 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
134 |
+
gene_data.to_csv(out_gene_data_file)
|
135 |
+
|
136 |
+
# Get clinical features
|
137 |
+
clinical_features = geo_select_clinical_features(
|
138 |
+
clinical_data,
|
139 |
+
trait=trait,
|
140 |
+
trait_row=trait_row,
|
141 |
+
convert_trait=convert_trait,
|
142 |
+
age_row=age_row,
|
143 |
+
convert_age=convert_age,
|
144 |
+
gender_row=gender_row,
|
145 |
+
convert_gender=convert_gender
|
146 |
+
)
|
147 |
+
|
148 |
+
# 2. Link clinical and genetic data
|
149 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
150 |
+
|
151 |
+
# 3. Handle missing values
|
152 |
+
linked_data = handle_missing_values(linked_data, trait)
|
153 |
+
|
154 |
+
# Early exit if trait values are all NaN
|
155 |
+
if linked_data[trait].isna().all():
|
156 |
+
is_biased = True
|
157 |
+
linked_data = None
|
158 |
+
else:
|
159 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
160 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
161 |
+
|
162 |
+
# 5. Final validation and save metadata
|
163 |
+
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
|
164 |
+
is_usable = validate_and_save_cohort_info(
|
165 |
+
is_final=True,
|
166 |
+
cohort=cohort,
|
167 |
+
info_path=json_path,
|
168 |
+
is_gene_available=True,
|
169 |
+
is_trait_available=True,
|
170 |
+
is_biased=is_biased,
|
171 |
+
df=linked_data,
|
172 |
+
note=note
|
173 |
+
)
|
174 |
+
|
175 |
+
# 6. Save the linked data only if it's usable
|
176 |
+
if is_usable:
|
177 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
178 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Intellectual_Disability/code/TCGA.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Intellectual_Disability"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Intellectual_Disability/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
|
15 |
+
|
16 |
+
# Get subdirectories from TCGA root directory
|
17 |
+
tcga_subdirs = os.listdir(tcga_root_dir)
|
18 |
+
tcga_subdirs = [d for d in tcga_subdirs if not d.startswith('.')]
|
19 |
+
|
20 |
+
# Review available subdirectories for insomnia-related cohorts
|
21 |
+
# No suitable cohort found - all are cancer specific and not related to sleep disorders
|
22 |
+
print(f"No suitable TCGA cohort found for {trait}.")
|
23 |
+
print("Available cohorts are cancer-specific and do not contain relevant data for sleep disorders.")
|
24 |
+
|
25 |
+
# Record that this trait should be skipped due to lack of suitable data
|
26 |
+
is_gene_available = False
|
27 |
+
is_trait_available = False
|
28 |
+
validate_and_save_cohort_info(is_final=False,
|
29 |
+
cohort="TCGA",
|
30 |
+
info_path=json_path,
|
31 |
+
is_gene_available=is_gene_available,
|
32 |
+
is_trait_available=is_trait_available)
|
p3/preprocess/Intellectual_Disability/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE98697": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 44, "note": "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."}, "GSE89594": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 62, "note": "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."}, "GSE63870": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 48, "note": "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."}, "GSE59630": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 116, "note": "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."}, "GSE285666": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 52, "note": "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."}, "GSE273850": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": true, "sample_size": 51, "note": "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."}, "GSE192767": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 48, "note": "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."}, "GSE158385": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 28, "note": "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."}, "GSE100680": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 34, "note": "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
|
p3/preprocess/Intellectual_Disability/gene_data/GSE100680.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Intellectual_Disability/gene_data/GSE158385.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Intellectual_Disability/gene_data/GSE192767.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f81a5749729311519b56acbd48a1ff320ad1bcc158b18f46a484d867dc45b7e
|
3 |
+
size 16852912
|
p3/preprocess/Intellectual_Disability/gene_data/GSE200864.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98b899f1f9bbba8de34efc6142b77e7facb4b8fac8c25126fdc99516cdfe593c
|
3 |
+
size 16949662
|
p3/preprocess/Intellectual_Disability/gene_data/GSE273850.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6782ba54e7165f7c17565afcc10c64d586752326fffa570e39aeb4be5e9d163
|
3 |
+
size 16872541
|
p3/preprocess/Intellectual_Disability/gene_data/GSE285666.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Intellectual_Disability/gene_data/GSE59630.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c2e112c676d59b786988135d17f4ad5a89de54991163968994365fd00c87a4e
|
3 |
+
size 25114594
|
p3/preprocess/Intellectual_Disability/gene_data/GSE63870.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ede1fa47eabf944de57302830e946c84aaee78154c61f3e0191f8a3f63b19926
|
3 |
+
size 11793403
|
p3/preprocess/Intellectual_Disability/gene_data/GSE89594.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d76a3967959d50c84ec6d36a0c8c56926580b854240c2e6d194762f3630a0a5c
|
3 |
+
size 23811303
|
p3/preprocess/Intellectual_Disability/gene_data/GSE98697.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c05e0333e3e6413919d57569b93c3ecb5a45faa5370b7dc1f77bae61cc90d440
|
3 |
+
size 11613947
|
p3/preprocess/Irritable_bowel_syndrome_(IBS)/GSE25220.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Irritable_bowel_syndrome_(IBS)/GSE36701.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0488b09f51372285cb0234becdbdcace49ef93b7551f825588f5aacf6f16389
|
3 |
+
size 47723829
|