Liu-Hy commited on
Commit
0a8b3ff
·
verified ·
1 Parent(s): 324058b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +23 -0
  2. p3/preprocess/Alzheimers_Disease/TCGA.csv +3 -0
  3. p3/preprocess/Alzheimers_Disease/gene_data/TCGA.csv +3 -0
  4. p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE148450.csv +3 -0
  5. p3/preprocess/Autoinflammatory_Disorders/GSE80060.csv +3 -0
  6. p3/preprocess/Autoinflammatory_Disorders/gene_data/GSE80060.csv +3 -0
  7. p3/preprocess/Bile_Duct_Cancer/GSE131027.csv +3 -0
  8. p3/preprocess/Bile_Duct_Cancer/gene_data/GSE107754.csv +3 -0
  9. p3/preprocess/Bile_Duct_Cancer/gene_data/GSE131027.csv +3 -0
  10. p3/preprocess/Bile_Duct_Cancer/gene_data/TCGA.csv +3 -0
  11. p3/preprocess/Bipolar_disorder/GSE45484.csv +3 -0
  12. p3/preprocess/Bipolar_disorder/GSE46449.csv +3 -0
  13. p3/preprocess/Bipolar_disorder/GSE53987.csv +3 -0
  14. p3/preprocess/Bipolar_disorder/GSE62191.csv +3 -0
  15. p3/preprocess/Bipolar_disorder/GSE92538.csv +3 -0
  16. p3/preprocess/Bipolar_disorder/clinical_data/GSE46416.csv +2 -0
  17. p3/preprocess/Bipolar_disorder/clinical_data/GSE53987.csv +4 -0
  18. p3/preprocess/Bipolar_disorder/clinical_data/GSE62191.csv +4 -0
  19. p3/preprocess/Bipolar_disorder/clinical_data/GSE67311.csv +2 -0
  20. p3/preprocess/Bipolar_disorder/clinical_data/GSE92538.csv +4 -0
  21. p3/preprocess/Bipolar_disorder/clinical_data/GSE93114.csv +2 -0
  22. p3/preprocess/Bipolar_disorder/code/GSE120340.py +158 -0
  23. p3/preprocess/Bipolar_disorder/code/GSE120342.py +114 -0
  24. p3/preprocess/Bipolar_disorder/code/GSE45484.py +167 -0
  25. p3/preprocess/Bipolar_disorder/code/GSE46416.py +267 -0
  26. p3/preprocess/Bipolar_disorder/code/GSE46449.py +157 -0
  27. p3/preprocess/Bipolar_disorder/code/GSE53987.py +161 -0
  28. p3/preprocess/Bipolar_disorder/code/GSE62191.py +158 -0
  29. p3/preprocess/Bipolar_disorder/code/GSE67311.py +154 -0
  30. p3/preprocess/Bipolar_disorder/code/GSE92538.py +168 -0
  31. p3/preprocess/Bipolar_disorder/code/GSE93114.py +94 -0
  32. p3/preprocess/Bipolar_disorder/code/TCGA.py +31 -0
  33. p3/preprocess/Bipolar_disorder/gene_data/GSE120340.csv +0 -0
  34. p3/preprocess/Bipolar_disorder/gene_data/GSE45484.csv +3 -0
  35. p3/preprocess/Bipolar_disorder/gene_data/GSE46449.csv +3 -0
  36. p3/preprocess/Bipolar_disorder/gene_data/GSE53987.csv +3 -0
  37. p3/preprocess/Bipolar_disorder/gene_data/GSE62191.csv +3 -0
  38. p3/preprocess/Bladder_Cancer/GSE138118.csv +3 -0
  39. p3/preprocess/Bladder_Cancer/GSE185264.csv +0 -0
  40. p3/preprocess/Bladder_Cancer/GSE222073.csv +3 -0
  41. p3/preprocess/Bladder_Cancer/clinical_data/GSE138118.csv +3 -0
  42. p3/preprocess/Bladder_Cancer/clinical_data/GSE145261.csv +4 -0
  43. p3/preprocess/Bladder_Cancer/clinical_data/GSE162253.csv +2 -0
  44. p3/preprocess/Bladder_Cancer/clinical_data/GSE185264.csv +3 -0
  45. p3/preprocess/Bladder_Cancer/clinical_data/GSE222073.csv +2 -0
  46. p3/preprocess/Bladder_Cancer/clinical_data/GSE244266.csv +2 -0
  47. p3/preprocess/Bladder_Cancer/clinical_data/GSE245953.csv +2 -0
  48. p3/preprocess/Bladder_Cancer/clinical_data/GSE253531.csv +2 -0
  49. p3/preprocess/Bladder_Cancer/code/GSE138118.py +179 -0
  50. p3/preprocess/Bladder_Cancer/code/GSE145261.py +201 -0
.gitattributes CHANGED
@@ -1517,3 +1517,26 @@ p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE111175.csv filter=lfs
1517
  p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE148450.csv filter=lfs diff=lfs merge=lfs -text
1518
  p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
1519
  p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE42133.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517
  p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE148450.csv filter=lfs diff=lfs merge=lfs -text
1518
  p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
1519
  p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE42133.csv filter=lfs diff=lfs merge=lfs -text
1520
+ p3/preprocess/Bile_Duct_Cancer/GSE131027.csv filter=lfs diff=lfs merge=lfs -text
1521
+ p3/preprocess/Bile_Duct_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1522
+ p3/preprocess/Bile_Duct_Cancer/gene_data/GSE107754.csv filter=lfs diff=lfs merge=lfs -text
1523
+ p3/preprocess/Bile_Duct_Cancer/gene_data/GSE131027.csv filter=lfs diff=lfs merge=lfs -text
1524
+ p3/preprocess/Bipolar_disorder/GSE53987.csv filter=lfs diff=lfs merge=lfs -text
1525
+ p3/preprocess/Bipolar_disorder/GSE62191.csv filter=lfs diff=lfs merge=lfs -text
1526
+ p3/preprocess/Bipolar_disorder/GSE45484.csv filter=lfs diff=lfs merge=lfs -text
1527
+ p3/preprocess/Autoinflammatory_Disorders/GSE80060.csv filter=lfs diff=lfs merge=lfs -text
1528
+ p3/preprocess/Bipolar_disorder/GSE46449.csv filter=lfs diff=lfs merge=lfs -text
1529
+ p3/preprocess/Autoinflammatory_Disorders/gene_data/GSE80060.csv filter=lfs diff=lfs merge=lfs -text
1530
+ p3/preprocess/Bipolar_disorder/gene_data/GSE62191.csv filter=lfs diff=lfs merge=lfs -text
1531
+ p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE148450.csv filter=lfs diff=lfs merge=lfs -text
1532
+ p3/preprocess/Bipolar_disorder/GSE92538.csv filter=lfs diff=lfs merge=lfs -text
1533
+ p3/preprocess/Bipolar_disorder/gene_data/GSE45484.csv filter=lfs diff=lfs merge=lfs -text
1534
+ p3/preprocess/Bipolar_disorder/gene_data/GSE46449.csv filter=lfs diff=lfs merge=lfs -text
1535
+ p3/preprocess/Bladder_Cancer/GSE138118.csv filter=lfs diff=lfs merge=lfs -text
1536
+ p3/preprocess/Bladder_Cancer/GSE222073.csv filter=lfs diff=lfs merge=lfs -text
1537
+ p3/preprocess/Alzheimers_Disease/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1538
+ p3/preprocess/Bipolar_disorder/gene_data/GSE53987.csv filter=lfs diff=lfs merge=lfs -text
1539
+ p3/preprocess/Alzheimers_Disease/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1540
+ p3/preprocess/Bladder_Cancer/gene_data/GSE253531.csv filter=lfs diff=lfs merge=lfs -text
1541
+ p3/preprocess/Bladder_Cancer/gene_data/GSE138118.csv filter=lfs diff=lfs merge=lfs -text
1542
+ p3/preprocess/Bladder_Cancer/gene_data/GSE222073.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Alzheimers_Disease/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d10516b5bcaafdf0f8b995268a90d1517746cb8f5fb68f00f7bfc5bb26c49936
3
+ size 203630546
p3/preprocess/Alzheimers_Disease/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca538730424e09dc117dcbf2b9e361e18a559838fbd5166c65c39e001c215c63
3
+ size 203622702
p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE148450.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b17241070868a8899ba1a1482081f84b28ea734729c1faa11dacb0e865cd221f
3
+ size 66317324
p3/preprocess/Autoinflammatory_Disorders/GSE80060.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b34c376652d3e82ad31a3f37c75545992531acd382e5f3e54f483b7f44bd84cf
3
+ size 45737283
p3/preprocess/Autoinflammatory_Disorders/gene_data/GSE80060.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9df5145ab13c51ae5d9a8a8d0506870eae1854951a44c7867bb8915b5e661c9a
3
+ size 45736436
p3/preprocess/Bile_Duct_Cancer/GSE131027.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:736f3631855fdd8eae6daa1dfffa37d999c36cbfd1aac2fbd0fd6f178733399d
3
+ size 24380320
p3/preprocess/Bile_Duct_Cancer/gene_data/GSE107754.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82da64a5edcbde2a3ccf1c07d005767e02ceeaad822b4ed6217419063405079
3
+ size 19822703
p3/preprocess/Bile_Duct_Cancer/gene_data/GSE131027.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8582008fe6fc5b90879aea7d12ca4ea58cc0bbe03209acb333425d229be6e33
3
+ size 24379939
p3/preprocess/Bile_Duct_Cancer/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:487ad5b2b7321770f48f777197bb2b173d2d7bdc3c910702b5bbc9b90cd9dc77
3
+ size 13655934
p3/preprocess/Bipolar_disorder/GSE45484.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36da23435264f75639b2ce87db09034f3ca7f94139ff51d3da5ead299b387672
3
+ size 21932391
p3/preprocess/Bipolar_disorder/GSE46449.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd9c37f1491e231f5be738c4447ac560f961bc72284a9d5d73f3596e3b13b07f
3
+ size 23289308
p3/preprocess/Bipolar_disorder/GSE53987.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e41f01b802052607fb8ef73bb96f16b9c582056603aec1fdb670ae1b8f1a68e6
3
+ size 18125169
p3/preprocess/Bipolar_disorder/GSE62191.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68f3da5c2668fe57d837490d3600d5b014fdd3a4f3e3114a55409b18d2a2da75
3
+ size 10792824
p3/preprocess/Bipolar_disorder/GSE92538.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b672a0b2d6064f5dfcc1a63d081c449ddb4e827649580c6072269951c5173e5c
3
+ size 32891082
p3/preprocess/Bipolar_disorder/clinical_data/GSE46416.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1129903,GSM1129904,GSM1129905,GSM1129906,GSM1129907,GSM1129908,GSM1129909,GSM1129910,GSM1129911,GSM1129912,GSM1129913,GSM1129914,GSM1129915,GSM1129916,GSM1129917,GSM1129918,GSM1129919,GSM1129920,GSM1129921,GSM1129922,GSM1129923,GSM1129924,GSM1129925,GSM1129926,GSM1129927,GSM1129928,GSM1129929,GSM1129930,GSM1129931,GSM1129932,GSM1129933,GSM1129934
2
+ Bipolar_disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Bipolar_disorder/clinical_data/GSE53987.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1304852,GSM1304853,GSM1304854,GSM1304855,GSM1304856,GSM1304857,GSM1304858,GSM1304859,GSM1304860,GSM1304861,GSM1304862,GSM1304863,GSM1304864,GSM1304865,GSM1304866,GSM1304867,GSM1304868,GSM1304869,GSM1304870,GSM1304871,GSM1304872,GSM1304873,GSM1304874,GSM1304875,GSM1304876,GSM1304877,GSM1304878,GSM1304879,GSM1304880,GSM1304881,GSM1304882,GSM1304883,GSM1304884,GSM1304885,GSM1304886,GSM1304887,GSM1304888,GSM1304889,GSM1304890,GSM1304891,GSM1304892,GSM1304893,GSM1304894,GSM1304895,GSM1304896,GSM1304897,GSM1304898,GSM1304899,GSM1304900,GSM1304901,GSM1304902,GSM1304903,GSM1304904,GSM1304905,GSM1304906,GSM1304907,GSM1304908,GSM1304909,GSM1304910,GSM1304911,GSM1304912,GSM1304913,GSM1304914,GSM1304915,GSM1304916,GSM1304917,GSM1304918,GSM1304919,GSM1304920,GSM1304921,GSM1304922,GSM1304923,GSM1304924,GSM1304925,GSM1304926,GSM1304927,GSM1304928,GSM1304929,GSM1304930,GSM1304931,GSM1304932,GSM1304933,GSM1304934,GSM1304935,GSM1304936,GSM1304937,GSM1304938,GSM1304939,GSM1304940,GSM1304941,GSM1304942,GSM1304943,GSM1304944,GSM1304945,GSM1304946,GSM1304947,GSM1304948,GSM1304949,GSM1304950,GSM1304951,GSM1304952,GSM1304953,GSM1304954,GSM1304955,GSM1304956,GSM1304957,GSM1304958,GSM1304959,GSM1304960,GSM1304961,GSM1304962,GSM1304963,GSM1304964,GSM1304965,GSM1304966,GSM1304967,GSM1304968,GSM1304969,GSM1304970,GSM1304971,GSM1304972,GSM1304973,GSM1304974,GSM1304975,GSM1304976,GSM1304977,GSM1304978,GSM1304979,GSM1304980,GSM1304981,GSM1304982,GSM1304983,GSM1304984,GSM1304985,GSM1304986,GSM1304987,GSM1304988,GSM1304989,GSM1304990,GSM1304991,GSM1304992,GSM1304993,GSM1304994,GSM1304995,GSM1304996,GSM1304997,GSM1304998,GSM1304999,GSM1305000,GSM1305001,GSM1305002,GSM1305003,GSM1305004,GSM1305005,GSM1305006,GSM1305007,GSM1305008,GSM1305009,GSM1305010,GSM1305011,GSM1305012,GSM1305013,GSM1305014,GSM1305015,GSM1305016,GSM1305017,GSM1305018,GSM1305019,GSM1305020,GSM1305021,GSM1305022,GSM1305023,GSM1305024,GSM1305025,GSM1305026,GSM1305027,GSM1305028,GSM1305029,GSM1305030,GSM1305031,GSM1305032,GSM1305033,GSM1305034,GSM1305035,GSM1305036,GSM1305037,GSM1305038,GSM1305039,GSM1305040,GSM1305041,GSM1305042,GSM1305043,GSM1305044,GSM1305045,GSM1305046,GSM1305047,GSM1305048,GSM1305049,GSM1305050,GSM1305051,GSM1305052,GSM1305053,GSM1305054,GSM1305055,GSM1305056
2
+ Bipolar_disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3
+ Age,52.0,50.0,28.0,55.0,58.0,28.0,49.0,42.0,43.0,50.0,40.0,39.0,45.0,42.0,65.0,51.0,39.0,48.0,51.0,51.0,36.0,65.0,55.0,22.0,52.0,58.0,40.0,41.0,49.0,48.0,39.0,48.0,43.0,68.0,58.0,43.0,51.0,53.0,26.0,52.0,62.0,29.0,49.0,54.0,28.0,42.0,44.0,40.0,47.0,59.0,47.0,34.0,51.0,49.0,47.0,25.0,62.0,44.0,46.0,50.0,46.0,41.0,47.0,37.0,58.0,44.0,38.0,52.0,52.0,50.0,28.0,55.0,58.0,28.0,49.0,56.0,50.0,40.0,39.0,45.0,42.0,65.0,51.0,39.0,48.0,51.0,51.0,36.0,65.0,55.0,22.0,52.0,58.0,40.0,41.0,49.0,48.0,39.0,48.0,43.0,68.0,58.0,43.0,46.0,51.0,53.0,26.0,52.0,62.0,29.0,49.0,54.0,28.0,42.0,40.0,47.0,44.0,59.0,47.0,34.0,51.0,49.0,47.0,25.0,41.0,62.0,47.0,44.0,46.0,50.0,41.0,47.0,37.0,58.0,44.0,52.0,50.0,40.0,39.0,45.0,42.0,65.0,51.0,39.0,48.0,52.0,50.0,28.0,55.0,58.0,49.0,56.0,42.0,49.0,48.0,39.0,48.0,43.0,68.0,58.0,43.0,46.0,51.0,51.0,36.0,65.0,55.0,22.0,52.0,58.0,40.0,42.0,44.0,47.0,44.0,59.0,47.0,34.0,51.0,51.0,53.0,26.0,52.0,62.0,29.0,49.0,54.0,50.0,46.0,41.0,47.0,37.0,58.0,44.0,38.0,52.0,49.0,47.0,25.0,41.0,62.0,32.0,47.0,50.0,44.0
4
+ Gender,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0
p3/preprocess/Bipolar_disorder/clinical_data/GSE62191.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1521625,GSM1521626,GSM1521627,GSM1521628,GSM1521629,GSM1521630,GSM1521631,GSM1521632,GSM1521633,GSM1521634,GSM1521635,GSM1521636,GSM1521637,GSM1521638,GSM1521639,GSM1521640,GSM1521641,GSM1521642,GSM1521643,GSM1521644,GSM1521645,GSM1521646,GSM1521647,GSM1521648,GSM1521649,GSM1521650,GSM1521651,GSM1521652,GSM1521653,GSM1521654,GSM1521655,GSM1521656,GSM1521657,GSM1521658,GSM1521659,GSM1521660,GSM1521661,GSM1521662,GSM1521663,GSM1521664,GSM1521665,GSM1521666,GSM1521667,GSM1521668,GSM1521669,GSM1521670,GSM1521671,GSM1521672,GSM1521673,GSM1521674,GSM1521675,GSM1521676,GSM1521677,GSM1521678,GSM1521679,GSM1521680,GSM1521681,GSM1521682,GSM1521683,GSM1521684,GSM1521685,GSM1521686,GSM1521687,GSM1521688,GSM1521689,GSM1521690,GSM1521691,GSM1521692,GSM1521693,GSM1521694,GSM1521695,GSM1521696,GSM1521697,GSM1521698,GSM1521699,GSM1521700,GSM1521701,GSM1521702,GSM1521703,GSM1521704,GSM1521705,GSM1521706,GSM1521707,GSM1521708,GSM1521709,GSM1521710,GSM1521711,GSM1521712
2
+ Bipolar_disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3
+ Age,29.0,58.0,54.0,42.0,63.0,64.0,59.0,51.0,49.0,41.0,48.0,47.0,45.0,41.0,29.0,44.0,48.0,42.0,35.0,35.0,38.0,44.0,43.0,50.0,56.0,29.0,59.0,35.0,33.0,34.0,44.0,46.0,51.0,33.0,48.0,40.0,31.0,39.0,59.0,53.0,53.0,38.0,60.0,45.0,45.0,35.0,47.0,34.0,42.0,19.0,41.0,44.0,49.0,49.0,35.0,47.0,51.0,48.0,49.0,55.0,40.0,44.0,31.0,38.0,47.0,24.0,32.0,44.0,39.0,33.0,43.0,35.0,47.0,36.0,53.0,45.0,51.0,19.0,45.0,43.0,46.0,52.0,44.0,50.0,41.0,42.0,53.0,52.0
4
+ Gender,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
p3/preprocess/Bipolar_disorder/clinical_data/GSE67311.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1644447,GSM1644448,GSM1644449,GSM1644450,GSM1644451,GSM1644452,GSM1644453,GSM1644454,GSM1644455,GSM1644456,GSM1644457,GSM1644458,GSM1644459,GSM1644460,GSM1644461,GSM1644462,GSM1644463,GSM1644464,GSM1644465,GSM1644466,GSM1644467,GSM1644468,GSM1644469,GSM1644470,GSM1644471,GSM1644472,GSM1644473,GSM1644474,GSM1644475,GSM1644476,GSM1644477,GSM1644478,GSM1644479,GSM1644480,GSM1644481,GSM1644482,GSM1644483,GSM1644484,GSM1644485,GSM1644486,GSM1644487,GSM1644488,GSM1644489,GSM1644490,GSM1644491,GSM1644492,GSM1644493,GSM1644494,GSM1644495,GSM1644496,GSM1644497,GSM1644498,GSM1644499,GSM1644500,GSM1644501,GSM1644502,GSM1644503,GSM1644504,GSM1644505,GSM1644506,GSM1644507,GSM1644508,GSM1644509,GSM1644510,GSM1644511,GSM1644512,GSM1644513,GSM1644514,GSM1644515,GSM1644516,GSM1644517,GSM1644518,GSM1644519,GSM1644520,GSM1644521,GSM1644522,GSM1644523,GSM1644524,GSM1644525,GSM1644526,GSM1644527,GSM1644528,GSM1644529,GSM1644530,GSM1644531,GSM1644532,GSM1644533,GSM1644534,GSM1644535,GSM1644536,GSM1644537,GSM1644538,GSM1644539,GSM1644540,GSM1644541,GSM1644542,GSM1644543,GSM1644544,GSM1644545,GSM1644546,GSM1644547,GSM1644548,GSM1644549,GSM1644550,GSM1644551,GSM1644552,GSM1644553,GSM1644554,GSM1644555,GSM1644556,GSM1644557,GSM1644558,GSM1644559,GSM1644560,GSM1644561,GSM1644562,GSM1644563,GSM1644564,GSM1644565,GSM1644566,GSM1644567,GSM1644568,GSM1644569,GSM1644570,GSM1644571,GSM1644572,GSM1644573,GSM1644574,GSM1644575,GSM1644576,GSM1644577,GSM1644578,GSM1644579,GSM1644580,GSM1644581,GSM1644582,GSM1644583,GSM1644584,GSM1644585,GSM1644586,GSM1644587,GSM1644588
2
+ Bipolar_disorder,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0
p3/preprocess/Bipolar_disorder/clinical_data/GSE92538.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2431718,GSM2431721,GSM2431722,GSM2431723,GSM2431726,GSM2431727,GSM2431728,GSM2431730,GSM2431731,GSM2431733,GSM2431734,GSM2431735,GSM2431737,GSM2431738,GSM2431739,GSM2431740,GSM2431743,GSM2431745,GSM2431749,GSM2431750,GSM2431751,GSM2431752,GSM2431753,GSM2431755,GSM2431756,GSM2431758,GSM2431759,GSM2431761,GSM2431762,GSM2431763,GSM2431765,GSM2431768,GSM2431771,GSM2431772,GSM2431773,GSM2431776,GSM2431777,GSM2431780,GSM2431783,GSM2431784,GSM2431785,GSM2431786,GSM2431787,GSM2431788,GSM2431789,GSM2431790,GSM2431791,GSM2431792,GSM2431794,GSM2431795,GSM2431796,GSM2431797,GSM2431800,GSM2431801,GSM2431803,GSM2431804,GSM2431807,GSM2431810,GSM2431811,GSM2431812,GSM2431813,GSM2431814,GSM2431815,GSM2431819,GSM2431820,GSM2431821,GSM2431822,GSM2431824,GSM2431827,GSM2431828,GSM2431830,GSM2431831,GSM2431832,GSM2431833,GSM2431834,GSM2431835,GSM2431836,GSM2431838,GSM2431839,GSM2431840,GSM2431841,GSM2431842,GSM2431844,GSM2431846,GSM2431847,GSM2431850,GSM2431851,GSM2431854,GSM2431855,GSM2431856,GSM2431857,GSM2431859,GSM2431860,GSM2431861,GSM2431862,GSM2431863,GSM2431865,GSM2431869,GSM2431870,GSM2431871,GSM2431872,GSM2431875,GSM2431878,GSM2431879,GSM2431880,GSM2431881,GSM2431882,GSM2431883,GSM2431884,GSM2431885,GSM2431886,GSM2431887,GSM2431888,GSM2431889,GSM2431890,GSM2431891,GSM2431892,GSM2431893,GSM2431894,GSM2431895,GSM2431896,GSM2431897,GSM2431898,GSM2431899,GSM2431902,GSM2431906,GSM2431908,GSM2431909,GSM2431912,GSM2431913,GSM2431914,GSM2431916,GSM2431918,GSM2431919,GSM2431920,GSM2431921,GSM2431923,GSM2431924,GSM2431926,GSM2431927,GSM2431929,GSM2431934,GSM2431935,GSM2431936,GSM2431937,GSM2431938,GSM2431939,GSM2431941,GSM2431942,GSM2431946,GSM2431947,GSM2431949,GSM2431950,GSM2431951,GSM2431954,GSM2431955,GSM2431960,GSM2431961,GSM2431962,GSM2431964,GSM2431965,GSM2431966,GSM2431967,GSM2431972,GSM2431973,GSM2431974,GSM2431975,GSM2431976,GSM2431977,GSM2431978,GSM2431979,GSM2431980,GSM2431981,GSM2431982,GSM2431983,GSM2431986,GSM2431987,GSM2431988,GSM2431989,GSM2431992,GSM2431993,GSM2431994,GSM2431996,GSM2431997,GSM2432001,GSM2432003,GSM2432004,GSM2432006,GSM2432007,GSM2432008,GSM2432009,GSM2432011,GSM2432012,GSM2432013,GSM2432015,GSM2432016,GSM2432019,GSM2432020,GSM2432022,GSM2432023,GSM2432024,GSM2432025,GSM2432026,GSM2432027,GSM2432028,GSM2432030,GSM2432031,GSM2432032,GSM2432033,GSM2432034,GSM2432035,GSM2432036,GSM2432038,GSM2432043,GSM2432044,GSM2432046,GSM2432049,GSM2432050,GSM2432051,GSM2432053,GSM2432056,GSM2432057,GSM2432059,GSM2432061,GSM2432062,GSM2432067,GSM2432072,GSM2432073,GSM2432075,GSM2432080,GSM2432085,GSM2432086,GSM2432088,GSM2432090,GSM2432092
2
+ Bipolar_disorder,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0
3
+ Age,39.0,32.0,63.0,70.0,71.0,44.0,66.0,59.0,65.0,69.0,52.0,49.0,58.0,45.0,72.0,73.0,44.0,64.0,70.0,52.0,77.0,59.0,55.0,49.0,49.0,53.0,62.0,47.0,67.0,57.0,35.0,48.0,19.0,54.0,73.0,48.0,69.0,50.0,48.0,65.0,69.0,56.0,63.0,80.0,60.0,55.0,40.0,39.0,59.0,48.0,39.0,67.0,66.0,18.0,41.0,47.0,50.0,40.0,40.0,41.0,72.0,72.0,64.0,48.0,34.0,77.0,63.0,50.0,40.0,84.0,32.0,58.0,46.0,70.0,73.0,58.0,70.0,23.0,63.0,52.0,39.0,19.0,48.0,64.0,47.0,49.0,64.0,50.0,59.0,25.0,45.0,60.0,78.0,52.0,65.0,68.0,71.0,81.0,54.0,34.0,68.0,43.0,35.0,47.0,26.0,57.0,39.0,59.0,44.0,64.0,59.0,47.0,48.0,48.0,50.0,48.0,40.0,64.0,48.0,48.0,59.0,54.0,43.0,57.0,39.0,32.0,63.0,70.0,71.0,44.0,66.0,59.0,69.0,69.0,49.0,49.0,58.0,58.0,45.0,44.0,64.0,70.0,52.0,77.0,59.0,55.0,55.0,49.0,49.0,53.0,62.0,47.0,67.0,57.0,35.0,48.0,19.0,54.0,54.0,73.0,48.0,69.0,50.0,48.0,65.0,69.0,56.0,56.0,63.0,80.0,60.0,60.0,55.0,40.0,39.0,59.0,48.0,39.0,67.0,66.0,18.0,18.0,41.0,47.0,50.0,40.0,41.0,72.0,72.0,72.0,64.0,48.0,34.0,77.0,50.0,50.0,40.0,84.0,32.0,46.0,70.0,73.0,58.0,58.0,70.0,23.0,23.0,63.0,52.0,39.0,19.0,19.0,48.0,49.0,49.0,64.0,59.0,25.0,45.0,60.0,78.0,52.0,52.0,65.0,65.0,71.0,81.0,54.0,34.0,43.0,35.0,47.0,26.0,26.0,57.0
4
+ Gender,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0
p3/preprocess/Bipolar_disorder/clinical_data/GSE93114.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM2444026,GSM2444027,GSM2444028,GSM2444029,GSM2444030,GSM2444031,GSM2444032,GSM2444033,GSM2444034,GSM2444035,GSM2444036,GSM2444037,GSM2444038,GSM2444039,GSM2444040,GSM2444041
2
+ Bipolar_disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Bipolar_disorder/code/GSE120340.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE120340"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE120340"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE120340.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE120340.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE120340.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Gene Expression Data Availability
35
+ # From background info, this is an "expression microarray" study
36
+ is_gene_available = True
37
+
38
+ # 2. Variable Availability and Data Type Conversion
39
+ # 2.1 Data Availability
40
+ trait_row = 0 # 'disease state' contains BD/control info
41
+ age_row = None # Age not available in sample characteristics
42
+ gender_row = None # Gender mentioned as matched but not provided
43
+
44
+ # 2.2 Data Type Conversion Functions
45
+ def convert_trait(x):
46
+ if not isinstance(x, str):
47
+ return None
48
+ value = x.split(': ')[-1].strip().upper()
49
+ if value == 'BD(+)' or value == 'BD(-)':
50
+ return 1 # Any BD type maps to case
51
+ elif value == 'CONTROL':
52
+ return 0 # Control maps to control
53
+ elif value == 'SCZ':
54
+ return None # Not relevant for bipolar study
55
+ return None
56
+
57
+ def convert_age(x):
58
+ return None # No age data
59
+
60
+ def convert_gender(x):
61
+ return None # No gender data
62
+
63
+ # 3. Save Metadata
64
+ is_trait_available = trait_row is not None
65
+ _ = validate_and_save_cohort_info(is_final=False,
66
+ cohort=cohort,
67
+ info_path=json_path,
68
+ is_gene_available=is_gene_available,
69
+ is_trait_available=is_trait_available)
70
+
71
+ # 4. Clinical Feature Extraction
72
+ if trait_row is not None:
73
+ selected_clinical_df = geo_select_clinical_features(clinical_data,
74
+ trait=trait,
75
+ trait_row=trait_row,
76
+ convert_trait=convert_trait)
77
+
78
+ # Preview data
79
+ preview = preview_df(selected_clinical_df)
80
+ print("Clinical data preview:", preview)
81
+
82
+ # Save clinical features
83
+ selected_clinical_df.to_csv(out_clinical_data_file)
84
+ # Extract genetic data from the matrix file
85
+ try:
86
+ genetic_data = get_genetic_data(matrix_file_path)
87
+ print("First 20 row IDs:")
88
+ print(genetic_data.index[:20])
89
+ except Exception as e:
90
+ print(f"Error reading genetic data: {e}")
91
+
92
+ # Looking at the row IDs which appear to be gene/transcript identifiers,
93
+ # and considering the background info mentioning "expression microarrays",
94
+ # maintain original assessment that this is gene expression data
95
+ is_gene_available = True
96
+
97
+ # Save metadata with correct gene availability info
98
+ validate_and_save_cohort_info(
99
+ is_final=False,
100
+ cohort=cohort,
101
+ info_path=json_path,
102
+ is_gene_available=is_gene_available,
103
+ is_trait_available=(trait_row is not None)
104
+ )
105
+ # The ids contain "_at" suffix which is characteristic of Affymetrix probe IDs
106
+ # These need to be mapped to gene symbols for consistent analysis
107
+ requires_gene_mapping = True
108
+ # Extract gene annotation data
109
+ gene_metadata = get_gene_annotation(soft_file_path)
110
+
111
+ # Preview column names and first few values
112
+ preview = preview_df(gene_metadata)
113
+ print("\nGene annotation columns and sample values:")
114
+ print(preview)
115
+ # 1. Description column contains gene names
116
+ prob_col = 'ID'
117
+ gene_col = 'Description'
118
+
119
+ # 2. Get mapping between probe IDs and gene names
120
+ mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)
121
+
122
+ # 3. Apply mapping to convert probe data to gene expression data
123
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
124
+
125
+ # Preview results
126
+ print("\nFirst few rows and columns of mapped gene expression data:")
127
+ print(gene_data.iloc[:5, :5])
128
+ # 1. Normalize gene symbols and save gene data
129
+ gene_data = normalize_gene_symbols_in_index(gene_data)
130
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
131
+ gene_data.to_csv(out_gene_data_file)
132
+
133
+ # 2. Link clinical and genetic data
134
+ clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
135
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
136
+
137
+ # 3. Handle missing values
138
+ linked_data = handle_missing_values(linked_data, trait)
139
+
140
+ # 4. Judge bias in features and remove biased ones
141
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
142
+
143
+ # 5. Final validation and save metadata
144
+ is_usable = validate_and_save_cohort_info(
145
+ is_final=True,
146
+ cohort=cohort,
147
+ info_path=json_path,
148
+ is_gene_available=is_gene_available,
149
+ is_trait_available=True,
150
+ is_biased=trait_biased,
151
+ df=linked_data,
152
+ note="Expression microarray data from post-mortem brain samples (BA46) of bipolar disorder patients and controls."
153
+ )
154
+
155
+ # 6. Save linked data if usable
156
+ if is_usable:
157
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
158
+ linked_data.to_csv(out_data_file)
p3/preprocess/Bipolar_disorder/code/GSE120342.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE120342"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE120342"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE120342.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE120342.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE120342.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Gene Expression Data Availability
35
+ # Based on series title mentioning "transcriptomes", this dataset likely contains gene expression data
36
+ is_gene_available = True
37
+
38
+ # 2. Variable Analysis
39
+ # 2.1 Data Availability
40
+ # Trait (BD status) is available in index 0
41
+ trait_row = 0
42
+ # Age data is not available
43
+ age_row = None
44
+ # Gender data is not available
45
+ gender_row = None
46
+
47
+ # 2.2 Data Type Conversion Functions
48
+ def convert_trait(value):
49
+ if not isinstance(value, str):
50
+ return None
51
+ value = value.lower().strip()
52
+ if 'disease state:' in value:
53
+ value = value.split('disease state:')[1].strip()
54
+ if value == 'bd(+)' or value == 'bd(-)': # Both BD+ and BD- are cases
55
+ return 1
56
+ elif value == 'control':
57
+ return 0
58
+ return None
59
+
60
+ def convert_age(value):
61
+ return None # Not available
62
+
63
+ def convert_gender(value):
64
+ return None # Not available
65
+
66
+ # 3. Save metadata
67
+ validate_and_save_cohort_info(
68
+ is_final=False,
69
+ cohort=cohort,
70
+ info_path=json_path,
71
+ is_gene_available=is_gene_available,
72
+ is_trait_available=(trait_row is not None)
73
+ )
74
+
75
+ # 4. Clinical Feature Extraction
76
+ if trait_row is not None:
77
+ clinical_features = geo_select_clinical_features(
78
+ clinical_df=clinical_data,
79
+ trait=trait,
80
+ trait_row=trait_row,
81
+ convert_trait=convert_trait,
82
+ age_row=age_row,
83
+ convert_age=convert_age,
84
+ gender_row=gender_row,
85
+ convert_gender=convert_gender
86
+ )
87
+
88
+ # Preview the processed clinical data
89
+ preview = preview_df(clinical_features)
90
+ print("Preview of processed clinical features:")
91
+ print(preview)
92
+
93
+ # Save to CSV
94
+ clinical_features.to_csv(out_clinical_data_file)
95
+ # List all files to check for gene expression data
96
+ all_files = os.listdir(in_cohort_dir)
97
+ print("All files in directory:")
98
+ for f in all_files:
99
+ print(f)
100
+
101
+ # Since we found this is methylation data, and no other matrix file contains gene expression,
102
+ # we need to revise our earlier assessment
103
+ is_gene_available = False
104
+
105
+ # Save updated metadata with corrected gene availability info
106
+ validate_and_save_cohort_info(
107
+ is_final=False,
108
+ cohort=cohort,
109
+ info_path=json_path,
110
+ is_gene_available=is_gene_available,
111
+ is_trait_available=(trait_row is not None)
112
+ )
113
+
114
+ print("\nThis dataset contains methylation data rather than gene expression data.")
p3/preprocess/Bipolar_disorder/code/GSE45484.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE45484"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE45484"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE45484.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE45484.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE45484.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Gene Expression Data Availability
35
+ is_gene_available = True # Based on series description, this is a gene expression study from blood samples
36
+
37
+ # 2. Variable Availability and Data Type Conversion
38
+ # 2.1 Data Availability
39
+ trait_row = 2 # 'responder' indicates treatment response status
40
+ age_row = 4 # Contains age information
41
+ gender_row = 3 # Contains sex information
42
+
43
+ # 2.2 Data Type Conversion Functions
44
+ def convert_trait(value: str) -> int:
45
+ """Convert treatment response to binary (0: non-responder, 1: responder)"""
46
+ if not value or ':' not in value:
47
+ return None
48
+ value = value.split(':')[1].strip().upper()
49
+ if value == 'NO':
50
+ return 0
51
+ elif value == 'YES':
52
+ return 1
53
+ return None
54
+
55
+ def convert_age(value: str) -> float:
56
+ """Convert age to continuous numeric value"""
57
+ if not value or ':' not in value:
58
+ return None
59
+ try:
60
+ return float(value.split(':')[1].strip())
61
+ except:
62
+ return None
63
+
64
+ def convert_gender(value: str) -> int:
65
+ """Convert gender to binary (0: female, 1: male)"""
66
+ if not value or ':' not in value:
67
+ return None
68
+ value = value.split(':')[1].strip().upper()
69
+ if value == 'F':
70
+ return 0
71
+ elif value == 'M':
72
+ return 1
73
+ return None
74
+
75
+ # 3. Save Metadata
76
+ is_trait_available = trait_row is not None
77
+ _ = validate_and_save_cohort_info(
78
+ is_final=False,
79
+ cohort=cohort,
80
+ info_path=json_path,
81
+ is_gene_available=is_gene_available,
82
+ is_trait_available=is_trait_available
83
+ )
84
+
85
+ # 4. Clinical Feature Extraction
86
+ if trait_row is not None:
87
+ selected_clinical_df = geo_select_clinical_features(
88
+ clinical_data,
89
+ trait="Treatment_Response",
90
+ trait_row=trait_row,
91
+ convert_trait=convert_trait,
92
+ age_row=age_row,
93
+ convert_age=convert_age,
94
+ gender_row=gender_row,
95
+ convert_gender=convert_gender
96
+ )
97
+
98
+ # Preview the processed data
99
+ preview = preview_df(selected_clinical_df)
100
+ print("Preview of processed clinical data:")
101
+ print(preview)
102
+
103
+ # Save to CSV
104
+ selected_clinical_df.to_csv(out_clinical_data_file)
105
+ # Extract gene expression data from matrix file
106
+ genetic_data = get_genetic_data(matrix_file_path)
107
+
108
+ # Print first 20 row IDs and some data preview to verify structure
109
+ print("First 20 gene/probe IDs:")
110
+ print(list(genetic_data.index[:20]))
111
+
112
+ print("\nData preview:")
113
+ preview_subset = genetic_data.iloc[:5, :5]
114
+ print(preview_subset)
115
+ # The gene identifiers are ILMN_ probe IDs used in Illumina microarrays
116
+ # These need to be mapped to gene symbols
117
+ requires_gene_mapping = True
118
+ # Extract gene annotation data
119
+ gene_metadata = get_gene_annotation(soft_file_path)
120
+
121
+ # Preview column names and first few values
122
+ preview = preview_df(gene_metadata)
123
+ print("\nGene annotation columns and sample values:")
124
+ print(preview)
125
+ # Extract gene mapping from annotation
126
+ prob_col = 'ID' # Column containing probe IDs (ILMN_*)
127
+ gene_col = 'Symbol' # Column containing gene symbols
128
+ mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
129
+
130
+ # Apply mapping to convert probe expressions to gene expressions
131
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
132
+
133
+ # Preview the mapped data
134
+ print("First few genes and their expression values:")
135
+ preview = preview_df(gene_data)
136
+ print(preview)
137
+ # 1. Normalize gene symbols and save gene data
138
+ gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
140
+ gene_data.to_csv(out_gene_data_file)
141
+
142
+ # 2. Link clinical and genetic data
143
+ clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
144
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
145
+
146
+ # 3. Handle missing values
147
+ linked_data = handle_missing_values(linked_data, "Treatment_Response")
148
+
149
+ # 4. Judge bias in features and remove biased ones
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, "Treatment_Response")
151
+
152
+ # 5. Final validation and save metadata
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=is_gene_available,
158
+ is_trait_available=True,
159
+ is_biased=trait_biased,
160
+ df=linked_data,
161
+ note="Gene expression data from blood samples of bipolar disorder patients receiving lithium treatment vs non-responders."
162
+ )
163
+
164
+ # 6. Save linked data if usable
165
+ if is_usable:
166
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
167
+ linked_data.to_csv(out_data_file)
p3/preprocess/Bipolar_disorder/code/GSE46416.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE46416"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE46416"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE46416.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE46416.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE46416.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Gene Expression Data Availability
35
+ # From the series title and summary, this study analyzed gene expression profiles
36
+ is_gene_available = True
37
+
38
+ # 2. Variable Availability and Data Type Conversion
39
+ # 2.1 Data Availability
40
+ # Trait (bipolar disorder) can be derived from disease status and bd phase
41
+ trait_row = 1
42
+ # Age and gender not available in sample characteristics
43
+ age_row = None
44
+ gender_row = None
45
+
46
+ # 2.2 Data Type Conversion
47
+ def convert_trait(value):
48
+ """Convert disease status to binary: control=0, BD=1"""
49
+ if pd.isna(value):
50
+ return None
51
+ value = value.split(": ")[1].lower()
52
+ if "control" in value:
53
+ return 0
54
+ elif "bipolar disorder" in value or "bd" in value:
55
+ return 1
56
+ return None
57
+
58
+ def convert_age(value):
59
+ return None # Not used since age not available
60
+
61
+ def convert_gender(value):
62
+ return None # Not used since gender not available
63
+
64
+ # 3. Save Metadata
65
+ is_trait_available = trait_row is not None
66
+ validate_and_save_cohort_info(is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=is_trait_available)
71
+
72
+ # 4. Clinical Feature Extraction
73
+ # Since trait_row is not None, we extract clinical features
74
+ selected_clinical = geo_select_clinical_features(
75
+ clinical_df=clinical_data,
76
+ trait=trait,
77
+ trait_row=trait_row,
78
+ convert_trait=convert_trait,
79
+ age_row=age_row,
80
+ convert_age=convert_age,
81
+ gender_row=gender_row,
82
+ convert_gender=convert_gender
83
+ )
84
+
85
+ # Preview the extracted clinical data
86
+ print("Preview of clinical data:")
87
+ print(preview_df(selected_clinical))
88
+
89
+ # Save clinical data
90
+ selected_clinical.to_csv(out_clinical_data_file)
91
+ # Extract gene expression data from matrix file
92
+ genetic_data = get_genetic_data(matrix_file_path)
93
+
94
+ # Print first 20 row IDs and some data preview to verify structure
95
+ print("First 20 gene/probe IDs:")
96
+ print(list(genetic_data.index[:20]))
97
+
98
+ print("\nData preview:")
99
+ preview_subset = genetic_data.iloc[:5, :5]
100
+ print(preview_subset)
101
+ # The gene identifiers are numeric codes, not standard human gene symbols
102
+ # These appear to be probe IDs that will need to be mapped to gene symbols
103
+ requires_gene_mapping = True
104
+ # Extract gene annotation data with common GEO gene annotation prefixes
105
+ gene_metadata = get_gene_annotation(soft_file_path, prefixes=['ID_REF', 'GENE', 'GENE_SYMBOL', 'Symbol'])
106
+
107
+ # Preview the gene metadata to verify we got the annotation data
108
+ preview = preview_df(gene_metadata)
109
+ print("\nGene annotation columns and sample values:")
110
+ print(preview)
111
+ # Let's properly extract platform annotation data from the SOFT file
112
+ with gzip.open(soft_file_path, 'rt') as file:
113
+ platform_section = False
114
+ platform_data = []
115
+ for line in file:
116
+ if '!Platform_table_begin' in line:
117
+ platform_section = True
118
+ # Skip the header line
119
+ next(file)
120
+ continue
121
+ if '!Platform_table_end' in line:
122
+ platform_section = False
123
+ continue
124
+ if platform_section and line.strip():
125
+ platform_data.append(line.strip().split('\t'))
126
+
127
+ # Convert to DataFrame
128
+ gene_metadata = pd.DataFrame(platform_data[1:], columns=platform_data[0])
129
+ print("\nPlatform annotation columns:")
130
+ print(gene_metadata.columns.tolist())
131
+ print("\nFirst few rows:")
132
+ print(gene_metadata.head())
133
+
134
+ # Get mapping between probe IDs and gene symbols
135
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
136
+
137
+ # Convert probe-level measurements to gene expression data
138
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
139
+
140
+ # Preview mapped gene data
141
+ print("\nPreview of gene expression data after mapping:")
142
+ preview_subset = gene_data.iloc[:5, :5]
143
+ print(preview_subset)
144
+ # First read and print some content of the SOFT file to understand its structure
145
+ print("Previewing SOFT file structure:")
146
+ with gzip.open(soft_file_path, 'rt') as file:
147
+ platform_data = []
148
+ in_table = False
149
+ header = None
150
+
151
+ # Read through file line by line
152
+ for line in file:
153
+ line = line.strip()
154
+
155
+ # Start collecting data when we reach the platform table
156
+ if line.startswith('^PLATFORM'):
157
+ in_table = True
158
+ continue
159
+
160
+ # Only process lines when we're in the platform section
161
+ if in_table:
162
+ # Skip empty lines and comment lines
163
+ if not line or line.startswith('!') or line.startswith('#'):
164
+ continue
165
+
166
+ # First non-comment line is the header
167
+ if header is None:
168
+ header = line.split('\t')
169
+ continue
170
+
171
+ # Add data lines to our collection
172
+ platform_data.append(line.split('\t'))
173
+
174
+ # Stop when we reach the end of platform section
175
+ if line.startswith('^SERIES'):
176
+ break
177
+
178
+ # Convert to DataFrame
179
+ gene_metadata = pd.DataFrame(platform_data, columns=header)
180
+
181
+ print("\nPlatform annotation columns:")
182
+ print(gene_metadata.columns.tolist())
183
+
184
+ print("\nFirst few rows:")
185
+ print(gene_metadata.head())
186
+
187
+ # Get mapping between probe IDs and gene symbols
188
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID_REF', gene_col='Gene Symbol')
189
+
190
+ # Convert probe-level measurements to gene expression data
191
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
192
+
193
+ print("\nPreview of mapped gene data:")
194
+ print(gene_data.iloc[:5, :5])
195
+
196
+ # Save gene data
197
+ gene_data.to_csv(out_gene_data_file)
198
+ # First read and extract platform annotation data
199
+ platform_data = []
200
+ header = None
201
+ with gzip.open(soft_file_path, 'rt') as file:
202
+ in_platform = False
203
+ for line in file:
204
+ line = line.strip()
205
+ if line.startswith('!platform_table_begin'):
206
+ in_platform = True
207
+ continue
208
+ elif line.startswith('!platform_table_end'):
209
+ break
210
+ elif in_platform:
211
+ if header is None:
212
+ header = line.split('\t')
213
+ else:
214
+ fields = line.split('\t')
215
+ if len(fields) == len(header): # Only add rows matching header length
216
+ platform_data.append(fields)
217
+
218
+ if header is None:
219
+ raise ValueError("Could not find platform annotation data in SOFT file")
220
+
221
+ # Convert to DataFrame
222
+ gene_metadata = pd.DataFrame(platform_data, columns=header)
223
+
224
+ # Get mapping between probe IDs and gene symbols
225
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
226
+
227
+ # Convert probe-level measurements to gene expression data
228
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
229
+
230
+ # Normalize gene symbols and save gene data
231
+ gene_data = normalize_gene_symbols_in_index(gene_data)
232
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
233
+ gene_data.to_csv(out_gene_data_file)
234
+
235
+ # Link clinical and genetic data
236
+ clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
237
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
238
+
239
+ # Handle missing values
240
+ linked_data = handle_missing_values(linked_data, trait)
241
+
242
+ # Judge bias in features and remove biased ones
243
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
244
+
245
+ # Final validation and save metadata
246
+ is_usable = validate_and_save_cohort_info(
247
+ is_final=True,
248
+ cohort=cohort,
249
+ info_path=json_path,
250
+ is_gene_available=is_gene_available,
251
+ is_trait_available=True,
252
+ is_biased=trait_biased,
253
+ df=linked_data,
254
+ note="Gene expression data from blood samples comparing bipolar disorder patients in manic vs euthymic phases with controls."
255
+ )
256
+
257
+ # Save linked data if usable
258
+ if is_usable:
259
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
260
+ linked_data.to_csv(out_data_file)
261
+ # Extract gene annotation data
262
+ gene_metadata = get_gene_annotation(soft_file_path)
263
+
264
+ # Preview column names and first few values
265
+ preview = preview_df(gene_metadata)
266
+ print("\nGene annotation columns and sample values:")
267
+ print(preview)
p3/preprocess/Bipolar_disorder/code/GSE46449.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE46449"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE46449"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE46449.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE46449.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE46449.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Gene Expression Data Availability
35
+ # The dataset uses Affymetrix microarrays for gene expression, so gene data is available
36
+ is_gene_available = True
37
+
38
+ # 2.1 Data Row Identification
39
+ trait_row = 1 # 'genotype' contains trait information
40
+ age_row = 2 # 'age' data is available
41
+ gender_row = 3 # 'gender' data is available but shows only male
42
+
43
+ # 2.2 Data Type Conversion Functions
44
+ def convert_trait(x):
45
+ if not isinstance(x, str):
46
+ return None
47
+ x = x.lower().split(': ')[-1]
48
+ if 'bipolar' in x:
49
+ return 1
50
+ elif 'control' in x:
51
+ return 0
52
+ return None
53
+
54
+ def convert_age(x):
55
+ if not isinstance(x, str):
56
+ return None
57
+ try:
58
+ return float(x.split(': ')[-1])
59
+ except:
60
+ return None
61
+
62
+ def convert_gender(x):
63
+ if not isinstance(x, str):
64
+ return None
65
+ x = x.lower().split(': ')[-1]
66
+ if x == 'male':
67
+ return 1
68
+ elif x == 'female':
69
+ return 0
70
+ return None
71
+
72
+ # 3. Save Metadata
73
+ validate_and_save_cohort_info(is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=trait_row is not None)
78
+
79
+ # 4. Clinical Feature Extraction
80
+ if trait_row is not None:
81
+ selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
82
+ trait=trait,
83
+ trait_row=trait_row,
84
+ convert_trait=convert_trait,
85
+ age_row=age_row,
86
+ convert_age=convert_age,
87
+ gender_row=gender_row,
88
+ convert_gender=convert_gender)
89
+
90
+ # Preview the data
91
+ preview = preview_df(selected_clinical_df)
92
+ print("Preview of selected clinical features:")
93
+ print(preview)
94
+
95
+ # Save to CSV
96
+ selected_clinical_df.to_csv(out_clinical_data_file)
97
+ # Extract gene expression data from matrix file
98
+ genetic_data = get_genetic_data(matrix_file_path)
99
+
100
+ # Print first 20 row IDs and some data preview to verify structure
101
+ print("First 20 gene/probe IDs:")
102
+ print(list(genetic_data.index[:20]))
103
+
104
+ print("\nData preview:")
105
+ preview_subset = genetic_data.iloc[:5, :5]
106
+ print(preview_subset)
107
+ # These appear to be probe IDs from Affymetrix arrays (e.g. "1007_s_at" format)
108
+ # They need to be mapped to human gene symbols for analysis
109
+ requires_gene_mapping = True
110
+ # Extract gene annotation data
111
+ gene_metadata = get_gene_annotation(soft_file_path)
112
+
113
+ # Preview column names and first few values
114
+ preview = preview_df(gene_metadata)
115
+ print("\nGene annotation columns and sample values:")
116
+ print(preview)
117
+ # Get gene mapping between probe IDs and gene symbols
118
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
119
+
120
+ # Apply gene mapping to convert probe-level data to gene-level data
121
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
122
+
123
+ # Preview the gene expression data
124
+ print("Preview of mapped gene expression data:")
125
+ preview_subset = gene_data.iloc[:5, :5]
126
+ print(preview_subset)
127
+ # 1. Normalize gene symbols and save gene data
128
+ gene_data = normalize_gene_symbols_in_index(gene_data)
129
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
130
+ gene_data.to_csv(out_gene_data_file)
131
+
132
+ # 2. Link clinical and genetic data
133
+ clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
134
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
135
+
136
+ # 3. Handle missing values
137
+ linked_data = handle_missing_values(linked_data, trait)
138
+
139
+ # 4. Judge bias in features and remove biased ones
140
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
141
+
142
+ # 5. Final validation and save metadata
143
+ is_usable = validate_and_save_cohort_info(
144
+ is_final=True,
145
+ cohort=cohort,
146
+ info_path=json_path,
147
+ is_gene_available=is_gene_available,
148
+ is_trait_available=True,
149
+ is_biased=trait_biased,
150
+ df=linked_data,
151
+ note="Gene expression data from whole blood. Samples include SJIA patients treated with canakinumab/placebo and healthy controls."
152
+ )
153
+
154
+ # 6. Save linked data if usable
155
+ if is_usable:
156
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
157
+ linked_data.to_csv(out_data_file)
p3/preprocess/Bipolar_disorder/code/GSE53987.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE53987"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE53987"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE53987.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE53987.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE53987.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Gene Expression Data Availability
35
+ # The background info states "hybridized to U133_Plus2 Affymetrix chips" which is a gene expression microarray
36
+ is_gene_available = True
37
+
38
+ # 2. Variable Availability and Data Type Conversion
39
+ # 2.1 Data Availability
40
+ # Disease state (trait) is in row 7
41
+ trait_row = 7
42
+ # Age is in row 0
43
+ age_row = 0
44
+ # Gender is in row 1
45
+ gender_row = 1
46
+
47
+ # 2.2 Data Type Conversion Functions
48
+ def convert_trait(value):
49
+ # Extract value after colon and strip whitespace
50
+ value = value.split(":")[-1].strip()
51
+ # Map disease states to binary (control=0, bipolar=1)
52
+ if value == "control":
53
+ return 0
54
+ elif value == "bipolar disorder":
55
+ return 1
56
+ # Skip other disease states
57
+ return None
58
+
59
+ def convert_age(value):
60
+ # Extract numeric age value
61
+ try:
62
+ age = float(value.split(":")[-1].strip())
63
+ return age
64
+ except:
65
+ return None
66
+
67
+ def convert_gender(value):
68
+ # Extract gender value and convert to binary
69
+ value = value.split(":")[-1].strip()
70
+ if value == "F":
71
+ return 0
72
+ elif value == "M":
73
+ return 1
74
+ return None
75
+
76
+ # 3. Save Metadata
77
+ validate_and_save_cohort_info(is_final=False,
78
+ cohort=cohort,
79
+ info_path=json_path,
80
+ is_gene_available=is_gene_available,
81
+ is_trait_available=trait_row is not None)
82
+
83
+ # 4. Clinical Feature Extraction
84
+ if trait_row is not None:
85
+ clinical_features = geo_select_clinical_features(clinical_data,
86
+ trait=trait,
87
+ trait_row=trait_row,
88
+ convert_trait=convert_trait,
89
+ age_row=age_row,
90
+ convert_age=convert_age,
91
+ gender_row=gender_row,
92
+ convert_gender=convert_gender)
93
+
94
+ # Preview the processed clinical data
95
+ preview = preview_df(clinical_features)
96
+ print("Preview of clinical features:")
97
+ print(preview)
98
+
99
+ # Save clinical data
100
+ clinical_features.to_csv(out_clinical_data_file)
101
+ # Extract gene expression data from matrix file
102
+ genetic_data = get_genetic_data(matrix_file_path)
103
+
104
+ # Print first 20 row IDs and some data preview to verify structure
105
+ print("First 20 gene/probe IDs:")
106
+ print(list(genetic_data.index[:20]))
107
+
108
+ print("\nData preview:")
109
+ preview_subset = genetic_data.iloc[:5, :5]
110
+ print(preview_subset)
111
+ # These appear to be Affymetrix probe IDs (####_at format) rather than gene symbols
112
+ # They will need to be mapped to official human gene symbols for analysis
113
+ requires_gene_mapping = True
114
+ # Extract gene annotation data
115
+ gene_metadata = get_gene_annotation(soft_file_path)
116
+
117
+ # Preview column names and first few values
118
+ preview = preview_df(gene_metadata)
119
+ print("\nGene annotation columns and sample values:")
120
+ print(preview)
121
+ # Get mapping between probe IDs and gene symbols
122
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
123
+
124
+ # Apply mapping to convert probe-level data to gene-level data
125
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
126
+
127
+ # Preview gene data after mapping
128
+ print("Data preview after mapping to gene symbols:")
129
+ preview_subset = gene_data.iloc[:5, :5]
130
+ print(preview_subset)
131
+ # 1. Normalize gene symbols and save gene data
132
+ gene_data = normalize_gene_symbols_in_index(gene_data)
133
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
134
+ gene_data.to_csv(out_gene_data_file)
135
+
136
+ # 2. Link clinical and genetic data
137
+ clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
138
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
139
+
140
+ # 3. Handle missing values
141
+ linked_data = handle_missing_values(linked_data, trait)
142
+
143
+ # 4. Judge bias in features and remove biased ones
144
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
145
+
146
+ # 5. Final validation and save metadata
147
+ is_usable = validate_and_save_cohort_info(
148
+ is_final=True,
149
+ cohort=cohort,
150
+ info_path=json_path,
151
+ is_gene_available=is_gene_available,
152
+ is_trait_available=True,
153
+ is_biased=trait_biased,
154
+ df=linked_data,
155
+ note="Gene expression data from whole blood. Samples include SJIA patients treated with canakinumab/placebo and healthy controls."
156
+ )
157
+
158
+ # 6. Save linked data if usable
159
+ if is_usable:
160
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
161
+ linked_data.to_csv(out_data_file)
p3/preprocess/Bipolar_disorder/code/GSE62191.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE62191"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE62191"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE62191.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE62191.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE62191.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Gene Expression Data Availability
35
+ # This is a gene expression study according to title and summary
36
+ is_gene_available = True
37
+
38
+ # 2. Variable Availability and Data Type Conversion
39
+ # 2.1 Row identification
40
+ trait_row = 1 # Disease state is recorded in row 1
41
+ age_row = 2 # Age is recorded in row 2
42
+ gender_row = 6 # Gender is recorded in row 6
43
+
44
+ # 2.2 Conversion functions
45
+ def convert_trait(x):
46
+ if pd.isna(x):
47
+ return None
48
+ value = x.split(": ")[1].lower()
49
+ if "bipolar disorder" in value:
50
+ return 1
51
+ elif "healthy control" in value:
52
+ return 0
53
+ return None
54
+
55
+ def convert_age(x):
56
+ if pd.isna(x):
57
+ return None
58
+ try:
59
+ return int(x.split(": ")[1].split(" ")[0])
60
+ except:
61
+ return None
62
+
63
+ def convert_gender(x):
64
+ if pd.isna(x):
65
+ return None
66
+ value = x.split(": ")[1].lower()
67
+ if value == "male":
68
+ return 1
69
+ elif value == "female":
70
+ return 0
71
+ return None
72
+
73
+ # 3. Save initial validation result
74
+ is_validated = validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=trait_row is not None
80
+ )
81
+
82
+ # 4. Extract clinical features
83
+ selected_clinical = geo_select_clinical_features(
84
+ clinical_df=clinical_data,
85
+ trait=trait,
86
+ trait_row=trait_row,
87
+ convert_trait=convert_trait,
88
+ age_row=age_row,
89
+ convert_age=convert_age,
90
+ gender_row=gender_row,
91
+ convert_gender=convert_gender
92
+ )
93
+
94
+ # Preview the extracted features
95
+ preview_result = preview_df(selected_clinical)
96
+
97
+ # Save clinical data
98
+ selected_clinical.to_csv(out_clinical_data_file)
99
+ # Extract gene expression data from matrix file
100
+ genetic_data = get_genetic_data(matrix_file_path)
101
+
102
+ # Print first 20 row IDs and some data preview to verify structure
103
+ print("First 20 gene/probe IDs:")
104
+ print(list(genetic_data.index[:20]))
105
+
106
+ print("\nData preview:")
107
+ preview_subset = genetic_data.iloc[:5, :5]
108
+ print(preview_subset)
109
+ # The identifiers appear to be numeric probe IDs rather than human gene symbols
110
+ requires_gene_mapping = True
111
+ # Extract gene annotation data
112
+ gene_metadata = get_gene_annotation(soft_file_path)
113
+
114
+ # Preview column names and first few values
115
+ preview = preview_df(gene_metadata)
116
+ print("\nGene annotation columns and sample values:")
117
+ print(preview)
118
+ # Extract probe_id and gene_symbol mapping from annotation data
119
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
120
+
121
+ # Apply gene mapping to convert probe-level data to gene-level data
122
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
123
+
124
+ # Preview the gene expression data
125
+ print("\nGene expression data preview:")
126
+ preview_subset = gene_data.iloc[:5, :5]
127
+ print(preview_subset)
128
+ # 1. Normalize gene symbols and save gene data
129
+ gene_data = normalize_gene_symbols_in_index(gene_data)
130
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
131
+ gene_data.to_csv(out_gene_data_file)
132
+
133
+ # 2. Link clinical and genetic data
134
+ clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
135
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
136
+
137
+ # 3. Handle missing values
138
+ linked_data = handle_missing_values(linked_data, trait)
139
+
140
+ # 4. Judge bias in features and remove biased ones
141
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
142
+
143
+ # 5. Final validation and save metadata
144
+ is_usable = validate_and_save_cohort_info(
145
+ is_final=True,
146
+ cohort=cohort,
147
+ info_path=json_path,
148
+ is_gene_available=is_gene_available,
149
+ is_trait_available=True,
150
+ is_biased=trait_biased,
151
+ df=linked_data,
152
+ note="Gene expression data from whole blood. Samples include SJIA patients treated with canakinumab/placebo and healthy controls."
153
+ )
154
+
155
+ # 6. Save linked data if usable
156
+ if is_usable:
157
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
158
+ linked_data.to_csv(out_data_file)
p3/preprocess/Bipolar_disorder/code/GSE67311.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE67311"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE67311"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE67311.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE67311.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE67311.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Gene Expression Data Availability
35
+ # Yes, according to the background info this is a gene expression dataset using Affymetrix® Human Gene 1.1 ST arrays
36
+ is_gene_available = True
37
+
38
+ # 2. Variable Availability and Data Type Conversion
39
+ # Trait (Bipolar disorder) is recorded in row 7
40
+ trait_row = 7
41
+
42
+ def convert_trait(x):
43
+ if pd.isna(x):
44
+ return None
45
+ value = x.split(': ')[1]
46
+ if value == 'Yes':
47
+ return 1
48
+ elif value == 'No':
49
+ return 0
50
+ return None
51
+
52
+ # Age is not available
53
+ age_row = None
54
+ convert_age = None
55
+
56
+ # Gender is not available
57
+ gender_row = None
58
+ convert_gender = None
59
+
60
+ # 3. Save initial filtering result
61
+ note = "Dataset is primarily focused on fibromyalgia with bipolar disorder only recorded as comorbidity. Very few bipolar cases (~2/140) make it unsuitable for bipolar disorder research."
62
+
63
+ is_usable = validate_and_save_cohort_info(
64
+ is_final=False,
65
+ cohort=cohort,
66
+ info_path=json_path,
67
+ is_gene_available=is_gene_available,
68
+ is_trait_available=(trait_row is not None),
69
+ note=note
70
+ )
71
+
72
+ # 4. Clinical Feature Extraction
73
+ if trait_row is not None:
74
+ clinical_df = geo_select_clinical_features(
75
+ clinical_data,
76
+ trait=trait,
77
+ trait_row=trait_row,
78
+ convert_trait=convert_trait,
79
+ age_row=age_row,
80
+ convert_age=convert_age,
81
+ gender_row=gender_row,
82
+ convert_gender=convert_gender
83
+ )
84
+
85
+ # Preview the extracted features
86
+ preview = preview_df(clinical_df)
87
+ print("Preview of clinical features:", preview)
88
+
89
+ # Save to CSV
90
+ clinical_df.to_csv(out_clinical_data_file)
91
+ # Extract gene expression data from matrix file
92
+ genetic_data = get_genetic_data(matrix_file_path)
93
+
94
+ # Print first 20 row IDs and some data preview to verify structure
95
+ print("First 20 gene/probe IDs:")
96
+ print(list(genetic_data.index[:20]))
97
+
98
+ print("\nData preview:")
99
+ preview_subset = genetic_data.iloc[:5, :5]
100
+ print(preview_subset)
101
+ # These numeric identifiers appear to be microarray probe IDs, not gene symbols
102
+ # They are likely Illumina or Affymetrix probe IDs that need to be mapped to gene symbols
103
+ requires_gene_mapping = True
104
+ # Extract gene annotation data
105
+ gene_metadata = get_gene_annotation(soft_file_path)
106
+
107
+ # Preview column names and first few values
108
+ preview = preview_df(gene_metadata)
109
+ print("\nGene annotation columns and sample values:")
110
+ print(preview)
111
+ # Get gene mapping from annotation data
112
+ # 'ID' column contains probe IDs matching gene expression data
113
+ # Extract gene symbols directly from gene_assignment field using extract_human_gene_symbols
114
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
115
+
116
+ # Convert probe-level measurements to gene expression data using the library's function
117
+ # The apply_gene_mapping function already includes the extract_human_gene_symbols logic
118
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
119
+
120
+ # Preview results
121
+ print("Shape of gene expression data:", gene_data.shape)
122
+ print("\nFirst few rows and columns of gene expression data:")
123
+ print(gene_data.iloc[:5, :5])
124
+ # 1. Normalize gene symbols and save gene data
125
+ gene_data = normalize_gene_symbols_in_index(gene_data)
126
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
127
+ gene_data.to_csv(out_gene_data_file)
128
+
129
+ # 2. Link clinical and genetic data
130
+ clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
131
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
132
+
133
+ # 3. Handle missing values
134
+ linked_data = handle_missing_values(linked_data, trait)
135
+
136
+ # 4. Judge bias in features and remove biased ones
137
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
138
+
139
+ # 5. Final validation and save metadata
140
+ is_usable = validate_and_save_cohort_info(
141
+ is_final=True,
142
+ cohort=cohort,
143
+ info_path=json_path,
144
+ is_gene_available=is_gene_available,
145
+ is_trait_available=True,
146
+ is_biased=trait_biased,
147
+ df=linked_data,
148
+ note="Gene expression data from whole blood. Samples include SJIA patients treated with canakinumab/placebo and healthy controls."
149
+ )
150
+
151
+ # 6. Save linked data if usable
152
+ if is_usable:
153
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
154
+ linked_data.to_csv(out_data_file)
p3/preprocess/Bipolar_disorder/code/GSE92538.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE92538"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE92538"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE92538.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE92538.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE92538.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Gene Expression Data Availability
35
+ # Based on background info, this dataset contains gene expression data from Affymetrix microarrays
36
+ is_gene_available = True
37
+
38
+ # 2.1 Data Availability
39
+ # Trait (Bipolar Disorder) data is in row 2 under 'diagnosis'
40
+ trait_row = 2
41
+
42
+ # Age data is in row 8
43
+ age_row = 8
44
+
45
+ # Gender data is in row 6
46
+ gender_row = 6
47
+
48
+ # 2.2 Data Type Conversion Functions
49
+ def convert_trait(x: str) -> Optional[int]:
50
+ """Convert diagnosis to binary indicating bipolar disorder"""
51
+ if not x or 'diagnosis:' not in x:
52
+ return None
53
+ val = x.split('diagnosis:')[1].strip()
54
+ if 'Bipolar Disorder' in val:
55
+ return 1
56
+ elif val in ['Control', 'Schizophrenia', 'Major Depressive Disorder']:
57
+ return 0
58
+ return None
59
+
60
+ def convert_age(x: str) -> Optional[float]:
61
+ """Convert age to continuous value"""
62
+ if not x or 'age:' not in x:
63
+ return None
64
+ try:
65
+ return float(x.split('age:')[1].strip())
66
+ except:
67
+ return None
68
+
69
+ def convert_gender(x: str) -> Optional[int]:
70
+ """Convert gender to binary (0=female, 1=male)"""
71
+ if not x or 'gender:' not in x:
72
+ return None
73
+ val = x.split('gender:')[1].strip()
74
+ if val == 'F':
75
+ return 0
76
+ elif val == 'M':
77
+ return 1
78
+ return None
79
+
80
+ # 3. Save Metadata
81
+ validate_and_save_cohort_info(
82
+ is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=(trait_row is not None)
87
+ )
88
+
89
+ # 4. Clinical Feature Extraction
90
+ # Extract clinical features using helper function
91
+ selected_clinical = geo_select_clinical_features(
92
+ clinical_df=clinical_data,
93
+ trait=trait,
94
+ trait_row=trait_row,
95
+ convert_trait=convert_trait,
96
+ age_row=age_row,
97
+ convert_age=convert_age,
98
+ gender_row=gender_row,
99
+ convert_gender=convert_gender
100
+ )
101
+
102
+ # Preview the extracted features
103
+ print("Preview of extracted clinical features:")
104
+ print(preview_df(selected_clinical))
105
+
106
+ # Save clinical data
107
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
108
+ selected_clinical.to_csv(out_clinical_data_file)
109
+ # Extract gene expression data from matrix file
110
+ genetic_data = get_genetic_data(matrix_file_path)
111
+
112
+ # Print first 20 row IDs and some data preview to verify structure
113
+ print("First 20 gene/probe IDs:")
114
+ print(list(genetic_data.index[:20]))
115
+
116
+ print("\nData preview:")
117
+ preview_subset = genetic_data.iloc[:5, :5]
118
+ print(preview_subset)
119
+ # These IDs are in Affymetrix ID format (_at suffix), not gene symbols
120
+ # They need to be mapped to official gene symbols
121
+ requires_gene_mapping = True
122
+ # Extract gene annotation data
123
+ gene_metadata = get_gene_annotation(soft_file_path)
124
+
125
+ # Preview column names and first few values
126
+ preview = preview_df(gene_metadata)
127
+ print("\nGene annotation columns and sample values:")
128
+ print(preview)
129
+ # 1. Identify relevant columns: 'ID' contains probe IDs and 'SYMBOL' contains gene symbols
130
+ prob_col = 'ID'
131
+ gene_col = 'SYMBOL'
132
+
133
+ # 2. Get gene mapping dataframe
134
+ mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)
135
+
136
+ # 3. Apply gene mapping to convert probe-level data to gene expression data
137
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
138
+ # 1. Normalize gene symbols and save gene data
139
+ gene_data = normalize_gene_symbols_in_index(gene_data)
140
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
141
+ gene_data.to_csv(out_gene_data_file)
142
+
143
+ # 2. Link clinical and genetic data
144
+ clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
145
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
146
+
147
+ # 3. Handle missing values
148
+ linked_data = handle_missing_values(linked_data, trait)
149
+
150
+ # 4. Judge bias in features and remove biased ones
151
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
152
+
153
+ # 5. Final validation and save metadata
154
+ is_usable = validate_and_save_cohort_info(
155
+ is_final=True,
156
+ cohort=cohort,
157
+ info_path=json_path,
158
+ is_gene_available=is_gene_available,
159
+ is_trait_available=True,
160
+ is_biased=trait_biased,
161
+ df=linked_data,
162
+ note="Gene expression data from whole blood. Samples include SJIA patients treated with canakinumab/placebo and healthy controls."
163
+ )
164
+
165
+ # 6. Save linked data if usable
166
+ if is_usable:
167
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
168
+ linked_data.to_csv(out_data_file)
p3/preprocess/Bipolar_disorder/code/GSE93114.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+ cohort = "GSE93114"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bipolar_disorder"
10
+ in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE93114"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/GSE93114.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/GSE93114.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/GSE93114.csv"
16
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
17
+
18
+ # Get file paths for SOFT and matrix files
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Create dictionary of unique values for each feature
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print the information
28
+ print("Dataset Background Information:")
29
+ print(background_info)
30
+ print("\nSample Characteristics:")
31
+ for feature, values in unique_values_dict.items():
32
+ print(f"\n{feature}:")
33
+ print(values)
34
+ # 1. Check gene expression data availability
35
+ is_gene_available = True # Series title mentions "Gene expression data"
36
+
37
+ # 2.1 Data Availability
38
+ # All samples are bipolar disorder cases - no controls, so trait data not usable
39
+ trait_row = None # No trait variability
40
+ age_row = None # Age not available
41
+ gender_row = None # Gender not available
42
+
43
+ # 2.2 Convert functions
44
+ def convert_trait(val: str) -> int:
45
+ """Convert bipolar disorder status to binary value"""
46
+ if not isinstance(val, str):
47
+ return None
48
+ val = val.lower()
49
+ if 'bipolar disorder' in val:
50
+ return 1
51
+ elif 'control' in val:
52
+ return 0
53
+ return None
54
+
55
+ def convert_age(val: str) -> float:
56
+ """Convert age to float - not used since age not available"""
57
+ return None
58
+
59
+ def convert_gender(val: str) -> int:
60
+ """Convert gender to binary - not used since gender not available"""
61
+ return None
62
+
63
+ # 3. Save metadata
64
+ _ = validate_and_save_cohort_info(
65
+ is_final=False,
66
+ cohort=cohort,
67
+ info_path=json_path,
68
+ is_gene_available=is_gene_available,
69
+ is_trait_available=(trait_row is not None)
70
+ )
71
+
72
+ # 4. Skip clinical feature extraction since trait_row is None
73
+ # Extract gene expression data from matrix file
74
+ genetic_data = get_genetic_data(matrix_file_path)
75
+
76
+ # Print first 20 row IDs and some data preview to verify structure
77
+ print("First 20 gene/probe IDs:")
78
+ print(list(genetic_data.index[:20]))
79
+
80
+ print("\nData preview:")
81
+ preview_subset = genetic_data.iloc[:5, :5]
82
+ print(preview_subset)
83
+ # These identifiers appear to be probe IDs from a microarray platform, not human gene symbols
84
+ # They need to be mapped to standard gene symbols for analysis
85
+ requires_gene_mapping = True
86
+ # Update metadata with correct gene availability assessment
87
+ is_gene_available = False # Dataset contains miRNA, not gene expression data
88
+ _ = validate_and_save_cohort_info(
89
+ is_final=False,
90
+ cohort=cohort,
91
+ info_path=json_path,
92
+ is_gene_available=is_gene_available,
93
+ is_trait_available=(trait_row is not None)
94
+ )
p3/preprocess/Bipolar_disorder/code/TCGA.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bipolar_disorder"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Bipolar_disorder/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Bipolar_disorder/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Bipolar_disorder/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Bipolar_disorder/cohort_info.json"
15
+
16
+ # Check if directory exists for bipolar disorder
17
+ directories = os.listdir(tcga_root_dir)
18
+ relevant_dirs = [d for d in directories if not d.startswith('.') and os.path.isdir(os.path.join(tcga_root_dir, d))]
19
+
20
+ # No relevant cohort exists for bipolar disorder in TCGA (cancer database)
21
+ is_gene_available = False
22
+ is_trait_available = False
23
+
24
+ # Record this information and exit pipeline
25
+ validate_and_save_cohort_info(
26
+ is_final=False,
27
+ cohort="TCGA",
28
+ info_path=json_path,
29
+ is_gene_available=is_gene_available,
30
+ is_trait_available=is_trait_available
31
+ )
p3/preprocess/Bipolar_disorder/gene_data/GSE120340.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Bipolar_disorder/gene_data/GSE45484.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81156a135b95c2d5f3e860624d2493840a0ef28f47fb0d90b6c465ec7d0931fb
3
+ size 21930805
p3/preprocess/Bipolar_disorder/gene_data/GSE46449.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13151fc2b2ee7c131e9e90df2c4c4b1c93021e2eecc7cfb11e69bc1fdc8606ca
3
+ size 23288499
p3/preprocess/Bipolar_disorder/gene_data/GSE53987.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5fda65de449c36e18a9f851ea0d633241d655a9efb0b60a936c5cabcaba8a98
3
+ size 34613190
p3/preprocess/Bipolar_disorder/gene_data/GSE62191.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1038eca3fd0daa25b8a814562891971ac0cb79e1a1f5f51021c4956b40028f7
3
+ size 16039825
p3/preprocess/Bladder_Cancer/GSE138118.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5002d4a518cdc727b310c939683dea7ffe53e57268ba6c4252bae15855729bf
3
+ size 15335998
p3/preprocess/Bladder_Cancer/GSE185264.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Bladder_Cancer/GSE222073.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74a3de67549cdbb49355c60085930df17eef6359c72482d7d18fc7ff408ed5db
3
+ size 23285441
p3/preprocess/Bladder_Cancer/clinical_data/GSE138118.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM4100381,GSM4100382,GSM4100383,GSM4100384,GSM4100385,GSM4100386,GSM4100387,GSM4100388,GSM4100389,GSM4100390,GSM4100391,GSM4100392,GSM4100393,GSM4100394,GSM4100395,GSM4100396,GSM4100397,GSM4100398,GSM4100399,GSM4100400,GSM4100401,GSM4100402,GSM4100403,GSM4100404,GSM4100405,GSM4100406,GSM4100407,GSM4100408,GSM4100409,GSM4100410,GSM4100411,GSM4100412,GSM4100413,GSM4100414,GSM4100415,GSM4100416,GSM4100417,GSM4100418,GSM4100419,GSM4100420,GSM4100421,GSM4100422,GSM4100423,GSM4100424,GSM4100425,GSM4100426,GSM4100427,GSM4100428,GSM4100429,GSM4100430,GSM4100431,GSM4100432,GSM4100433,GSM4100434,GSM4100435,GSM4100436,GSM4100437,GSM4100438,GSM4100439,GSM4100440,GSM4100441,GSM4100442,GSM4100443,GSM4100444,GSM4100445,GSM4100446,GSM4100447,GSM4100448,GSM4100449,GSM4100450,GSM4100451,GSM4100452,GSM4100453,GSM4100454,GSM4100455
2
+ Bladder_Cancer,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,,,,1.0,,1.0,,,,1.0,1.0,1.0,,,,1.0,1.0,1.0,1.0,,,,,,,1.0,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,71.0,68.0,83.0,69.0,66.0,59.0,56.0,73.0,72.0,93.0,69.0,74.0,72.0,45.0,78.0,70.0,76.0,64.0,67.0,63.0,68.0,58.0,68.0,61.0,65.0,77.0,68.0,54.0,66.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
p3/preprocess/Bladder_Cancer/clinical_data/GSE145261.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM4310302,GSM4310303,GSM4310304,GSM4310305,GSM4310306,GSM4310307,GSM4310308,GSM4310309,GSM4310310,GSM4310311,GSM4310312,GSM4310313,GSM4310314,GSM4310315,GSM4310316,GSM4310317,GSM4310318,GSM4310319,GSM4310320,GSM4310321,GSM4310322,GSM4310323
2
+ Bladder_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,72.0,76.0,72.0,79.0,60.0,65.0,41.0,76.0,76.0,67.0,71.0,65.0,71.0,72.0,57.0,71.0,67.0,34.0,62.0,90.0,72.0,58.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0
p3/preprocess/Bladder_Cancer/clinical_data/GSE162253.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4947508,GSM4947509,GSM4947510
2
+ Bladder_Cancer,0.0,1.0,1.0
p3/preprocess/Bladder_Cancer/clinical_data/GSE185264.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM5609338,GSM5609339,GSM5609340,GSM5609341,GSM5609342,GSM5609343,GSM5609344,GSM5609345,GSM5609346,GSM5609347,GSM5609348,GSM5609349,GSM5609350,GSM5609351,GSM5609352,GSM5609353,GSM5609354,GSM5609355,GSM5609356,GSM5609357,GSM5609358,GSM5609359,GSM5609360,GSM5609361,GSM5609362,GSM5609363,GSM5609364,GSM5609365,GSM5609366,GSM5609367,GSM5609368,GSM5609369,GSM5609370,GSM5609371,GSM5609372,GSM5609373,GSM5609374,GSM5609375,GSM5609376,GSM5609377,GSM5609378,GSM5609379,GSM5609380,GSM5609381,GSM5609382,GSM5609383,GSM5609384,GSM5609385,GSM5609386,GSM5609387,GSM5609388,GSM5609389,GSM5609390,GSM5609391,GSM5609392,GSM5609393,GSM5609394,GSM5609395,GSM5609396,GSM5609397,GSM5609398,GSM5609399,GSM5609400,GSM5609401,GSM5609402,GSM5609403,GSM5609404,GSM5609405,GSM5609406,GSM5609407,GSM5609408,GSM5609409,GSM5609410,GSM5609411,GSM5609412,GSM5609413,GSM5609414,GSM5609415
2
+ Bladder_Cancer,,,,,,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0
3
+ Gender,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Bladder_Cancer/clinical_data/GSE222073.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM6914278,GSM6914279,GSM6914280,GSM6914281,GSM6914282,GSM6914283,GSM6914284,GSM6914285,GSM6914286,GSM6914287,GSM6914288,GSM6914289,GSM6914290,GSM6914291,GSM6914292,GSM6914293,GSM6914294,GSM6914295,GSM6914296,GSM6914297,GSM6914298,GSM6914299,GSM6914300,GSM6914301,GSM6914302,GSM6914303,GSM6914304,GSM6914305,GSM6914306,GSM6914307,GSM6914308,GSM6914309,GSM6914310,GSM6914311,GSM6914312,GSM6914313,GSM6914314,GSM6914315,GSM6914316,GSM6914317,GSM6914318,GSM6914319,GSM6914320,GSM6914321,GSM6914322,GSM6914323,GSM6914324,GSM6914325,GSM6914326,GSM6914327,GSM6914328,GSM6914329,GSM6914330,GSM6914331,GSM6914332,GSM6914333,GSM6914334,GSM6914335,GSM6914336,GSM6914337,GSM6914338,GSM6914339,GSM6914340,GSM6914341,GSM6914342,GSM6914343,GSM6914344,GSM6914345,GSM6914346,GSM6914347,GSM6914348,GSM6914349,GSM6914350,GSM6914351,GSM6914352,GSM6914353,GSM6914354,GSM6914355,GSM6914356,GSM6914357,GSM6914358,GSM6914359,GSM6914360,GSM6914361,GSM6914362,GSM6914363,GSM6914364,GSM6914365,GSM6914366,GSM6914367,GSM6914368,GSM6914369,GSM6914370,GSM6914371,GSM6914372,GSM6914373,GSM6914374,GSM6914375,GSM6914376,GSM6914377,GSM6914378,GSM6914379,GSM6914380,GSM6914381,GSM6914382,GSM6914383,GSM6914384,GSM6914385,GSM6914386,GSM6914387,GSM6914388,GSM6914389,GSM6914390,GSM6914391,GSM6914392,GSM6914393,GSM6914394,GSM6914395,GSM6914396,GSM6914397,GSM6914398,GSM6914399,GSM6914400,GSM6914401,GSM6914402,GSM6914403,GSM6914404,GSM6914405,GSM6914406,GSM6914407,GSM6914408,GSM6914409,GSM6914410,GSM6914411,GSM6914412,GSM6914413,GSM6914414,GSM6914415,GSM6914416,GSM6914417,GSM6914418,GSM6914419,GSM6914420,GSM6914421,GSM6914422,GSM6914423
2
+ Bladder_Cancer,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0
p3/preprocess/Bladder_Cancer/clinical_data/GSE244266.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM7810144,GSM7810145,GSM7810146,GSM7810147,GSM7810148,GSM7810149,GSM7810150,GSM7810151,GSM7810152,GSM7810153,GSM7810154,GSM7810155,GSM7810156,GSM7810157,GSM7810158,GSM7810159,GSM7810160,GSM7810161,GSM7810162,GSM7810163,GSM7810164,GSM7810165,GSM7810166,GSM7810167,GSM7810168,GSM7810169,GSM7810170,GSM7810171,GSM7810172,GSM7810173,GSM7810174,GSM7810175,GSM7810176,GSM7810177,GSM7810178,GSM7810179,GSM7810180,GSM7810181,GSM7810182,GSM7810183,GSM7810184,GSM7810185,GSM7810186,GSM7810187,GSM7810188,GSM7810189,GSM7810190,GSM7810191,GSM7810192,GSM7810193,GSM7810194,GSM7810195,GSM7810196,GSM7810197,GSM7810198,GSM7810199,GSM7810200,GSM7810201,GSM7810202,GSM7810203,GSM7810204,GSM7810205,GSM7810206,GSM7810207,GSM7810208,GSM7810209,GSM7810210,GSM7810211,GSM7810212,GSM7810213,GSM7810214,GSM7810215,GSM7810216,GSM7810217,GSM7810218,GSM7810219,GSM7810220,GSM7810221,GSM7810222,GSM7810223,GSM7810224,GSM7810225,GSM7810226,GSM7810227,GSM7810228,GSM7810229,GSM7810230,GSM7810231,GSM7810232,GSM7810233,GSM7810234,GSM7810235,GSM7810236,GSM7810237,GSM7810238,GSM7810239,GSM7810240,GSM7810241,GSM7810242,GSM7810243,GSM7810244,GSM7810245,GSM7810246,GSM7810247,GSM7810248,GSM7810249,GSM7810250,GSM7810251,GSM7810252,GSM7810253,GSM7810254,GSM7810255,GSM7810256,GSM7810257,GSM7810258,GSM7810259,GSM7810260,GSM7810261,GSM7810262,GSM7810263,GSM7810264,GSM7810265,GSM7810266,GSM7810267,GSM7810268,GSM7810269,GSM7810270,GSM7810271,GSM7810272,GSM7810273,GSM7810274,GSM7810275,GSM7810276,GSM7810277,GSM7810278,GSM7810279,GSM7810280,GSM7810281,GSM7810282,GSM7810283,GSM7810284,GSM7810285,GSM7810286,GSM7810287,GSM7810288,GSM7810289,GSM7810290,GSM7810291,GSM7810292,GSM7810293,GSM7810294,GSM7810295,GSM7810296,GSM7810297,GSM7810298,GSM7810299,GSM7810300,GSM7810301,GSM7810302,GSM7810303,GSM7810304,GSM7810305,GSM7810306,GSM7810307,GSM7810308,GSM7810309,GSM7810310,GSM7810311,GSM7810312,GSM7810313,GSM7810314,GSM7810315,GSM7810316,GSM7810317,GSM7810318,GSM7810319,GSM7810320,GSM7810321,GSM7810322,GSM7810323,GSM7810324,GSM7810325,GSM7810326,GSM7810327,GSM7810328,GSM7810329,GSM7810330,GSM7810331,GSM7810332
2
+ Bladder_Cancer,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0
p3/preprocess/Bladder_Cancer/clinical_data/GSE245953.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM7851882,GSM7851883,GSM7851884,GSM7851885,GSM7851886,GSM7851887,GSM7851888,GSM7851889,GSM7851890,GSM7851891,GSM7851892,GSM7851893,GSM7851894,GSM7851895,GSM7851896,GSM7851897,GSM7851898,GSM7851899,GSM7851900,GSM7851901,GSM7851902,GSM7851903,GSM7851904,GSM7851905,GSM7851906,GSM7851907,GSM7851908,GSM7851909,GSM7851910,GSM7851911,GSM7851912,GSM7851913,GSM7851914,GSM7851915,GSM7851916,GSM7851917,GSM7851918,GSM7851919,GSM7851920,GSM7851921,GSM7851922,GSM7851923,GSM7851924,GSM7851925,GSM7851926,GSM7851927,GSM7851928,GSM7851929,GSM7851930,GSM7851931,GSM7851932,GSM7851933,GSM7851934,GSM7851935,GSM7851936,GSM7851937,GSM7851938,GSM7851939,GSM7851940,GSM7851941,GSM7851942,GSM7851943,GSM7851944,GSM7851945,GSM7851946,GSM7851947,GSM7851948,GSM7851949,GSM7851950,GSM7851951,GSM7851952,GSM7851953,GSM7851954,GSM7851955,GSM7851956,GSM7851957,GSM7851958,GSM7851959,GSM7851960,GSM7851961,GSM7851962,GSM7851963,GSM7851964,GSM7851965,GSM7851966,GSM7851967,GSM7851968,GSM7851969,GSM7851970,GSM7851971,GSM7851972,GSM7851973,GSM7851974,GSM7851975,GSM7851976,GSM7851977,GSM7851978,GSM7851979,GSM7851980,GSM7851981,GSM7851982,GSM7851983,GSM7851984,GSM7851985,GSM7851986,GSM7851987,GSM7851988,GSM7851989,GSM7851990,GSM7851991,GSM7851992,GSM7851993,GSM7851994,GSM7851995,GSM7851996,GSM7851997,GSM7851998,GSM7851999,GSM7852000,GSM7852001,GSM7852002,GSM7852003,GSM7852004,GSM7852005,GSM7852006,GSM7852007,GSM7852008,GSM7852009,GSM7852010,GSM7852011,GSM7852012,GSM7852013,GSM7852014,GSM7852015,GSM7852016,GSM7852017,GSM7852018,GSM7852019,GSM7852020,GSM7852021,GSM7852022,GSM7852023,GSM7852024,GSM7852025,GSM7852026,GSM7852027,GSM7852028,GSM7852029,GSM7852030,GSM7852031,GSM7852032,GSM7852033,GSM7852034,GSM7852035,GSM7852036,GSM7852037,GSM7852038,GSM7852039,GSM7852040,GSM7852041,GSM7852042,GSM7852043,GSM7852044,GSM7852045,GSM7852046,GSM7852047,GSM7852048,GSM7852049,GSM7852050,GSM7852051,GSM7852052,GSM7852053,GSM7852054,GSM7852055,GSM7852056,GSM7852057,GSM7852058,GSM7852059,GSM7852060,GSM7852061,GSM7852062,GSM7852063,GSM7852064,GSM7852065,GSM7852066,GSM7852067,GSM7852068,GSM7852069,GSM7852070,GSM7852071,GSM7852072,GSM7852073,GSM7852074,GSM7852075,GSM7852076,GSM7852077,GSM7852078,GSM7852079,GSM7852080,GSM7852081,GSM7852082,GSM7852083,GSM7852084,GSM7852085,GSM7852086,GSM7852087,GSM7852088,GSM7852089,GSM7852090,GSM7852091,GSM7852092,GSM7852093,GSM7852094,GSM7852095,GSM7852096,GSM7852097,GSM7852098,GSM7852099,GSM7852100,GSM7852101,GSM7852102,GSM7852103,GSM7852104,GSM7852105,GSM7852106,GSM7852107,GSM7852108,GSM7852109,GSM7852110,GSM7852111,GSM7852112,GSM7852113,GSM7852114,GSM7852115,GSM7852116,GSM7852117,GSM7852118,GSM7852119,GSM7852120,GSM7852121,GSM7852122,GSM7852123,GSM7852124,GSM7852125,GSM7852126,GSM7852127,GSM7852128,GSM7852129,GSM7852130,GSM7852131,GSM7852132,GSM7852133,GSM7852134,GSM7852135,GSM7852136,GSM7852137,GSM7852138,GSM7852139,GSM7852140,GSM7852141,GSM7852142,GSM7852143,GSM7852144,GSM7852145,GSM7852146,GSM7852147,GSM7852148,GSM7852149,GSM7852150,GSM7852151,GSM7852152,GSM7852153,GSM7852154,GSM7852155,GSM7852156,GSM7852157,GSM7852158,GSM7852159,GSM7852160,GSM7852161,GSM7852162,GSM7852163,GSM7852164,GSM7852165,GSM7852166,GSM7852167,GSM7852168,GSM7852169,GSM7852170,GSM7852171,GSM7852172,GSM7852173,GSM7852174,GSM7852175,GSM7852176,GSM7852177,GSM7852178,GSM7852179,GSM7852180,GSM7852181,GSM7852182,GSM7852183,GSM7852184,GSM7852185,GSM7852186,GSM7852187,GSM7852188,GSM7852189,GSM7852190,GSM7852191
2
+ Bladder_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Bladder_Cancer/clinical_data/GSE253531.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM8022612,GSM8022613,GSM8022614,GSM8022615,GSM8022616,GSM8022617,GSM8022618,GSM8022619,GSM8022620,GSM8022621,GSM8022622,GSM8022623,GSM8022624,GSM8022625,GSM8022626,GSM8022627,GSM8022628,GSM8022629,GSM8022630,GSM8022631,GSM8022632,GSM8022633,GSM8022634,GSM8022635,GSM8022636,GSM8022637,GSM8022638,GSM8022639,GSM8022640,GSM8022641,GSM8022642,GSM8022643,GSM8022644,GSM8022645,GSM8022646,GSM8022647,GSM8022648,GSM8022649,GSM8022650,GSM8022651,GSM8022652,GSM8022653,GSM8022654,GSM8022655,GSM8022656,GSM8022657,GSM8022658,GSM8022659,GSM8022660,GSM8022661,GSM8022662,GSM8022663,GSM8022664,GSM8022665
2
+ Bladder_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Bladder_Cancer/code/GSE138118.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bladder_Cancer"
6
+ cohort = "GSE138118"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bladder_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE138118"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE138118.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE138118.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE138118.csv"
16
+ json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the series title and summary, this is gene expression data from blood
38
+
39
+ # 2.1 Data Availability
40
+ trait_row = 0 # "stage at sample" contains cancer status
41
+ age_row = 1 # Age information is available
42
+ gender_row = None # Gender information is not available in the characteristics
43
+
44
+ # 2.2 Data Type Conversion Functions
45
+ def convert_trait(x):
46
+ if pd.isna(x):
47
+ return None
48
+ value = x.split(': ')[-1].strip()
49
+ # Convert to binary: Healthy=0, Any cancer stage=1
50
+ if value == 'Healthy':
51
+ return 0
52
+ elif value in ['G1', 'G2', 'G3', 'G1 pTa', 'G2 pTa']:
53
+ return 1
54
+ return None
55
+
56
+ def convert_age(x):
57
+ if pd.isna(x):
58
+ return None
59
+ value = x.split(': ')[-1].strip()
60
+ try:
61
+ # Convert to continuous numeric value
62
+ return float(value)
63
+ except:
64
+ return None
65
+
66
+ def convert_gender(x):
67
+ return None # Not used since gender data is not available
68
+
69
+ # 3. Save Initial Filtering Results
70
+ validate_and_save_cohort_info(
71
+ is_final=False,
72
+ cohort=cohort,
73
+ info_path=json_path,
74
+ is_gene_available=is_gene_available,
75
+ is_trait_available=trait_row is not None
76
+ )
77
+
78
+ # 4. Extract Clinical Features
79
+ clinical_df = geo_select_clinical_features(
80
+ clinical_df=clinical_data,
81
+ trait=trait,
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age
86
+ )
87
+
88
+ # Preview the processed clinical data
89
+ preview_result = preview_df(clinical_df)
90
+ print("Preview of processed clinical data:")
91
+ print(preview_result)
92
+
93
+ # Save clinical data
94
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
95
+ clinical_df.to_csv(out_clinical_data_file)
96
+ # Extract gene expression data from matrix file
97
+ gene_data = get_genetic_data(matrix_file)
98
+
99
+ # Print first 20 row IDs and shape of data to help debug
100
+ print("Shape of gene expression data:", gene_data.shape)
101
+ print("\nFirst few rows of data:")
102
+ print(gene_data.head())
103
+ print("\nFirst 20 gene/probe identifiers:")
104
+ print(gene_data.index[:20])
105
+
106
+ # Inspect a snippet of raw file to verify identifier format
107
+ import gzip
108
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
109
+ lines = []
110
+ for i, line in enumerate(f):
111
+ if "!series_matrix_table_begin" in line:
112
+ # Get the next 5 lines after the marker
113
+ for _ in range(5):
114
+ lines.append(next(f).strip())
115
+ break
116
+ print("\nFirst few lines after matrix marker in raw file:")
117
+ for line in lines:
118
+ print(line)
119
+ # Observe the gene identifiers
120
+ # The identifiers are numeric strings starting with '16650', which appears to be probe IDs
121
+ # These are not standard human gene symbols and will need to be mapped
122
+ requires_gene_mapping = True
123
+ # Get file paths using library function
124
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
125
+
126
+ # Extract gene annotation from SOFT file
127
+ gene_annotation = get_gene_annotation(soft_file)
128
+
129
+ # Preview gene annotation data
130
+ print("Gene annotation columns and example values:")
131
+ print(preview_df(gene_annotation))
132
+ # Get gene mapping data from annotation
133
+ # For this dataset:
134
+ # ID column contains probe IDs matching gene expression data
135
+ # gene_assignment column contains gene symbols
136
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
137
+
138
+ # Apply gene mapping to convert probe expression to gene expression
139
+ # The apply_gene_mapping function handles many-to-many mappings
140
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
141
+
142
+ # Preview data shape and first few rows
143
+ print("Shape of gene expression data:", gene_data.shape)
144
+ print("\nFirst few rows:")
145
+ print(gene_data.head())
146
+ # 1. Normalize gene symbols and save normalized gene data
147
+ gene_data.index = gene_data.index.str.replace('-mRNA', '')
148
+ gene_data = normalize_gene_symbols_in_index(gene_data)
149
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
150
+ gene_data.to_csv(out_gene_data_file)
151
+
152
+ # Load previously saved clinical data
153
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
154
+
155
+ # 2. Link clinical and genetic data
156
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
157
+
158
+ # 3. Handle missing values
159
+ linked_data = handle_missing_values(linked_data, trait)
160
+
161
+ # 4. Check for biased features and remove them if needed
162
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
163
+
164
+ # 5. Validate and save cohort info
165
+ is_usable = validate_and_save_cohort_info(
166
+ is_final=True,
167
+ cohort=cohort,
168
+ info_path=json_path,
169
+ is_gene_available=True,
170
+ is_trait_available=True,
171
+ is_biased=is_biased,
172
+ df=linked_data,
173
+ note="NanoString nCounter RNA profiling data for bladder cancer recurrence study"
174
+ )
175
+
176
+ # 6. Save linked data if usable
177
+ if is_usable:
178
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
179
+ linked_data.to_csv(out_data_file)
p3/preprocess/Bladder_Cancer/code/GSE145261.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bladder_Cancer"
6
+ cohort = "GSE145261"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bladder_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE145261"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE145261.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE145261.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE145261.csv"
16
+ json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on context, this dataset studies carcinoma with molecular analysis
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+ # 2.1 Row identification
41
+ trait_row = 3 # "tissue type" contains SCC vs UC info
42
+ age_row = 0 # "subject age" contains age info
43
+ gender_row = 1 # "subject gender" contains gender info
44
+
45
+ # 2.2 Conversion functions
46
+ def convert_trait(x):
47
+ # Binary: SCC (1) vs UC (0)
48
+ if not isinstance(x, str):
49
+ return None
50
+ x = x.lower()
51
+ if 'scc' in x or 'small cell' in x:
52
+ return 1
53
+ elif 'uc' in x or 'urothelial' in x:
54
+ return 0
55
+ return None
56
+
57
+ def convert_age(x):
58
+ # Continuous: extract age in years
59
+ if not isinstance(x, str):
60
+ return None
61
+ try:
62
+ age = int(''.join(filter(str.isdigit, x)))
63
+ if 0 <= age <= 120: # Basic age validation
64
+ return age
65
+ return None
66
+ except:
67
+ return None
68
+
69
+ def convert_gender(x):
70
+ # Binary: female (0) vs male (1)
71
+ if not isinstance(x, str):
72
+ return None
73
+ x = x.lower()
74
+ if 'female' in x:
75
+ return 0
76
+ elif 'male' in x:
77
+ return 1
78
+ return None
79
+
80
+ # 3. Save metadata
81
+ validate_and_save_cohort_info(
82
+ is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=trait_row is not None
87
+ )
88
+
89
+ # 4. Extract clinical features
90
+ if trait_row is not None:
91
+ selected_clinical_df = geo_select_clinical_features(
92
+ clinical_df=clinical_data,
93
+ trait=trait,
94
+ trait_row=trait_row,
95
+ convert_trait=convert_trait,
96
+ age_row=age_row,
97
+ convert_age=convert_age,
98
+ gender_row=gender_row,
99
+ convert_gender=convert_gender
100
+ )
101
+
102
+ # Preview the extracted features
103
+ preview_data = preview_df(selected_clinical_df)
104
+ print("Preview of extracted clinical features:", preview_data)
105
+
106
+ # Save to CSV
107
+ selected_clinical_df.to_csv(out_clinical_data_file)
108
+ # Extract gene expression data from matrix file
109
+ gene_data = get_genetic_data(matrix_file)
110
+
111
+ # Print first 20 row IDs and shape of data to help debug
112
+ print("Shape of gene expression data:", gene_data.shape)
113
+ print("\nFirst few rows of data:")
114
+ print(gene_data.head())
115
+ print("\nFirst 20 gene/probe identifiers:")
116
+ print(gene_data.index[:20])
117
+
118
+ # Inspect a snippet of raw file to verify identifier format
119
+ import gzip
120
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
121
+ lines = []
122
+ for i, line in enumerate(f):
123
+ if "!series_matrix_table_begin" in line:
124
+ # Get the next 5 lines after the marker
125
+ for _ in range(5):
126
+ lines.append(next(f).strip())
127
+ break
128
+ print("\nFirst few lines after matrix marker in raw file:")
129
+ for line in lines:
130
+ print(line)
131
+ # These are Illumina probes (starting with ILMN_), not gene symbols
132
+ # We'll need to map them to human gene symbols for analysis
133
+ requires_gene_mapping = True
134
+ # Extract gene annotation from SOFT file using default prefixes
135
+ gene_annotation = get_gene_annotation(soft_file)
136
+
137
+ # Preview gene annotation data
138
+ print("Gene annotation shape:", gene_annotation.shape)
139
+ print("\nGene annotation columns and first few values:")
140
+ print(preview_df(gene_annotation))
141
+
142
+ # Also inspect the raw SOFT file annotation section to verify parsing
143
+ import gzip
144
+ with gzip.open(soft_file, 'rt') as f:
145
+ found_table = False
146
+ lines = []
147
+ for line in f:
148
+ if '!platform_table_begin' in line.lower():
149
+ found_table = True
150
+ lines.append(next(f)) # Get header line
151
+ for _ in range(3): # Get first 3 data lines
152
+ lines.append(next(f))
153
+ break
154
+
155
+ if found_table:
156
+ print("\nRaw annotation format in SOFT file:")
157
+ for line in lines:
158
+ print(line.strip())
159
+ # Extract gene mapping from annotation
160
+ # 'ID' column contains probe IDs (ILMN_*) matching the gene expression data
161
+ # 'Symbol' column contains gene symbols we want to map to
162
+ gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
163
+
164
+ # Apply gene mapping to convert probe-level data to gene-level data
165
+ gene_data = apply_gene_mapping(gene_data, gene_mapping)
166
+
167
+ # Print info about the conversion
168
+ print("Shape of mapped gene expression data:", gene_data.shape)
169
+ print("\nFirst few rows of mapped gene expression data:")
170
+ print(gene_data.head())
171
+ # 1. Normalize gene symbols and save normalized gene data
172
+ gene_data.index = gene_data.index.str.replace('-mRNA', '')
173
+ gene_data = normalize_gene_symbols_in_index(gene_data)
174
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
175
+ gene_data.to_csv(out_gene_data_file)
176
+
177
+ # 2. Link clinical and genetic data
178
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
179
+
180
+ # 3. Handle missing values
181
+ linked_data = handle_missing_values(linked_data, trait)
182
+
183
+ # 4. Check for biased features and remove them if needed
184
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
185
+
186
+ # 5. Validate and save cohort info
187
+ is_usable = validate_and_save_cohort_info(
188
+ is_final=True,
189
+ cohort=cohort,
190
+ info_path=json_path,
191
+ is_gene_available=True,
192
+ is_trait_available=True,
193
+ is_biased=is_biased,
194
+ df=linked_data,
195
+ note="NanoString nCounter RNA profiling data for bladder cancer recurrence study"
196
+ )
197
+
198
+ # 6. Save linked data if usable
199
+ if is_usable:
200
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
201
+ linked_data.to_csv(out_data_file)