Liu-Hy commited on
Commit
187fbda
·
verified ·
1 Parent(s): f426016

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. p1/preprocess/Alzheimers_Disease/GSE132903.csv +3 -0
  3. p1/preprocess/Alzheimers_Disease/gene_data/GSE122063.csv +3 -0
  4. p1/preprocess/Alzheimers_Disease/gene_data/GSE132903.csv +3 -0
  5. p1/preprocess/Alzheimers_Disease/gene_data/GSE243243.csv +3 -0
  6. p1/preprocess/Arrhythmia/clinical_data/GSE182600.csv +4 -0
  7. p1/preprocess/Arrhythmia/clinical_data/GSE53622.csv +4 -0
  8. p1/preprocess/Arrhythmia/clinical_data/GSE93101.csv +4 -0
  9. p1/preprocess/Arrhythmia/code/GSE136992.py +173 -0
  10. p1/preprocess/Arrhythmia/code/GSE143924.py +132 -0
  11. p1/preprocess/Arrhythmia/code/GSE182600.py +179 -0
  12. p1/preprocess/Arrhythmia/code/GSE235307.py +199 -0
  13. p1/preprocess/Arrhythmia/code/GSE55231.py +172 -0
  14. p1/preprocess/Arrhythmia/code/GSE93101.py +181 -0
  15. p1/preprocess/Arrhythmia/code/TCGA.py +60 -0
  16. p1/preprocess/Arrhythmia/gene_data/GSE115574.csv +1 -0
  17. p1/preprocess/Arrhythmia/gene_data/GSE136992.csv +1 -0
  18. p1/preprocess/Arrhythmia/gene_data/GSE143924.csv +1 -0
  19. p1/preprocess/Arrhythmia/gene_data/GSE41177.csv +1 -0
  20. p1/preprocess/Arrhythmia/gene_data/GSE53622.csv +1 -0
  21. p1/preprocess/Arrhythmia/gene_data/GSE55231.csv +1 -0
  22. p1/preprocess/Arrhythmia/gene_data/GSE93101.csv +1 -0
  23. p1/preprocess/Asthma/clinical_data/GSE123086.csv +3 -0
  24. p1/preprocess/Asthma/clinical_data/GSE123088.csv +4 -0
  25. p1/preprocess/Asthma/clinical_data/GSE182797.csv +3 -0
  26. p1/preprocess/Asthma/clinical_data/GSE182798.csv +3 -0
  27. p1/preprocess/Asthma/clinical_data/GSE185658.csv +2 -0
  28. p1/preprocess/Asthma/clinical_data/GSE270312.csv +3 -0
  29. p1/preprocess/Asthma/code/GSE123086.py +228 -0
  30. p1/preprocess/Asthma/code/GSE123088.py +181 -0
  31. p1/preprocess/Asthma/code/GSE182797.py +189 -0
  32. p1/preprocess/Asthma/code/GSE182798.py +189 -0
  33. p1/preprocess/Asthma/code/GSE184382.py +155 -0
  34. p1/preprocess/Asthma/code/GSE185658.py +157 -0
  35. p1/preprocess/Asthma/code/GSE188424.py +134 -0
  36. p1/preprocess/Asthma/code/GSE205151.py +96 -0
  37. p1/preprocess/Asthma/code/GSE230164.py +160 -0
  38. p1/preprocess/Asthma/code/GSE270312.py +162 -0
  39. p1/preprocess/Asthma/code/TCGA.py +59 -0
  40. p1/preprocess/Asthma/gene_data/GSE123086.csv +1 -0
  41. p1/preprocess/Asthma/gene_data/GSE123088.csv +1 -0
  42. p1/preprocess/Asthma/gene_data/GSE182797.csv +1 -0
  43. p1/preprocess/Asthma/gene_data/GSE182798.csv +1 -0
  44. p1/preprocess/Asthma/gene_data/GSE184382.csv +1 -0
  45. p1/preprocess/Asthma/gene_data/GSE185658.csv +1 -0
  46. p1/preprocess/Asthma/gene_data/GSE188424.csv +1 -0
  47. p1/preprocess/Asthma/gene_data/GSE230164.csv +1 -0
  48. p1/preprocess/Asthma/gene_data/GSE270312.csv +1 -0
  49. p1/preprocess/Atrial_Fibrillation/GSE143924.csv +0 -0
  50. p1/preprocess/Atrial_Fibrillation/clinical_data/GSE115574.csv +2 -0
.gitattributes CHANGED
@@ -947,3 +947,8 @@ p1/preprocess/Thyroid_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -t
947
  p1/preprocess/Alopecia/GSE66664.csv filter=lfs diff=lfs merge=lfs -text
948
  p1/preprocess/Alopecia/gene_data/GSE66664.csv filter=lfs diff=lfs merge=lfs -text
949
  p1/preprocess/Alzheimers_Disease/GSE122063.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
947
  p1/preprocess/Alopecia/GSE66664.csv filter=lfs diff=lfs merge=lfs -text
948
  p1/preprocess/Alopecia/gene_data/GSE66664.csv filter=lfs diff=lfs merge=lfs -text
949
  p1/preprocess/Alzheimers_Disease/GSE122063.csv filter=lfs diff=lfs merge=lfs -text
950
+ p1/preprocess/Alzheimers_Disease/gene_data/GSE243243.csv filter=lfs diff=lfs merge=lfs -text
951
+ p1/preprocess/Alzheimers_Disease/gene_data/GSE122063.csv filter=lfs diff=lfs merge=lfs -text
952
+ p1/preprocess/Alzheimers_Disease/gene_data/GSE132903.csv filter=lfs diff=lfs merge=lfs -text
953
+ p1/preprocess/Alzheimers_Disease/GSE132903.csv filter=lfs diff=lfs merge=lfs -text
954
+ p1/preprocess/Von_Willebrand_Disease/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
p1/preprocess/Alzheimers_Disease/GSE132903.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91e64c18b6f151c74c55ce8c6a8327a3603a0d991feeebe12a4b867b49d26a73
3
+ size 46424882
p1/preprocess/Alzheimers_Disease/gene_data/GSE122063.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:167a58f7e2efb1dcb8d9bf1db0c6b23c9b31677eb900434a5cdfb2769979209c
3
+ size 34270174
p1/preprocess/Alzheimers_Disease/gene_data/GSE132903.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68a154f0c8e664cc61d16dc207b178e362caa3a5ab1f7563e6a20e87cd12d496
3
+ size 46422319
p1/preprocess/Alzheimers_Disease/gene_data/GSE243243.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3a1f69b13be0d5eff4c17860bc7c3dcf0ae2ae9ff02f14218e63c38bf03b1b9
3
+ size 25405099
p1/preprocess/Arrhythmia/clinical_data/GSE182600.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM5532093,GSM5532094,GSM5532095,GSM5532096,GSM5532097,GSM5532098,GSM5532099,GSM5532100,GSM5532101,GSM5532102,GSM5532103,GSM5532104,GSM5532105,GSM5532106,GSM5532107,GSM5532108,GSM5532109,GSM5532110,GSM5532111,GSM5532112,GSM5532113,GSM5532114,GSM5532115,GSM5532116,GSM5532117,GSM5532118,GSM5532119,GSM5532120,GSM5532121,GSM5532122,GSM5532123,GSM5532124,GSM5532125,GSM5532126,GSM5532127,GSM5532128,GSM5532129,GSM5532130,GSM5532131,GSM5532132,GSM5532133,GSM5532134,GSM5532135,GSM5532136,GSM5532137,GSM5532138,GSM5532139,GSM5532140,GSM5532141,GSM5532142,GSM5532143,GSM5532144,GSM5532145,GSM5532146,GSM5532147,GSM5532148,GSM5532149,GSM5532150,GSM5532151,GSM5532152,GSM5532153,GSM5532154,GSM5532155,GSM5532156,GSM5532157,GSM5532158,GSM5532159,GSM5532160,GSM5532161,GSM5532162,GSM5532163,GSM5532164,GSM5532165,GSM5532166,GSM5532167,GSM5532168,GSM5532169,GSM5532170
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 33.4,51.2,51.9,47.8,41.5,67.3,52.8,16.1,78.9,53.2,70.9,59.9,21.9,45.2,52.4,32.3,52.8,55.8,47.0,55.8,57.3,31.7,49.3,66.1,55.9,49.1,63.0,21.0,53.6,50.1,37.4,71.5,56.5,33.4,51.2,51.9,47.8,41.5,67.3,52.8,78.9,53.2,70.9,59.9,21.9,45.2,52.4,32.3,55.8,47.0,55.8,57.3,31.7,49.3,66.1,55.9,49.1,63.0,21.0,53.6,50.1,37.4,71.5,56.5,33.4,51.2,51.9,47.8,52.8,53.2,21.9,55.8,47.0,49.3,66.1,53.6,50.1,56.5
4
+ 0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0
p1/preprocess/Arrhythmia/clinical_data/GSE53622.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM1296956,GSM1296957,GSM1296958,GSM1296959,GSM1296960,GSM1296961,GSM1296962,GSM1296963,GSM1296964,GSM1296965,GSM1296966,GSM1296967,GSM1296968,GSM1296969,GSM1296970,GSM1296971,GSM1296972,GSM1296973,GSM1296974,GSM1296975,GSM1296976,GSM1296977,GSM1296978,GSM1296979,GSM1296980,GSM1296981,GSM1296982,GSM1296983,GSM1296984,GSM1296985,GSM1296986,GSM1296987,GSM1296988,GSM1296989,GSM1296990,GSM1296991,GSM1296992,GSM1296993,GSM1296994,GSM1296995,GSM1296996,GSM1296997,GSM1296998,GSM1296999,GSM1297000,GSM1297001,GSM1297002,GSM1297003,GSM1297004,GSM1297005,GSM1297006,GSM1297007,GSM1297008,GSM1297009,GSM1297010,GSM1297011,GSM1297012,GSM1297013,GSM1297014,GSM1297015,GSM1297016,GSM1297017,GSM1297018,GSM1297019,GSM1297020,GSM1297021,GSM1297022,GSM1297023,GSM1297024,GSM1297025,GSM1297026,GSM1297027,GSM1297028,GSM1297029,GSM1297030,GSM1297031,GSM1297032,GSM1297033,GSM1297034,GSM1297035,GSM1297036,GSM1297037,GSM1297038,GSM1297039,GSM1297040,GSM1297041,GSM1297042,GSM1297043,GSM1297044,GSM1297045,GSM1297046,GSM1297047,GSM1297048,GSM1297049,GSM1297050,GSM1297051,GSM1297052,GSM1297053,GSM1297054,GSM1297055,GSM1297056,GSM1297057,GSM1297058,GSM1297059,GSM1297060,GSM1297061,GSM1297062,GSM1297063,GSM1297064,GSM1297065,GSM1297066,GSM1297067,GSM1297068,GSM1297069,GSM1297070,GSM1297071,GSM1297072,GSM1297073,GSM1297074,GSM1297075
2
+ 0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0
3
+ 66.4602739726027,66.4602739726027,64.013698630137,64.013698630137,50.9123287671233,50.9123287671233,46.3287671232877,46.3287671232877,53.9972602739726,53.9972602739726,67.8438356164384,67.8438356164384,64.8794520547945,64.8794520547945,45.2219178082192,45.2219178082192,54.4794520547945,54.4794520547945,56.2328767123288,56.2328767123288,57.0986301369863,57.0986301369863,44.6630136986301,44.6630136986301,43.7698630136986,43.7698630136986,67.2739726027397,67.2739726027397,68.2904109589041,68.2904109589041,60.5068493150685,60.5068493150685,48.4027397260274,48.4027397260274,54.2931506849315,54.2931506849315,51.9890410958904,51.9890410958904,58.3205479452055,58.3205479452055,66.2712328767123,66.2712328767123,72.241095890411,72.241095890411,64.7506849315069,64.7506849315069,54.5753424657534,54.5753424657534,62.4383561643836,62.4383561643836,66.1479452054794,66.1479452054794,53.7424657534247,53.7424657534247,56.9643835616438,56.9643835616438,71.9150684931507,71.9150684931507,53.5643835616438,53.5643835616438,61.2739726027397,61.2739726027397,66.4602739726027,66.4602739726027,62.1205479452055,62.1205479452055,59.6520547945205,59.6520547945205,65.4493150684931,65.4493150684931,51.7369863013699,51.7369863013699,58.6356164383562,58.6356164383562,75.5095890410959,75.5095890410959,71.1835616438356,71.1835616438356,55.9890410958904,55.9890410958904,56.0849315068493,56.0849315068493,56.0,56.0,81.0,81.0,51.0,51.0,57.3945205479452,57.3945205479452,50.9424657534247,50.9424657534247,80.9506849315069,80.9506849315069,63.7178082191781,63.7178082191781,62.8986301369863,62.8986301369863,62.8438356164384,62.8438356164384,68.5178082191781,68.5178082191781,39.5397260273973,39.5397260273973,68.0849315068493,68.0849315068493,66.9178082191781,66.9178082191781,47.5506849315069,47.5506849315069,46.0328767123288,46.0328767123288,59.972602739726,59.972602739726,63.6602739726027,63.6602739726027,78.8876712328767,78.8876712328767,61.3315068493151,61.3315068493151
4
+ 0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Arrhythmia/clinical_data/GSE93101.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM2443799,GSM2443800,GSM2443801,GSM2443802,GSM2443803,GSM2443804,GSM2443805,GSM2443806,GSM2443807,GSM2443808,GSM2443809,GSM2443810,GSM2443811,GSM2443812,GSM2443813,GSM2443814,GSM2443815,GSM2443816,GSM2443817,GSM2443818,GSM2443819,GSM2443820,GSM2443821,GSM2443822,GSM2443823,GSM2443824,GSM2443825,GSM2443826,GSM2443827,GSM2443828,GSM2443829,GSM2443830,GSM2443831
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 33.4,51.2,51.9,47.8,41.5,67.3,52.8,16.1,78.9,53.2,70.9,59.9,21.9,45.2,52.4,32.3,52.8,55.8,47.0,55.8,57.3,31.7,49.3,66.1,55.9,49.1,63.0,21.0,53.6,50.1,37.4,71.5,56.5
4
+ 0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0
p1/preprocess/Arrhythmia/code/GSE136992.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Arrhythmia"
6
+ cohort = "GSE136992"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Arrhythmia"
10
+ in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE136992"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Arrhythmia/GSE136992.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE136992.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE136992.csv"
16
+ json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Determine gene expression data availability
43
+ is_gene_available = True # This dataset includes Illumina whole genome gene expression data
44
+
45
+ # 2.1 Determine data availability (keys for trait, age, gender)
46
+ trait_row = None # No row found for "Arrhythmia" in the sample characteristics
47
+ age_row = 2 # Row 2 contains multiple distinct 'age' values
48
+ gender_row = 3 # Row 3 contains multiple distinct 'gender' values
49
+
50
+ # 2.2 Define data type conversions
51
+ def convert_trait(value: str):
52
+ # Trait data is not available; return None
53
+ return None
54
+
55
+ def convert_age(value: str):
56
+ """Convert 'age: XX weeks' to a numeric type."""
57
+ try:
58
+ # Extract the substring after 'age:' and strip spaces
59
+ raw = value.split(':', 1)[1].strip()
60
+ # Remove the word 'weeks' if present
61
+ raw = raw.lower().replace('weeks', '').strip()
62
+ return float(raw)
63
+ except:
64
+ return None
65
+
66
+ def convert_gender(value: str):
67
+ """Convert 'gender: male/female' to binary (0=female, 1=male)."""
68
+ try:
69
+ raw = value.split(':', 1)[1].strip().lower()
70
+ if raw == 'male':
71
+ return 1
72
+ elif raw == 'female':
73
+ return 0
74
+ else:
75
+ return None
76
+ except:
77
+ return None
78
+
79
+ # 3. Conduct initial filtering and save metadata
80
+ is_trait_available = (trait_row is not None)
81
+ validate_and_save_cohort_info(
82
+ is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=is_trait_available
87
+ )
88
+
89
+ # 4. Skip clinical feature extraction, since trait_row is None
90
+ # STEP3
91
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
92
+ gene_data = get_genetic_data(matrix_file)
93
+
94
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
95
+ print(gene_data.index[:20])
96
+ # These identifiers, starting with "ILMN_", are Illumina probe IDs rather than standard gene symbols.
97
+ # Therefore, they need to be mapped to the corresponding human gene symbols.
98
+ print("requires_gene_mapping = True")
99
+ # STEP5
100
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
101
+ gene_annotation = get_gene_annotation(soft_file)
102
+
103
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
104
+ print("Gene annotation preview:")
105
+ print(preview_df(gene_annotation))
106
+ # STEP: Gene Identifier Mapping
107
+
108
+ # 1. Decide which columns hold the probe IDs (same as gene_data.index) and the gene symbols.
109
+ # From the annotation preview, "ID" matches the probe IDs, and "Symbol" contains the gene symbols.
110
+
111
+ # 2. Get a gene mapping dataframe (probe ID -> gene symbol).
112
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
113
+
114
+ # 3. Convert the probe-level expression data to gene-level data using the mapping.
115
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
116
+ # STEP 7: Data Normalization and Linking
117
+
118
+ # First, check if trait data is available.
119
+ # From our previous steps, we know 'trait_row' was None, so trait data is not available.
120
+ # Hence, we skip linking, missing-value handling, and bias checks,
121
+ # but we still need to do final validation to mark it unusable.
122
+
123
+ if not is_trait_available:
124
+ import pandas as pd
125
+
126
+ print("Trait data is not available. Skipping link, missing-value handling, and bias checks.")
127
+ # Provide a boolean for is_biased to avoid the ValueError in final validation.
128
+ # The dataset is not usable because the trait is missing, so we can set is_biased=True.
129
+ is_usable = validate_and_save_cohort_info(
130
+ is_final=True,
131
+ cohort=cohort,
132
+ info_path=json_path,
133
+ is_gene_available=True, # gene data is available,
134
+ is_trait_available=False, # but trait data is missing
135
+ is_biased=True, # no valid trait -> not usable
136
+ df=pd.DataFrame(), # an empty DataFrame suffices here
137
+ note="Trait data not found; dataset is not usable."
138
+ )
139
+ print("Dataset was not deemed usable due to missing trait data; final linked data not saved.")
140
+
141
+ else:
142
+ # 1. Normalize gene symbols in the obtained gene expression data
143
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
144
+ normalized_gene_data.to_csv(out_gene_data_file)
145
+ print(f"Saved normalized gene data to {out_gene_data_file}")
146
+
147
+ # 2. Link the clinical and genetic data on sample IDs (requires clinical data from step 2)
148
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
149
+
150
+ # 3. Handle missing values in linked data
151
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
152
+
153
+ # 4. Determine bias
154
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)
155
+
156
+ # 5. Final validation
157
+ is_usable = validate_and_save_cohort_info(
158
+ is_final=True,
159
+ cohort=cohort,
160
+ info_path=json_path,
161
+ is_gene_available=True,
162
+ is_trait_available=True,
163
+ is_biased=trait_biased,
164
+ df=linked_data,
165
+ note="Trait data and gene data successfully linked."
166
+ )
167
+
168
+ # 6. Save final linked data if usable
169
+ if is_usable:
170
+ linked_data.to_csv(out_data_file)
171
+ print(f"Saved final linked data to {out_data_file}")
172
+ else:
173
+ print("Dataset was not deemed usable; final linked data not saved.")
p1/preprocess/Arrhythmia/code/GSE143924.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Arrhythmia"
6
+ cohort = "GSE143924"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Arrhythmia"
10
+ in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE143924"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Arrhythmia/GSE143924.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE143924.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE143924.csv"
16
+ json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1) Assess Gene Expression Data Availability
43
+ is_gene_available = True # "Transcriptome analysis" indicates gene expression data is available.
44
+
45
+ # 2) Identify Variable Availability (trait, age, gender) and Define Converters
46
+ trait_row = 1
47
+ age_row = None
48
+ gender_row = None
49
+
50
+ def convert_trait(value: str):
51
+ parts = value.split(':')
52
+ val = parts[1].strip() if len(parts) > 1 else parts[0].strip()
53
+ # Map sinus rhythm => 0, atrial fibrillation => 1, otherwise None
54
+ if 'sinus rhythm' in val.lower():
55
+ return 0
56
+ elif 'atrial fibrillation' in val.lower():
57
+ return 1
58
+ return None
59
+
60
+ def convert_age(value: str):
61
+ return None # No age data available
62
+
63
+ def convert_gender(value: str):
64
+ return None # No gender data available
65
+
66
+ # 3) Initial Filtering and Save Metadata
67
+ is_trait_available = (trait_row is not None)
68
+ is_usable = validate_and_save_cohort_info(
69
+ is_final=False,
70
+ cohort=cohort,
71
+ info_path=json_path,
72
+ is_gene_available=is_gene_available,
73
+ is_trait_available=is_trait_available
74
+ )
75
+
76
+ # 4) If trait data is available, extract clinical features and save
77
+ if trait_row is not None:
78
+ selected_clinical_data = geo_select_clinical_features(
79
+ clinical_df=clinical_data,
80
+ trait=trait,
81
+ trait_row=trait_row,
82
+ convert_trait=convert_trait,
83
+ age_row=age_row,
84
+ convert_age=convert_age,
85
+ gender_row=gender_row,
86
+ convert_gender=convert_gender
87
+ )
88
+ print("Preview of Selected Clinical Features:")
89
+ print(preview_df(selected_clinical_data, n=5, max_items=200))
90
+ selected_clinical_data.to_csv(out_clinical_data_file, index=False)
91
+ # STEP3
92
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
93
+ gene_data = get_genetic_data(matrix_file)
94
+
95
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
96
+ print(gene_data.index[:20])
97
+ # Based on the observed gene identifiers, they appear to be recognized human gene symbols or their aliases.
98
+ requires_gene_mapping = False
99
+ # STEP 5: Data Normalization and Linking
100
+
101
+ # 1. Normalize gene symbols in the obtained gene expression data
102
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
103
+ normalized_gene_data.to_csv(out_gene_data_file)
104
+ print(f"Saved normalized gene data to {out_gene_data_file}")
105
+
106
+ # 2. Link the clinical and genetic data on sample IDs
107
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
108
+
109
+ # 3. Handle missing values in the linked data
110
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
111
+
112
+ # 4. Determine whether the trait/demographic features are severely biased
113
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)
114
+
115
+ # 5. Conduct final quality validation and save metadata
116
+ is_usable = validate_and_save_cohort_info(
117
+ is_final=True,
118
+ cohort=cohort,
119
+ info_path=json_path,
120
+ is_gene_available=True,
121
+ is_trait_available=True,
122
+ is_biased=trait_biased,
123
+ df=linked_data,
124
+ note="Trait data and gene data successfully linked."
125
+ )
126
+
127
+ # 6. If the dataset is deemed usable, save the final linked data as a CSV file
128
+ if is_usable:
129
+ linked_data.to_csv(out_data_file)
130
+ print(f"Saved final linked data to {out_data_file}")
131
+ else:
132
+ print("Dataset was not deemed usable; final linked data not saved.")
p1/preprocess/Arrhythmia/code/GSE182600.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Arrhythmia"
6
+ cohort = "GSE182600"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Arrhythmia"
10
+ in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE182600"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Arrhythmia/GSE182600.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE182600.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE182600.csv"
16
+ json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # Step 1: Determine if gene expression data is available
43
+ is_gene_available = True # Based on the background info describing "genome-wide gene expression"
44
+
45
+ # Step 2: Identify trait/age/gender rows and define data conversion functions
46
+ trait_row = 0 # Row containing disease states, including "Arrhythmia"
47
+ age_row = 1 # Row containing age
48
+ gender_row = 2 # Row containing gender
49
+
50
+ def convert_trait(value: str) -> int:
51
+ """
52
+ Convert the 'disease state' string to a binary value.
53
+ 1 if it indicates 'Arrhythmia', else 0.
54
+ """
55
+ # Extract the part after "disease state:"
56
+ parts = value.split(":")
57
+ if len(parts) < 2:
58
+ return None
59
+ disease_str = parts[1].strip().lower()
60
+ return 1 if disease_str == "arrhythmia" else 0
61
+
62
+ def convert_age(value: str) -> float:
63
+ """
64
+ Convert the 'age' string to a float.
65
+ Return None if conversion fails.
66
+ """
67
+ parts = value.split(":")
68
+ if len(parts) < 2:
69
+ return None
70
+ try:
71
+ return float(parts[1].strip())
72
+ except ValueError:
73
+ return None
74
+
75
+ def convert_gender(value: str) -> int:
76
+ """
77
+ Convert the 'gender' string to a binary value.
78
+ Female -> 0, Male -> 1, None if unknown.
79
+ """
80
+ parts = value.split(":")
81
+ if len(parts) < 2:
82
+ return None
83
+ gender_str = parts[1].strip().lower()
84
+ if gender_str == "f":
85
+ return 0
86
+ elif gender_str == "m":
87
+ return 1
88
+ else:
89
+ return None
90
+
91
+ # Step 3: Determine if trait data is available
92
+ is_trait_available = (trait_row is not None)
93
+
94
+ # Perform initial filtering and save metadata
95
+ is_usable = validate_and_save_cohort_info(
96
+ is_final=False,
97
+ cohort=cohort,
98
+ info_path=json_path,
99
+ is_gene_available=is_gene_available,
100
+ is_trait_available=is_trait_available
101
+ )
102
+
103
+ # Step 4: If trait is available, extract clinical features and save
104
+ if trait_row is not None:
105
+ # Assume 'clinical_data' is already loaded as a DataFrame in the environment
106
+ selected_clinical_df = geo_select_clinical_features(
107
+ clinical_data,
108
+ trait="Trait",
109
+ trait_row=trait_row,
110
+ convert_trait=convert_trait,
111
+ age_row=age_row,
112
+ convert_age=convert_age,
113
+ gender_row=gender_row,
114
+ convert_gender=convert_gender
115
+ )
116
+ print("Preview of selected clinical dataframe:", preview_df(selected_clinical_df))
117
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
118
+ # STEP3
119
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
120
+ gene_data = get_genetic_data(matrix_file)
121
+
122
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
123
+ print(gene_data.index[:20])
124
+ # The listed identifiers (e.g., "ILMN_...") are Illumina probe IDs, not standard human gene symbols.
125
+ # Therefore, they require mapping to gene symbols.
126
+
127
+ requires_gene_mapping = True
128
+ # STEP5
129
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
130
+ gene_annotation = get_gene_annotation(soft_file)
131
+
132
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
133
+ print("Gene annotation preview:")
134
+ print(preview_df(gene_annotation))
135
+ # STEP: Gene Identifier Mapping
136
+
137
+ # 1. Identify which columns from the gene_annotation match the gene expression IDs and the gene symbols
138
+ prob_col = "ID" # column in gene_annotation matching the probe ID (e.g., "ILMN_...")
139
+ symbol_col = "Symbol" # column in gene_annotation storing the gene symbol
140
+
141
+ # 2. Generate a mapping dataframe using the library function
142
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=symbol_col)
143
+
144
+ # 3. Apply the mapping to convert probe-level data to gene-level data
145
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
146
+ # STEP 7: Data Normalization and Linking
147
+
148
+ # 1. Normalize gene symbols in the obtained gene expression data
149
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
150
+ normalized_gene_data.to_csv(out_gene_data_file)
151
+ print(f"Saved normalized gene data to {out_gene_data_file}")
152
+
153
+ # 2. Link the clinical and genetic data on sample IDs
154
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
155
+
156
+ # 3. Handle missing values in the linked data
157
+ linked_data = handle_missing_values(linked_data, trait_col="Trait")
158
+
159
+ # 4. Determine whether the trait/demographic features are severely biased
160
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait="Trait")
161
+
162
+ # 5. Conduct final quality validation and save metadata
163
+ is_usable = validate_and_save_cohort_info(
164
+ is_final=True,
165
+ cohort=cohort,
166
+ info_path=json_path,
167
+ is_gene_available=True,
168
+ is_trait_available=True,
169
+ is_biased=trait_biased,
170
+ df=linked_data,
171
+ note="Trait data and gene data successfully linked."
172
+ )
173
+
174
+ # 6. If the dataset is deemed usable, save the final linked data as a CSV file
175
+ if is_usable:
176
+ linked_data.to_csv(out_data_file)
177
+ print(f"Saved final linked data to {out_data_file}")
178
+ else:
179
+ print("Dataset was not deemed usable; final linked data not saved.")
p1/preprocess/Arrhythmia/code/GSE235307.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Arrhythmia"
6
+ cohort = "GSE235307"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Arrhythmia"
10
+ in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE235307"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Arrhythmia/GSE235307.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE235307.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE235307.csv"
16
+ json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Gene Expression Data Availability
43
+ # Based on the series summary stating “Gene expression ...”, we set is_gene_available=True.
44
+ is_gene_available = True
45
+
46
+ # 2. Variable Availability and Data Type Conversion
47
+
48
+ # 2.1 Assign row keys if data is available and non-constant.
49
+ # Observing the sample characteristics, we identify:
50
+ # - trait_row: 5 (where we see "Atrial fibrillation" vs "Sinus rhythm")
51
+ # - age_row: 2 (ages vary)
52
+ # - gender_row: 1 (male/female are present)
53
+
54
+ trait_row = 5
55
+ age_row = 2
56
+ gender_row = 1
57
+
58
+ # 2.2 Define the conversion functions
59
+
60
+ def convert_trait(value: str) -> Optional[int]:
61
+ """Convert 'cardiac rhythm after 1 year follow-up' to binary (0 or 1)."""
62
+ # Extract the substring after colon
63
+ parts = value.split(':', 1)
64
+ if len(parts) < 2:
65
+ return None
66
+ val = parts[1].strip().lower() # e.g. 'sinus rhythm', 'atrial fibrillation'
67
+ if val == 'sinus rhythm':
68
+ return 0
69
+ elif val == 'atrial fibrillation':
70
+ return 1
71
+ else:
72
+ return None
73
+
74
+ def convert_age(value: str) -> Optional[float]:
75
+ """Convert the age string to float."""
76
+ parts = value.split(':', 1)
77
+ if len(parts) < 2:
78
+ return None
79
+ val = parts[1].strip()
80
+ try:
81
+ return float(val)
82
+ except ValueError:
83
+ return None
84
+
85
+ def convert_gender(value: str) -> Optional[int]:
86
+ """Convert gender to binary (0 for Female, 1 for Male)."""
87
+ parts = value.split(':', 1)
88
+ if len(parts) < 2:
89
+ return None
90
+ val = parts[1].strip().lower()
91
+ if val == 'male':
92
+ return 1
93
+ elif val == 'female':
94
+ return 0
95
+ else:
96
+ return None
97
+
98
+ # 3. Save Metadata using initial filtering
99
+ is_trait_available = (trait_row is not None)
100
+ is_usable = validate_and_save_cohort_info(
101
+ is_final=False,
102
+ cohort=cohort,
103
+ info_path=json_path,
104
+ is_gene_available=is_gene_available,
105
+ is_trait_available=is_trait_available
106
+ )
107
+
108
+ # 4. Clinical Feature Extraction (only if trait_row is not None)
109
+ if trait_row is not None:
110
+ selected_clinical_df = geo_select_clinical_features(
111
+ clinical_data,
112
+ trait=trait,
113
+ trait_row=trait_row,
114
+ convert_trait=convert_trait,
115
+ age_row=age_row,
116
+ convert_age=convert_age,
117
+ gender_row=gender_row,
118
+ convert_gender=convert_gender
119
+ )
120
+ # Preview the selected clinical features
121
+ preview_result = preview_df(selected_clinical_df)
122
+ print("Preview of selected clinical features:", preview_result)
123
+ # Save the clinical features to CSV
124
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
125
+ # STEP3
126
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
127
+ gene_data = get_genetic_data(matrix_file)
128
+
129
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
130
+ print(gene_data.index[:20])
131
+ # Observing the given identifiers (e.g., '4', '5', '6', etc.), they do not match typical human gene symbols.
132
+ # Therefore, they likely need to be mapped to recognized gene symbols.
133
+
134
+ print("requires_gene_mapping = True")
135
+ # STEP5
136
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
137
+ gene_annotation = get_gene_annotation(soft_file)
138
+
139
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
140
+ print("Gene annotation preview:")
141
+ print(preview_df(gene_annotation))
142
+ # STEP: Gene Identifier Mapping
143
+
144
+ # 1. Identify columns in the gene_annotation dataframe corresponding to the probe IDs (matching gene_data.index)
145
+ # and the gene symbols.
146
+ probe_id_column = "ID"
147
+ gene_symbol_column = "GENE_SYMBOL"
148
+
149
+ # 2. Get a gene mapping dataframe from the gene annotation
150
+ mapping_df = get_gene_mapping(
151
+ gene_annotation,
152
+ prob_col=probe_id_column,
153
+ gene_col=gene_symbol_column
154
+ )
155
+
156
+ # 3. Convert probe-level measurements to gene-level expression data using the mapping
157
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
158
+ import pandas as pd
159
+
160
+ # STEP 7: Data Normalization and Linking
161
+
162
+ # 1. Normalize gene symbols in the obtained gene expression data
163
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
164
+ normalized_gene_data.to_csv(out_gene_data_file)
165
+ print(f"Saved normalized gene data to {out_gene_data_file}")
166
+
167
+ # 2. Read the clinical DataFrame in a way that preserves the three rows (Arrhythmia, Age, Gender)
168
+ # and interprets the first CSV row as the sample ID columns.
169
+ clinical_df = pd.read_csv(out_clinical_data_file, header=0)
170
+ # We know there are exactly 3 rows of data: [0]: Arrhythmia, [1]: Age, [2]: Gender
171
+ clinical_df.index = [trait, "Age", "Gender"]
172
+
173
+ # 3. Link the clinical and genetic data
174
+ linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
175
+
176
+ # 4. Handle missing values
177
+ linked_data = handle_missing_values(linked_data, trait)
178
+
179
+ # 5. Check for bias in the trait and remove any biased demographic features
180
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
181
+
182
+ # 6. Perform final validation and save metadata
183
+ is_usable = validate_and_save_cohort_info(
184
+ is_final=True,
185
+ cohort=cohort,
186
+ info_path=json_path,
187
+ is_gene_available=True,
188
+ is_trait_available=True,
189
+ is_biased=trait_biased,
190
+ df=linked_data,
191
+ note="Trait data is available; completed linking and preprocessing."
192
+ )
193
+
194
+ # 7. If the dataset is usable, save the final linked data
195
+ if is_usable:
196
+ linked_data.to_csv(out_data_file, index=True)
197
+ print(f"Saved linked data to {out_data_file}")
198
+ else:
199
+ print("The dataset is not usable; skipping final data output.")
p1/preprocess/Arrhythmia/code/GSE55231.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Arrhythmia"
6
+ cohort = "GSE55231"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Arrhythmia"
10
+ in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE55231"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Arrhythmia/GSE55231.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE55231.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE55231.csv"
16
+ json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Determine if gene expression data is available
43
+ is_gene_available = True # Based on study description (eQTL analysis, transcription profiling)
44
+
45
+ # 2. Identify variable availability
46
+ # Trait "Arrhythmia" is not listed in the sample characteristics, so treat it as not available.
47
+ trait_row = None
48
+
49
+ # Age is provided under key 2
50
+ age_row = 2
51
+
52
+ # Gender is provided under key 0
53
+ gender_row = 0
54
+
55
+ # 2.2 Define conversion functions
56
+ def convert_trait(value: str):
57
+ # Trait data is not available. Return None for all inputs.
58
+ return None
59
+
60
+ def convert_age(value: str):
61
+ # Parse the string after colon and convert to float if possible
62
+ parts = value.split(':', 1)
63
+ raw = parts[1].strip() if len(parts) > 1 else parts[0].strip()
64
+ try:
65
+ return float(raw)
66
+ except ValueError:
67
+ return None
68
+
69
+ def convert_gender(value: str):
70
+ # Parse the string after colon and convert to binary (female=0, male=1)
71
+ parts = value.split(':', 1)
72
+ raw = parts[1].strip().lower() if len(parts) > 1 else parts[0].strip().lower()
73
+ if raw == 'female':
74
+ return 0
75
+ elif raw == 'male':
76
+ return 1
77
+ return None
78
+
79
+ # 3. Initial usability filtering and metadata saving
80
+ is_trait_available = (trait_row is not None)
81
+ cohort_usable = validate_and_save_cohort_info(
82
+ is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=is_trait_available
87
+ )
88
+
89
+ # 4. Since trait_row is None, skip clinical feature extraction.
90
+ # STEP3
91
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
92
+ gene_data = get_genetic_data(matrix_file)
93
+
94
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
95
+ print(gene_data.index[:20])
96
+ # Based on observation, the "ILMN_" prefix indicates Illumina probe IDs, not standard human gene symbols.
97
+ # Therefore, they require mapping to gene symbols.
98
+ print("These identifiers are Illumina probe IDs.\nrequires_gene_mapping = True")
99
+ # STEP5
100
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
101
+ gene_annotation = get_gene_annotation(soft_file)
102
+
103
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
104
+ print("Gene annotation preview:")
105
+ print(preview_df(gene_annotation))
106
+ # STEP: Gene Identifier Mapping
107
+
108
+ # 1. Identify the columns in gene_annotation that match the probe ID and gene symbol
109
+ probe_col = 'ID'
110
+ gene_symbol_col = 'Symbol'
111
+
112
+ # 2. Create the gene mapping dataframe
113
+ gene_mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)
114
+
115
+ # 3. Convert probe-level measurements to gene-level expression data
116
+ gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
117
+
118
+ # Just for a brief preview, let's check the resulting shape
119
+ print("Mapped gene_data shape:", gene_data.shape)
120
+ # STEP 7: Data Normalization and Linking
121
+
122
+ # 1. Normalize gene symbols in the obtained gene expression data
123
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
124
+ normalized_gene_data.to_csv(out_gene_data_file)
125
+ print(f"Saved normalized gene data to {out_gene_data_file}")
126
+
127
+ # 2. Check if we have a clinical dataframe called 'selected_clinical_df' (which only exists if trait_row was not None)
128
+ if 'selected_clinical_df' in globals():
129
+ # We have trait data, so we can link and proceed with the final steps.
130
+ selected_clinical = selected_clinical_df
131
+
132
+ # 3. Link the clinical and genetic data on sample IDs
133
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
134
+
135
+ # 4. Handle missing values, removing or imputing as instructed
136
+ linked_data = handle_missing_values(linked_data, trait)
137
+
138
+ # 5. Determine whether the trait is severely biased.
139
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
140
+
141
+ # 6. Conduct final quality validation and save metadata
142
+ is_usable = validate_and_save_cohort_info(
143
+ is_final=True,
144
+ cohort=cohort,
145
+ info_path=json_path,
146
+ is_gene_available=True,
147
+ is_trait_available=True,
148
+ is_biased=trait_biased,
149
+ df=linked_data,
150
+ note="Cohort data successfully processed with trait-based analysis."
151
+ )
152
+
153
+ # 7. If the dataset is usable, save the final linked data
154
+ if is_usable:
155
+ linked_data.to_csv(out_data_file, index=True)
156
+ print(f"Saved final linked data to {out_data_file}")
157
+ else:
158
+ print("The dataset is not usable for trait-based association. Skipping final output.")
159
+
160
+ else:
161
+ # Trait data was not extracted in Step 2 (trait_row was None), so no clinical linking or bias checks.
162
+ print("No trait data found. Skipping linking, missing value handling, and trait bias analysis.")
163
+ # Perform an initial metadata save (not final) since we lack a trait.
164
+ is_usable = validate_and_save_cohort_info(
165
+ is_final=False,
166
+ cohort=cohort,
167
+ info_path=json_path,
168
+ is_gene_available=True,
169
+ is_trait_available=False
170
+ )
171
+ # Without trait data, this dataset won't move forward to final association analysis
172
+ print("No final output generated due to missing trait data.")
p1/preprocess/Arrhythmia/code/GSE93101.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Arrhythmia"
6
+ cohort = "GSE93101"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Arrhythmia"
10
+ in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE93101"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Arrhythmia/GSE93101.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE93101.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE93101.csv"
16
+ json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Decide whether gene expression data is available
43
+ # From the background information, this submission represents transcriptome data.
44
+ is_gene_available = True
45
+
46
+ # 2. Identify rows for trait, age, and gender, and define conversion functions.
47
+ # - trait_row, age_row, gender_row
48
+ trait_row = 0 # "course:" with multiple diseases listed, including "Arrhythmia"
49
+ age_row = 1 # "age:"
50
+ gender_row = 2 # "gender:"
51
+
52
+ def convert_trait(value: str) -> Optional[int]:
53
+ """Convert the 'course' field to a binary variable: 1 if Arrhythmia, 0 otherwise."""
54
+ try:
55
+ # Example: "course: Arrhythmia"
56
+ val = value.split(":")[1].strip().lower()
57
+ return 1 if val == "arrhythmia" else 0
58
+ except IndexError:
59
+ return None
60
+
61
+ def convert_age(value: str) -> Optional[float]:
62
+ """Convert the 'age' field to a float."""
63
+ try:
64
+ # Example: "age: 55.8"
65
+ val = value.split(":")[1].strip()
66
+ return float(val)
67
+ except (IndexError, ValueError):
68
+ return None
69
+
70
+ def convert_gender(value: str) -> Optional[int]:
71
+ """Convert the 'gender' field to 0 (Female) or 1 (Male)."""
72
+ try:
73
+ # Example: "gender: F"
74
+ val = value.split(":")[1].strip().lower()
75
+ if val == "f":
76
+ return 0
77
+ elif val == "m":
78
+ return 1
79
+ else:
80
+ return None
81
+ except IndexError:
82
+ return None
83
+
84
+ # 3. Perform initial filtering and save metadata
85
+ # Trait data availability is inferred from whether trait_row is None.
86
+ is_trait_available = (trait_row is not None)
87
+
88
+ is_usable = validate_and_save_cohort_info(
89
+ is_final=False,
90
+ cohort=cohort,
91
+ info_path=json_path,
92
+ is_gene_available=is_gene_available,
93
+ is_trait_available=is_trait_available
94
+ )
95
+
96
+ # 4. If the trait data is available, extract and preview clinical features
97
+ if trait_row is not None:
98
+ selected_clinical_df = geo_select_clinical_features(
99
+ clinical_data, # Assume 'clinical_data' is our previously obtained pandas DataFrame
100
+ trait, # Global variable: "Arrhythmia"
101
+ trait_row,
102
+ convert_trait,
103
+ age_row,
104
+ convert_age,
105
+ gender_row,
106
+ convert_gender
107
+ )
108
+
109
+ # Preview the extracted clinical features
110
+ preview = preview_df(selected_clinical_df, n=5)
111
+ print(preview)
112
+
113
+ # Save the clinical features to file
114
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
115
+ # STEP3
116
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
117
+ gene_data = get_genetic_data(matrix_file)
118
+
119
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
120
+ print(gene_data.index[:20])
121
+ # Based on the provided identifiers (e.g., "ILMN_1651209", "ILMN_1651228"), they appear to be Illumina probe IDs, not standard human gene symbols.
122
+ # Therefore, mapping to gene symbols is needed.
123
+
124
+ print("requires_gene_mapping = True")
125
+ # STEP5
126
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
127
+ gene_annotation = get_gene_annotation(soft_file)
128
+
129
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
130
+ print("Gene annotation preview:")
131
+ print(preview_df(gene_annotation))
132
+ # STEP: Gene Identifier Mapping
133
+
134
+ # 1. Decide which columns correspond to the probe ID and the gene symbol.
135
+ # From the preview, the 'ID' column in 'gene_annotation' matches the expression data's row index,
136
+ # and the 'Symbol' column appears to store the gene symbol.
137
+ probe_id_col = "ID"
138
+ gene_symbol_col = "Symbol"
139
+
140
+ # 2. Get the gene mapping dataframe from the annotation.
141
+ mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)
142
+
143
+ # 3. Convert probe-level measurements to gene-level expression data.
144
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
145
+ # STEP 7: Data Normalization and Linking
146
+
147
+ # 1. Normalize gene symbols in the obtained gene expression data
148
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
149
+ normalized_gene_data.to_csv(out_gene_data_file)
150
+ print(f"Saved normalized gene data to {out_gene_data_file}")
151
+
152
+ # 2. Use the 'selected_clinical_df' variable from step 2 to link clinical and genetic data
153
+ selected_clinical = selected_clinical_df
154
+
155
+ # 3. Link the clinical and genetic data on sample IDs
156
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
157
+
158
+ # 4. Handle missing values, removing or imputing as instructed
159
+ linked_data = handle_missing_values(linked_data, trait)
160
+
161
+ # 5. Determine whether the trait (and potentially other features) is severely biased.
162
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
163
+
164
+ # 6. Conduct final quality validation and save metadata
165
+ is_usable = validate_and_save_cohort_info(
166
+ is_final=True,
167
+ cohort=cohort,
168
+ info_path=json_path,
169
+ is_gene_available=True,
170
+ is_trait_available=True, # We do have a trait column
171
+ is_biased=trait_biased,
172
+ df=linked_data,
173
+ note="Cohort data successfully processed with trait-based analysis."
174
+ )
175
+
176
+ # 7. If the dataset is usable, save the final linked data
177
+ if is_usable:
178
+ linked_data.to_csv(out_data_file, index=True)
179
+ print(f"Saved final linked data to {out_data_file}")
180
+ else:
181
+ print("The dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Arrhythmia/code/TCGA.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Arrhythmia"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Arrhythmia/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify the relevant subdirectory for the trait "Arrhythmia"
20
+ subdirectories = [
21
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
23
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
24
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
25
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
26
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
27
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
28
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
29
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
30
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
31
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
32
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
33
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
34
+ ]
35
+
36
+ # Include potential synonyms or related terms for "Arrhythmia"
37
+ trait_keyword = "Arrhythmia"
38
+ synonyms = ["arrhythmia", "af", "fibrillation", "arrhythmic", "atrial"]
39
+
40
+ target_subdir = None
41
+ for sd in subdirectories:
42
+ # Check if any synonym appears in the subdirectory name
43
+ if any(syn in sd.lower() for syn in synonyms):
44
+ target_subdir = sd
45
+ break
46
+
47
+ if target_subdir is None:
48
+ # No suitable data found for this trait; mark as completed
49
+ print("No TCGA subdirectory found for the trait. Skipping.")
50
+ else:
51
+ # 2. Locate clinical and genetic data files
52
+ cohort_dir = os.path.join(tcga_root_dir, target_subdir)
53
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
54
+
55
+ # 3. Load the data
56
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
57
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
58
+
59
+ # 4. Print column names of clinical data
60
+ print(clinical_df.columns)
p1/preprocess/Arrhythmia/gene_data/GSE115574.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM3182680,GSM3182681,GSM3182682,GSM3182683,GSM3182684,GSM3182685,GSM3182686,GSM3182687,GSM3182688,GSM3182689,GSM3182690,GSM3182691,GSM3182692,GSM3182693,GSM3182694,GSM3182695,GSM3182696,GSM3182697,GSM3182698,GSM3182699,GSM3182700,GSM3182701,GSM3182702,GSM3182703,GSM3182704,GSM3182705,GSM3182706,GSM3182707,GSM3182708,GSM3182709,GSM3182710,GSM3182711,GSM3182712,GSM3182713,GSM3182714,GSM3182715,GSM3182716,GSM3182717,GSM3182718,GSM3182719,GSM3182720,GSM3182721,GSM3182722,GSM3182723,GSM3182724,GSM3182725,GSM3182726,GSM3182727,GSM3182728,GSM3182729,GSM3182730,GSM3182731,GSM3182732,GSM3182733,GSM3182734,GSM3182735,GSM3182736,GSM3182737,GSM3182738
p1/preprocess/Arrhythmia/gene_data/GSE136992.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM4064970,GSM4064971,GSM4064972,GSM4064973,GSM4064974,GSM4064975,GSM4064976,GSM4064977,GSM4064978,GSM4064979,GSM4064980,GSM4064981,GSM4064982,GSM4064983,GSM4064984,GSM4064985,GSM4064986,GSM4064987,GSM4064988,GSM4064989,GSM4064990,GSM4064991,GSM4064992,GSM4064993,GSM4064994,GSM4064995,GSM4064996,GSM4064997,GSM4064998,GSM4064999,GSM4065000,GSM4065001,GSM4065002,GSM4065003,GSM4065004,GSM4065005,GSM4065006,GSM4065007,GSM4065008,GSM4065009,GSM4065010,GSM4065011,GSM4065012,GSM4065013,GSM4065014,GSM4065015,GSM4065016,GSM4065017,GSM4065018,GSM4065019,GSM4065020,GSM4065021,GSM4065022,GSM4065023,GSM4065024,GSM4065025,GSM4065026,GSM4065027,GSM4065028,GSM4065029
p1/preprocess/Arrhythmia/gene_data/GSE143924.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM4276706,GSM4276707,GSM4276708,GSM4276709,GSM4276710,GSM4276711,GSM4276712,GSM4276713,GSM4276714,GSM4276715,GSM4276716,GSM4276717,GSM4276718,GSM4276719,GSM4276720,GSM4276721,GSM4276722,GSM4276723,GSM4276724,GSM4276725,GSM4276726,GSM4276727,GSM4276728,GSM4276729,GSM4276730,GSM4276731,GSM4276732,GSM4276733,GSM4276734,GSM4276735
p1/preprocess/Arrhythmia/gene_data/GSE41177.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1005418,GSM1005419,GSM1005420,GSM1005421,GSM1005422,GSM1005423,GSM1005424,GSM1005425,GSM1005426,GSM1005427,GSM1005428,GSM1005429,GSM1005430,GSM1005431,GSM1005432,GSM1005433,GSM1005434,GSM1005435,GSM1005436,GSM1005437,GSM1005438,GSM1005439,GSM1005440,GSM1005441,GSM1005442,GSM1005443,GSM1005444,GSM1005445,GSM1006245,GSM1006246,GSM1006247,GSM1006248,GSM1006249,GSM1006250,GSM1006251,GSM1006252,GSM1006253,GSM1006254
p1/preprocess/Arrhythmia/gene_data/GSE53622.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1296956,GSM1296957,GSM1296958,GSM1296959,GSM1296960,GSM1296961,GSM1296962,GSM1296963,GSM1296964,GSM1296965,GSM1296966,GSM1296967,GSM1296968,GSM1296969,GSM1296970,GSM1296971,GSM1296972,GSM1296973,GSM1296974,GSM1296975,GSM1296976,GSM1296977,GSM1296978,GSM1296979,GSM1296980,GSM1296981,GSM1296982,GSM1296983,GSM1296984,GSM1296985,GSM1296986,GSM1296987,GSM1296988,GSM1296989,GSM1296990,GSM1296991,GSM1296992,GSM1296993,GSM1296994,GSM1296995,GSM1296996,GSM1296997,GSM1296998,GSM1296999,GSM1297000,GSM1297001,GSM1297002,GSM1297003,GSM1297004,GSM1297005,GSM1297006,GSM1297007,GSM1297008,GSM1297009,GSM1297010,GSM1297011,GSM1297012,GSM1297013,GSM1297014,GSM1297015,GSM1297016,GSM1297017,GSM1297018,GSM1297019,GSM1297020,GSM1297021,GSM1297022,GSM1297023,GSM1297024,GSM1297025,GSM1297026,GSM1297027,GSM1297028,GSM1297029,GSM1297030,GSM1297031,GSM1297032,GSM1297033,GSM1297034,GSM1297035,GSM1297036,GSM1297037,GSM1297038,GSM1297039,GSM1297040,GSM1297041,GSM1297042,GSM1297043,GSM1297044,GSM1297045,GSM1297046,GSM1297047,GSM1297048,GSM1297049,GSM1297050,GSM1297051,GSM1297052,GSM1297053,GSM1297054,GSM1297055,GSM1297056,GSM1297057,GSM1297058,GSM1297059,GSM1297060,GSM1297061,GSM1297062,GSM1297063,GSM1297064,GSM1297065,GSM1297066,GSM1297067,GSM1297068,GSM1297069,GSM1297070,GSM1297071,GSM1297072,GSM1297073,GSM1297074,GSM1297075
p1/preprocess/Arrhythmia/gene_data/GSE55231.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1332057,GSM1332058,GSM1332059,GSM1332060,GSM1332061,GSM1332062,GSM1332063,GSM1332064,GSM1332065,GSM1332066,GSM1332067,GSM1332068,GSM1332069,GSM1332070,GSM1332071,GSM1332072,GSM1332073,GSM1332074,GSM1332075,GSM1332076,GSM1332077,GSM1332078,GSM1332079,GSM1332080,GSM1332081,GSM1332082,GSM1332083,GSM1332084,GSM1332085,GSM1332086,GSM1332087,GSM1332088,GSM1332089,GSM1332090,GSM1332091,GSM1332092,GSM1332093,GSM1332094,GSM1332095,GSM1332096,GSM1332097,GSM1332098,GSM1332099,GSM1332100,GSM1332101,GSM1332102,GSM1332103,GSM1332104,GSM1332105,GSM1332106,GSM1332107,GSM1332108,GSM1332109,GSM1332110,GSM1332111,GSM1332112,GSM1332113,GSM1332114,GSM1332115,GSM1332116,GSM1332117,GSM1332118,GSM1332119,GSM1332120,GSM1332121,GSM1332122,GSM1332123,GSM1332124,GSM1332125,GSM1332126,GSM1332127,GSM1332128,GSM1332129,GSM1332130,GSM1332131,GSM1332132,GSM1332133,GSM1332134,GSM1332135,GSM1332136,GSM1332137,GSM1332138,GSM1332139,GSM1332140,GSM1332141,GSM1332142,GSM1332143,GSM1332144,GSM1332145,GSM1332146,GSM1332147,GSM1332148,GSM1332149,GSM1332150,GSM1332151,GSM1332152,GSM1332153,GSM1332154,GSM1332155,GSM1332156,GSM1332157,GSM1332158,GSM1332159,GSM1332160,GSM1332161,GSM1332162,GSM1332163,GSM1332164,GSM1332165,GSM1332166,GSM1332167,GSM1332168,GSM1332169,GSM1332170,GSM1332171,GSM1332172,GSM1332173,GSM1332174,GSM1332175,GSM1332176,GSM1332177,GSM1332178,GSM1332179,GSM1332180,GSM1332181,GSM1332182,GSM1332183,GSM1332184,GSM1332185
p1/preprocess/Arrhythmia/gene_data/GSE93101.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM2443799,GSM2443800,GSM2443801,GSM2443802,GSM2443803,GSM2443804,GSM2443805,GSM2443806,GSM2443807,GSM2443808,GSM2443809,GSM2443810,GSM2443811,GSM2443812,GSM2443813,GSM2443814,GSM2443815,GSM2443816,GSM2443817,GSM2443818,GSM2443819,GSM2443820,GSM2443821,GSM2443822,GSM2443823,GSM2443824,GSM2443825,GSM2443826,GSM2443827,GSM2443828,GSM2443829,GSM2443830,GSM2443831
p1/preprocess/Asthma/clinical_data/GSE123086.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 56.0,,20.0,51.0,37.0,61.0,,31.0,56.0,41.0,61.0,,80.0,53.0,61.0,73.0,60.0,76.0,77.0,74.0,69.0,77.0,81.0,70.0,82.0,69.0,82.0,67.0,67.0,78.0,67.0,74.0,,51.0,72.0,66.0,80.0,36.0,67.0,31.0,31.0,45.0,56.0,65.0,53.0,48.0,50.0,76.0,,24.0,42.0,76.0,22.0,,23.0,34.0,43.0,47.0,24.0,55.0,48.0,58.0,30.0,28.0,41.0,63.0,55.0,55.0,67.0,47.0,46.0,49.0,23.0,68.0,39.0,24.0,36.0,58.0,38.0,27.0,67.0,61.0,69.0,63.0,60.0,17.0,10.0,9.0,13.0,10.0,13.0,15.0,12.0,13.0,81.0,94.0,51.0,40.0,,97.0,23.0,93.0,58.0,28.0,54.0,15.0,8.0,11.0,12.0,8.0,14.0,8.0,10.0,14.0,13.0,40.0,52.0,42.0,29.0,43.0,41.0,54.0,42.0,49.0,45.0,56.0,64.0,71.0,48.0,20.0,53.0,32.0,26.0,28.0,47.0,24.0,48.0,,19.0,41.0,38.0,,15.0,12.0,13.0,,11.0,,16.0,11.0,,35.0,26.0,39.0,46.0,42.0,20.0,69.0,69.0,47.0,47.0,56.0,54.0,53.0,50.0,22.0
p1/preprocess/Asthma/clinical_data/GSE123088.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049,GSM3495050,GSM3495051,GSM3495052,GSM3495053,GSM3495054,GSM3495055,GSM3495056,GSM3495057,GSM3495058,GSM3495059,GSM3495060,GSM3495061,GSM3495062,GSM3495063,GSM3495064,GSM3495065,GSM3495066,GSM3495067,GSM3495068,GSM3495069,GSM3495070,GSM3495071,GSM3495072,GSM3495073,GSM3495074,GSM3495075,GSM3495076,GSM3495077,GSM3495078,GSM3495079,GSM3495080,GSM3495081,GSM3495082,GSM3495083,GSM3495084,GSM3495085,GSM3495086,GSM3495087
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 56.0,,20.0,51.0,37.0,61.0,,31.0,56.0,41.0,61.0,,80.0,53.0,61.0,73.0,60.0,76.0,77.0,74.0,69.0,77.0,81.0,70.0,82.0,69.0,82.0,67.0,67.0,78.0,67.0,74.0,,51.0,72.0,66.0,80.0,36.0,67.0,31.0,31.0,45.0,56.0,65.0,53.0,48.0,50.0,76.0,,24.0,42.0,76.0,22.0,,23.0,34.0,43.0,47.0,24.0,55.0,48.0,58.0,30.0,28.0,41.0,63.0,55.0,55.0,67.0,47.0,46.0,49.0,23.0,68.0,39.0,24.0,36.0,58.0,38.0,27.0,67.0,61.0,69.0,63.0,60.0,17.0,10.0,9.0,13.0,10.0,13.0,15.0,12.0,13.0,81.0,94.0,51.0,40.0,,97.0,23.0,93.0,58.0,28.0,54.0,15.0,8.0,11.0,12.0,8.0,14.0,8.0,10.0,14.0,13.0,40.0,52.0,42.0,29.0,43.0,41.0,54.0,42.0,49.0,45.0,56.0,64.0,71.0,48.0,20.0,53.0,32.0,26.0,28.0,47.0,24.0,48.0,,19.0,41.0,38.0,,15.0,12.0,13.0,,11.0,,16.0,11.0,,35.0,26.0,39.0,46.0,42.0,20.0,69.0,69.0,47.0,47.0,56.0,54.0,53.0,50.0,22.0,62.0,74.0,57.0,47.0,70.0,50.0,52.0,43.0,57.0,53.0,70.0,41.0,61.0,39.0,58.0,55.0,63.0,60.0,43.0,68.0,67.0,50.0,67.0,51.0,59.0,44.0,35.0,83.0,78.0,88.0,41.0,60.0,72.0,53.0,73.0,56.0,38.0,53.0
4
+ 1.0,,0.0,0.0,1.0,1.0,,1.0,0.0,0.0,0.0,,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,0.0,0.0,1.0,1.0,,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,0.0,1.0,0.0,,1.0,,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Asthma/clinical_data/GSE182797.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM5537157,GSM5537158,GSM5537159,GSM5537160,GSM5537161,GSM5537162,GSM5537163,GSM5537164,GSM5537165,GSM5537166,GSM5537167,GSM5537168,GSM5537169,GSM5537170,GSM5537171,GSM5537172,GSM5537173,GSM5537174,GSM5537175,GSM5537176,GSM5537177,GSM5537178,GSM5537179,GSM5537180,GSM5537181,GSM5537182,GSM5537183,GSM5537184,GSM5537185,GSM5537186,GSM5537187,GSM5537188,GSM5537189,GSM5537190,GSM5537191,GSM5537192,GSM5537193,GSM5537194,GSM5537195,GSM5537196,GSM5537197,GSM5537198,GSM5537199,GSM5537200,GSM5537201,GSM5537202,GSM5537203,GSM5537204,GSM5537205,GSM5537206,GSM5537207,GSM5537208,GSM5537209,GSM5537210,GSM5537211,GSM5537212,GSM5537213,GSM5537214,GSM5537215,GSM5537216,GSM5537217,GSM5537218,GSM5537219,GSM5537220,GSM5537221,GSM5537222,GSM5537223,GSM5537224,GSM5537225,GSM5537226,GSM5537227,GSM5537228,GSM5537229,GSM5537230,GSM5537231,GSM5537232,GSM5537233,GSM5537234,GSM5537235,GSM5537236
2
+ 0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0
3
+ 38.33,38.08,48.83,33.42,46.08,45.58,28.0,30.83,39.25,60.17,52.75,25.75,60.67,64.67,54.83,57.67,47.0,47.5,24.25,47.67,47.58,18.42,41.33,24.5,47.08,47.5,41.17,48.83,47.17,59.83,42.58,56.67,37.5,58.58,24.75,52.75,55.33,56.17,52.75,40.67,19.17,42.5,57.08,40.58,40.67,55.75,43.17,59.58,56.25,46.42,47.08,51.75,53.5,52.58,52.25,45.58,52.67,50.5,60.08,44.67,57.58,53.17,51.33,46.17,26.58,60.17,54.67,57.75,28.42,33.08,50.33,37.83,44.25,58.83,48.25,43.08,41.17,51.75,53.58,41.5
p1/preprocess/Asthma/clinical_data/GSE182798.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM5530417,GSM5530418,GSM5530419,GSM5530420,GSM5530421,GSM5530422,GSM5530423,GSM5530424,GSM5530425,GSM5530426,GSM5530427,GSM5530428,GSM5530429,GSM5530430,GSM5530431,GSM5530432,GSM5530433,GSM5530434,GSM5530435,GSM5530436,GSM5530437,GSM5530438,GSM5530439,GSM5530440,GSM5530441,GSM5530442,GSM5530443,GSM5530444,GSM5530445,GSM5530446,GSM5530447,GSM5530448,GSM5530449,GSM5530450,GSM5530451,GSM5530452,GSM5530453,GSM5530454,GSM5530455,GSM5530456,GSM5530457,GSM5530458,GSM5530459,GSM5530460,GSM5530461,GSM5530462,GSM5530463,GSM5530464,GSM5530465,GSM5530466,GSM5530467,GSM5530468,GSM5530469,GSM5530470,GSM5530471,GSM5530472,GSM5530473,GSM5530474,GSM5530475,GSM5530476,GSM5530477,GSM5530478,GSM5530479,GSM5530480,GSM5530481,GSM5530482,GSM5530483,GSM5530484,GSM5530485,GSM5530486,GSM5530487,GSM5530488,GSM5530489,GSM5530490,GSM5530491,GSM5530492,GSM5530493,GSM5530494,GSM5530495,GSM5530496,GSM5530497,GSM5530498,GSM5530499,GSM5530500,GSM5530501,GSM5530502,GSM5530503,GSM5530504,GSM5530505,GSM5530506,GSM5530507,GSM5530508,GSM5530509,GSM5530510,GSM5530511,GSM5530512,GSM5530513,GSM5530514,GSM5530515,GSM5530516,GSM5530517,GSM5530518,GSM5537157,GSM5537158,GSM5537159,GSM5537160,GSM5537161,GSM5537162,GSM5537163,GSM5537164,GSM5537165,GSM5537166,GSM5537167,GSM5537168,GSM5537169,GSM5537170,GSM5537171,GSM5537172,GSM5537173,GSM5537174,GSM5537175,GSM5537176,GSM5537177,GSM5537178,GSM5537179,GSM5537180,GSM5537181,GSM5537182,GSM5537183,GSM5537184,GSM5537185,GSM5537186,GSM5537187,GSM5537188,GSM5537189,GSM5537190,GSM5537191,GSM5537192,GSM5537193,GSM5537194,GSM5537195,GSM5537196,GSM5537197,GSM5537198,GSM5537199,GSM5537200,GSM5537201,GSM5537202,GSM5537203,GSM5537204,GSM5537205,GSM5537206,GSM5537207,GSM5537208,GSM5537209,GSM5537210,GSM5537211,GSM5537212,GSM5537213,GSM5537214,GSM5537215,GSM5537216,GSM5537217,GSM5537218,GSM5537219,GSM5537220,GSM5537221,GSM5537222,GSM5537223,GSM5537224,GSM5537225,GSM5537226,GSM5537227,GSM5537228,GSM5537229,GSM5537230,GSM5537231,GSM5537232,GSM5537233,GSM5537234,GSM5537235,GSM5537236
2
+ 1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0
3
+ 33.42,46.08,45.58,28.0,25.75,59.83,41.17,47.58,50.75,42.58,52.75,51.75,18.42,47.0,38.33,58.58,56.17,52.75,40.67,47.5,54.67,48.83,25.75,64.67,54.83,57.67,39.17,38.08,28.42,40.75,43.17,43.08,48.83,58.83,26.58,42.5,48.25,39.25,55.33,47.0,55.75,47.08,47.5,53.58,60.17,40.58,50.5,46.17,51.33,56.67,37.5,48.83,38.08,52.58,52.67,59.58,56.25,46.42,47.08,52.67,60.08,44.67,57.58,26.58,53.5,58.83,41.5,47.17,51.25,33.08,50.33,60.17,19.17,40.67,24.25,43.08,51.75,41.17,30.83,40.58,42.58,52.75,43.17,24.75,51.75,24.5,44.5,53.17,38.08,37.83,41.33,47.67,57.75,37.5,41.5,44.25,53.58,45.58,19.17,18.42,57.08,60.67,38.33,38.08,48.83,33.42,46.08,45.58,28.0,30.83,39.25,60.17,52.75,25.75,60.67,64.67,54.83,57.67,47.0,47.5,24.25,47.67,47.58,18.42,41.33,24.5,47.08,47.5,41.17,48.83,47.17,59.83,42.58,56.67,37.5,58.58,24.75,52.75,55.33,56.17,52.75,40.67,19.17,42.5,57.08,40.58,40.67,55.75,43.17,59.58,56.25,46.42,47.08,51.75,53.5,52.58,52.25,45.58,52.67,50.5,60.08,44.67,57.58,53.17,51.33,46.17,26.58,60.17,54.67,57.75,28.42,33.08,50.33,37.83,44.25,58.83,48.25,43.08,41.17,51.75,53.58,41.5
p1/preprocess/Asthma/clinical_data/GSE185658.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM5621296,GSM5621297,GSM5621298,GSM5621299,GSM5621300,GSM5621301,GSM5621302,GSM5621303,GSM5621304,GSM5621305,GSM5621306,GSM5621307,GSM5621308,GSM5621309,GSM5621310,GSM5621311,GSM5621312,GSM5621313,GSM5621314,GSM5621315,GSM5621316,GSM5621317,GSM5621318,GSM5621319,GSM5621320,GSM5621321,GSM5621322,GSM5621323,GSM5621324,GSM5621325,GSM5621326,GSM5621327,GSM5621328,GSM5621329,GSM5621330,GSM5621331,GSM5621332,GSM5621333,GSM5621334,GSM5621335,GSM5621336,GSM5621337,GSM5621338,GSM5621339,GSM5621340,GSM5621341,GSM5621342,GSM5621343
2
+ 1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Asthma/clinical_data/GSE270312.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM8339381,GSM8339382,GSM8339383,GSM8339384,GSM8339385,GSM8339386,GSM8339387,GSM8339388,GSM8339389,GSM8339390,GSM8339391,GSM8339392,GSM8339393,GSM8339394,GSM8339395,GSM8339396,GSM8339397,GSM8339398,GSM8339399,GSM8339400,GSM8339401,GSM8339402,GSM8339403,GSM8339404,GSM8339405,GSM8339406,GSM8339407,GSM8339408,GSM8339409,GSM8339410,GSM8339411,GSM8339412,GSM8339413,GSM8339414,GSM8339415,GSM8339416,GSM8339417,GSM8339418,GSM8339419,GSM8339420,GSM8339421,GSM8339422,GSM8339423,GSM8339424,GSM8339425,GSM8339426,GSM8339427,GSM8339428,GSM8339429,GSM8339430,GSM8339431,GSM8339432,GSM8339433,GSM8339434,GSM8339435,GSM8339436,GSM8339437,GSM8339438,GSM8339439,GSM8339440,GSM8339441,GSM8339442,GSM8339443,GSM8339444,GSM8339445,GSM8339446,GSM8339447,GSM8339448,GSM8339449,GSM8339450,GSM8339451,GSM8339452,GSM8339453,GSM8339454,GSM8339455,GSM8339456,GSM8339457,GSM8339458,GSM8339459,GSM8339460,GSM8339461,GSM8339462,GSM8339463,GSM8339464,GSM8339465,GSM8339466,GSM8339467,GSM8339468,GSM8339469,GSM8339470
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Asthma/code/GSE123086.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE123086"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE123086"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE123086.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE123086.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE123086.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if the dataset likely contains gene expression data
37
+ # Based on the microarray-based gene expression description, set this to True.
38
+ is_gene_available = True
39
+
40
+ # 2. Identify availability of "trait", "age", and "gender" from the sample characteristics
41
+ # After examining each row in the sample characteristics dictionary:
42
+ # - The primary diagnosis row is key 1, which includes "primary diagnosis: ASTHMA" among others.
43
+ # That will serve as our trait row, since it's not constant and contains "ASTHMA".
44
+ # - Age values appear predominantly in row 3 (and some in row 4). We'll select row 3 for age.
45
+ # - Gender data is scattered (partly in row 2, partly in row 3) and not presented in a single row,
46
+ # so we set gender_row to None.
47
+
48
+ trait_row = 1
49
+ age_row = 3
50
+ gender_row = None
51
+
52
+ # 2.2. Define data conversion functions
53
+
54
+ def convert_trait(x: str) -> Optional[int]:
55
+ """
56
+ Convert trait data into a binary variable, 1 for ASTHMA, 0 otherwise.
57
+ If not parsable, return None.
58
+ """
59
+ parts = x.split(':')
60
+ if len(parts) < 2:
61
+ return None
62
+ val = parts[1].strip().upper()
63
+ return 1 if val == "ASTHMA" else 0
64
+
65
+ def convert_age(x: str) -> Optional[float]:
66
+ """
67
+ Convert age data into a continuous float. If the string does not
68
+ contain 'age:' or cannot be parsed, return None.
69
+ """
70
+ parts = x.split(':')
71
+ if len(parts) < 2:
72
+ return None
73
+ if "age" in parts[0].lower():
74
+ try:
75
+ return float(parts[1].strip())
76
+ except ValueError:
77
+ return None
78
+ return None
79
+
80
+ def convert_gender(x: str) -> Optional[int]:
81
+ """
82
+ Convert gender data to 0 (female) or 1 (male). If not parsable, return None.
83
+ """
84
+ parts = x.split(':')
85
+ if len(parts) < 2:
86
+ return None
87
+ if "sex" in parts[0].lower():
88
+ val = parts[1].strip().lower()
89
+ if val == "female":
90
+ return 0
91
+ elif val == "male":
92
+ return 1
93
+ return None
94
+
95
+ # 3. Save metadata (initial filtering)
96
+ # Trait availability is True if trait_row is not None, otherwise False.
97
+ is_trait_available = (trait_row is not None)
98
+ is_usable = validate_and_save_cohort_info(
99
+ is_final=False,
100
+ cohort=cohort,
101
+ info_path=json_path,
102
+ is_gene_available=is_gene_available,
103
+ is_trait_available=is_trait_available
104
+ )
105
+
106
+ # 4. If trait data is available, extract clinical features and save them
107
+ if trait_row is not None:
108
+ selected_clinical_df = geo_select_clinical_features(
109
+ clinical_df=clinical_data,
110
+ trait=trait,
111
+ trait_row=trait_row,
112
+ convert_trait=convert_trait,
113
+ age_row=age_row,
114
+ convert_age=convert_age,
115
+ gender_row=gender_row,
116
+ convert_gender=convert_gender
117
+ )
118
+ # Preview the resulting DataFrame
119
+ preview_clin = preview_df(selected_clinical_df)
120
+ print("Preview of selected clinical features:", preview_clin)
121
+
122
+ # Save the clinical data to CSV
123
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
124
+ # STEP3
125
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
126
+ gene_data = get_genetic_data(matrix_file)
127
+
128
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
129
+ print(gene_data.index[:20])
130
+ # Observing the identifiers: they appear to be numeric and not standard human gene symbols.
131
+ # Therefore, they likely need to be mapped to gene symbols.
132
+ print("requires_gene_mapping = True")
133
+ # STEP5
134
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
135
+ gene_annotation = get_gene_annotation(soft_file)
136
+
137
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
138
+ print("Gene annotation preview:")
139
+ print(preview_df(gene_annotation))
140
+ # STEP 6: Gene Identifier Mapping (Revised Debugged Code)
141
+
142
+ def apply_gene_mapping_entrez(expression_df: pd.DataFrame, mapping_df: pd.DataFrame) -> pd.DataFrame:
143
+ """
144
+ Convert measured data about gene probes (indexed by numeric 'ID') into gene-level data
145
+ (using numeric Entrez IDs). Handles one-to-many or many-to-one mappings by splitting
146
+ probe expression values equally among mapped genes, and summing where multiple probes
147
+ map to the same gene.
148
+ """
149
+ # Remove any duplicate probe entries in the mapping
150
+ mapping_df = mapping_df.drop_duplicates(subset=['ID', 'Gene'])
151
+ mapping_df = mapping_df.dropna(subset=['ID', 'Gene'])
152
+
153
+ # Also ensure expression_df has a unique index
154
+ expression_df = expression_df[~expression_df.index.duplicated(keep='first')]
155
+
156
+ # Make sure mapping DataFrame is indexed by probe ID
157
+ mapping_df.set_index('ID', inplace=True)
158
+
159
+ # Some platforms may have multiple Entrez IDs joined by a delimiter. Split safely if needed.
160
+ mapping_df['Gene'] = mapping_df['Gene'].astype(str)
161
+ mapping_df['Gene'] = mapping_df['Gene'].apply(
162
+ lambda x: x.split('//') if '//' in x else x.split(';') if ';' in x else [x]
163
+ )
164
+
165
+ # Count the number of genes each probe maps to
166
+ mapping_df['num_genes'] = mapping_df['Gene'].apply(len)
167
+
168
+ # Expand to one row per (probe, gene) pair
169
+ mapping_df = mapping_df.explode('Gene').dropna(subset=['Gene'])
170
+
171
+ # Join expression values (probe-level) onto the mapping table
172
+ merged_df = mapping_df.join(expression_df, how='inner') # inner join to keep only matched probes
173
+
174
+ # Identify the columns containing actual expression values (the sample columns)
175
+ # We'll exclude 'Gene' and 'num_genes'
176
+ expr_cols = [c for c in merged_df.columns if c not in ['Gene', 'num_genes']]
177
+
178
+ # Divide each probe's expression by the number of genes it maps to
179
+ merged_df[expr_cols] = merged_df[expr_cols].div(merged_df['num_genes'].replace(0, 1), axis=0)
180
+
181
+ # Finally, sum over genes to get gene-level expression data
182
+ gene_expression_df = merged_df.groupby('Gene')[expr_cols].sum()
183
+
184
+ return gene_expression_df
185
+
186
+ # 1. Identify the columns in the annotation that match our needs
187
+ probe_col = "ID"
188
+ gene_col = "ENTREZ_GENE_ID"
189
+
190
+ # 2. Build a mapping DataFrame
191
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)
192
+
193
+ # 3. Convert probe-level data to gene-level data
194
+ # Using the debugged function that preserves numeric Entrez IDs
195
+ gene_data = apply_gene_mapping_entrez(gene_data, mapping_df)
196
+
197
+ # Check resulting shape and index
198
+ print("Mapped gene_data shape:", gene_data.shape)
199
+ print("First 10 gene identifiers in mapped data:", gene_data.index[:10].tolist())
200
+ # STEP7
201
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
202
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
203
+ normalized_gene_data.to_csv(out_gene_data_file)
204
+
205
+ # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.
206
+ # Replace 'df_clinical' with the correct clinical DataFrame variable 'selected_clinical_df'.
207
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
208
+
209
+ # 3. Handle missing values in the linked data
210
+ linked_data = handle_missing_values(linked_data, trait)
211
+
212
+ # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.
213
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
214
+
215
+ # 5. Conduct quality check and save the cohort information, passing the final unbiased data.
216
+ is_usable = validate_and_save_cohort_info(
217
+ is_final=True,
218
+ cohort=cohort,
219
+ info_path=json_path,
220
+ is_gene_available=True,
221
+ is_trait_available=True,
222
+ is_biased=is_trait_biased,
223
+ df=unbiased_linked_data
224
+ )
225
+
226
+ # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.
227
+ if is_usable:
228
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Asthma/code/GSE123088.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE123088"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE123088"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE123088.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE123088.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE123088.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # Step 1. Decide if gene expression data is available:
37
+ is_gene_available = True # Based on the background info, we assume it's a gene expression dataset.
38
+
39
+ # Step 2. Identify keys and define conversion functions.
40
+
41
+ # 2.1 Find the rows that hold the trait (Asthma), age, and gender data.
42
+ trait_row = 1 # multiple diagnoses found here, including 'ASTHMA'
43
+ age_row = 3 # row with various ages
44
+ gender_row = 2 # row containing both 'Sex: Male' and 'Sex: Female'
45
+
46
+ # 2.2 Data type conversion functions
47
+ def convert_trait(x: str):
48
+ """
49
+ Convert trait to binary:
50
+ 1 -> Asthma
51
+ 0 -> Non-Asthma
52
+ If cannot parse, return None.
53
+ """
54
+ parts = x.split(":")
55
+ if len(parts) < 2:
56
+ return None
57
+ value = parts[1].strip().lower()
58
+ # If the word "asthma" appears, treat it as 1; otherwise 0.
59
+ return 1 if "asthma" in value else 0
60
+
61
+ def convert_age(x: str):
62
+ """
63
+ Convert age to a float (continuous).
64
+ Unknown or unparsable -> None
65
+ """
66
+ parts = x.split(":")
67
+ if len(parts) < 2:
68
+ return None
69
+ value = parts[1].strip()
70
+ try:
71
+ return float(value)
72
+ except:
73
+ return None
74
+
75
+ def convert_gender(x: str):
76
+ """
77
+ Convert gender to binary:
78
+ 0 -> Female
79
+ 1 -> Male
80
+ Unknown -> None
81
+ """
82
+ parts = x.split(":")
83
+ if len(parts) < 2:
84
+ return None
85
+ value = parts[1].strip().lower()
86
+ if value == "male":
87
+ return 1
88
+ elif value == "female":
89
+ return 0
90
+ else:
91
+ return None
92
+
93
+ # Step 3. Save basic metadata (initial filtering)
94
+ is_trait_available = (trait_row is not None)
95
+ is_usable = validate_and_save_cohort_info(
96
+ is_final=False,
97
+ cohort=cohort,
98
+ info_path=json_path,
99
+ is_gene_available=is_gene_available,
100
+ is_trait_available=is_trait_available
101
+ )
102
+
103
+ # Step 4. Clinical feature extraction (only if trait data is available).
104
+ if trait_row is not None:
105
+ df_clinical = geo_select_clinical_features(
106
+ clinical_df=clinical_data,
107
+ trait=trait,
108
+ trait_row=trait_row,
109
+ convert_trait=convert_trait,
110
+ age_row=age_row,
111
+ convert_age=convert_age,
112
+ gender_row=gender_row,
113
+ convert_gender=convert_gender
114
+ )
115
+ # Observe the output
116
+ preview_result = preview_df(df_clinical)
117
+ print("Preview of extracted clinical features:\n", preview_result)
118
+
119
+ # Save the clinical features
120
+ df_clinical.to_csv(out_clinical_data_file, index=False)
121
+ # STEP3
122
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
123
+ gene_data = get_genetic_data(matrix_file)
124
+
125
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
126
+ print(gene_data.index[:20])
127
+ # Based on the numeric IDs observed (e.g., '1', '2', '3'), these are not standard human gene symbols.
128
+ # They appear to be Entrez IDs or some other numeric identifiers. Therefore, gene mapping is required.
129
+
130
+ requires_gene_mapping = True
131
+ # STEP5
132
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
133
+ gene_annotation = get_gene_annotation(soft_file)
134
+
135
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
136
+ print("Gene annotation preview:")
137
+ print(preview_df(gene_annotation))
138
+ # STEP: Gene Identifier Mapping
139
+
140
+ # 1. Identify which columns correspond to the gene expression IDs and the gene symbols:
141
+ # From the preview, the "ID" column matches the numeric identifiers in the gene expression DataFrame,
142
+ # and "ENTREZ_GENE_ID" represents the gene symbol (though it's also numeric, it's the only available gene label).
143
+
144
+ mapping_df = get_gene_mapping(
145
+ annotation=gene_annotation,
146
+ prob_col="ID", # The probe/ID column that matches the expression data index
147
+ gene_col="ENTREZ_GENE_ID" # The column we treat as the 'Gene' symbol
148
+ )
149
+
150
+ # 2. Convert probe-level measurements to gene-level expression
151
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
152
+
153
+ # gene_data now contains aggregated expression by gene.
154
+ # STEP7
155
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
156
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
157
+ normalized_gene_data.to_csv(out_gene_data_file)
158
+
159
+ # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.
160
+ linked_data = geo_link_clinical_genetic_data(df_clinical, normalized_gene_data)
161
+
162
+ # 3. Handle missing values in the linked data
163
+ linked_data = handle_missing_values(linked_data, trait)
164
+
165
+ # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.
166
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
167
+
168
+ # 5. Conduct quality check and save the cohort information, passing the final unbiased data.
169
+ is_usable = validate_and_save_cohort_info(
170
+ is_final=True,
171
+ cohort=cohort,
172
+ info_path=json_path,
173
+ is_gene_available=True,
174
+ is_trait_available=True,
175
+ is_biased=is_trait_biased,
176
+ df=unbiased_linked_data
177
+ )
178
+
179
+ # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.
180
+ if is_usable:
181
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Asthma/code/GSE182797.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE182797"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE182797"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE182797.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE182797.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE182797.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(
27
+ matrix_file,
28
+ background_prefixes,
29
+ clinical_prefixes
30
+ )
31
+
32
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
33
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
34
+
35
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
36
+ print("Background Information:")
37
+ print(background_info)
38
+ print("\nSample Characteristics Dictionary:")
39
+ print(sample_characteristics_dict)
40
+ # 1) Gene Expression Data Availability
41
+ is_gene_available = True # Based on "Transcriptomic profiling" and "microarray analyses"
42
+
43
+ # 2) Variable Availability and Data Type Conversion
44
+ # 2.1 Identify rows
45
+ trait_row = 0 # "diagnosis: ..." contains multiple distinct values including "adult-onset asthma"
46
+ age_row = 2 # "age: ..." contains multiple numerical values
47
+ gender_row = None # Only "gender: Female" found, no variability => not available
48
+
49
+ # 2.2 Define conversion functions
50
+ def convert_trait(value: str):
51
+ """
52
+ Convert diagnosis data to a binary label:
53
+ adult-onset asthma -> 1, otherwise (healthy/IEI) -> 0, unknown -> None
54
+ """
55
+ parts = value.split(':')
56
+ if len(parts) < 2:
57
+ return None
58
+ val = parts[1].strip().lower()
59
+ if 'adult-onset asthma' in val:
60
+ return 1
61
+ elif 'healthy' in val or 'iei' in val:
62
+ return 0
63
+ return None
64
+
65
+ def convert_age(value: str):
66
+ """Convert age data to a float. Unknown or invalid entries -> None."""
67
+ parts = value.split(':')
68
+ if len(parts) < 2:
69
+ return None
70
+ val = parts[1].strip()
71
+ try:
72
+ return float(val)
73
+ except ValueError:
74
+ return None
75
+
76
+ def convert_gender(value: str):
77
+ """
78
+ Convert gender data to binary (female->0, male->1).
79
+ Not used here because gender_row is None, but defined for completeness.
80
+ """
81
+ parts = value.split(':')
82
+ if len(parts) < 2:
83
+ return None
84
+ val = parts[1].strip().lower()
85
+ if val == 'female':
86
+ return 0
87
+ elif val == 'male':
88
+ return 1
89
+ return None
90
+
91
+ # 3) Save Metadata (initial filtering)
92
+ is_trait_available = (trait_row is not None)
93
+ is_usable = validate_and_save_cohort_info(
94
+ is_final=False,
95
+ cohort=cohort,
96
+ info_path=json_path,
97
+ is_gene_available=is_gene_available,
98
+ is_trait_available=is_trait_available
99
+ )
100
+
101
+ # 4) Clinical Feature Extraction (only if trait data is available)
102
+ if trait_row is not None:
103
+ # 'clinical_data' is assumed to be the DataFrame containing sample characteristics
104
+ selected_clinical_df = geo_select_clinical_features(
105
+ clinical_df=clinical_data,
106
+ trait=trait,
107
+ trait_row=trait_row,
108
+ convert_trait=convert_trait,
109
+ age_row=age_row,
110
+ convert_age=convert_age,
111
+ gender_row=gender_row,
112
+ convert_gender=convert_gender
113
+ )
114
+
115
+ # Preview and save the selected clinical data
116
+ preview = preview_df(selected_clinical_df)
117
+ print("Preview of extracted clinical data:", preview)
118
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
119
+ # STEP3
120
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
121
+ gene_data = get_genetic_data(matrix_file)
122
+
123
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
124
+ print(gene_data.index[:20])
125
+ # These identifiers (e.g., 'A_19_P00315452') are microarray probe IDs
126
+ # and do not appear to be standard human gene symbols.
127
+ # Therefore, they need to be mapped to gene symbols.
128
+ print("requires_gene_mapping = True")
129
+ # STEP5
130
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
131
+ gene_annotation = get_gene_annotation(soft_file)
132
+
133
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
134
+ print("Gene annotation preview:")
135
+ print(preview_df(gene_annotation))
136
+ # STEP: Gene Identifier Mapping
137
+
138
+ # 1. Identify columns in gene_annotation for probe IDs and gene symbols
139
+ probe_col = 'ID'
140
+ gene_symbol_col = 'GENE_SYMBOL'
141
+
142
+ # 2. Get the mapping of probe IDs to gene symbols
143
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)
144
+
145
+ # 3. Convert probe-level data to gene-level data
146
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
147
+
148
+ # (Optional) Check the shape or a small preview of the mapped gene_data
149
+ print("Mapped gene_data shape:", gene_data.shape)
150
+ # STEP 7: Data Normalization and Linking
151
+
152
+ # 1) Normalize gene symbols
153
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
154
+ normalized_gene_data.to_csv(out_gene_data_file)
155
+ print(f"Saved normalized gene data to {out_gene_data_file}")
156
+
157
+ # 2) Read the previously saved clinical data (which should have shape (2 rows) x (80 columns))
158
+ # so that it aligns correctly with normalized_gene_data.
159
+ temp_clinical = pd.read_csv(out_clinical_data_file) # Use the first row as header
160
+ temp_clinical.index = [trait, "Age"]
161
+ temp_clinical.columns = normalized_gene_data.columns # Match with the 80 sample IDs
162
+
163
+ # Link the clinical and gene data
164
+ linked_data = geo_link_clinical_genetic_data(temp_clinical, normalized_gene_data)
165
+
166
+ # 3) Handle missing values
167
+ processed_data = handle_missing_values(linked_data, trait_col=trait)
168
+
169
+ # 4) Remove biased demographic features; check whether our trait is overly biased
170
+ trait_biased, final_data = judge_and_remove_biased_features(processed_data, trait=trait)
171
+
172
+ # 5) Conduct final dataset validation
173
+ is_usable = validate_and_save_cohort_info(
174
+ is_final=True,
175
+ cohort=cohort,
176
+ info_path=json_path,
177
+ is_gene_available=True,
178
+ is_trait_available=True,
179
+ is_biased=trait_biased,
180
+ df=final_data,
181
+ note="Final processed dataset for trait and gene expression."
182
+ )
183
+
184
+ # 6) If the dataset is usable, save the final linked data
185
+ if is_usable:
186
+ final_data.to_csv(out_data_file)
187
+ print(f"Saved final linked data to {out_data_file}")
188
+ else:
189
+ print("Dataset not usable. No final linked file was saved.")
p1/preprocess/Asthma/code/GSE182798.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE182798"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE182798"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE182798.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE182798.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE182798.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(
27
+ matrix_file,
28
+ background_prefixes,
29
+ clinical_prefixes
30
+ )
31
+
32
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
33
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
34
+
35
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
36
+ print("Background Information:")
37
+ print(background_info)
38
+ print("\nSample Characteristics Dictionary:")
39
+ print(sample_characteristics_dict)
40
+ def convert_trait(x):
41
+ if not isinstance(x, str):
42
+ return None
43
+ # Split only once, to ensure we keep the part after the colon.
44
+ parts = x.split(':', 1)
45
+ if len(parts) < 2:
46
+ return None
47
+ val = parts[1].strip().lower()
48
+ # Convert to a binary indicator: 1 if adult-onset asthma, else 0
49
+ # (other categories like IEI or healthy => 0)
50
+ if 'adult-onset asthma' in val:
51
+ return 1
52
+ else:
53
+ return 0
54
+
55
+ def convert_age(x):
56
+ if not isinstance(x, str):
57
+ return None
58
+ parts = x.split(':', 1)
59
+ if len(parts) < 2:
60
+ return None
61
+ try:
62
+ return float(parts[1].strip())
63
+ except ValueError:
64
+ return None
65
+
66
+ def convert_gender(x):
67
+ if not isinstance(x, str):
68
+ return None
69
+ parts = x.split(':', 1)
70
+ if len(parts) < 2:
71
+ return None
72
+ val = parts[1].strip().lower()
73
+ if val in ['female', 'f']:
74
+ return 0
75
+ elif val in ['male', 'm']:
76
+ return 1
77
+ return None
78
+
79
+ # 1. Check gene expression data availability
80
+ is_gene_available = True # Based on the transcriptomic profiling background
81
+
82
+ # 2.1 Identify row indices for trait, age, and gender
83
+ trait_row = 0 # "diagnosis: adult-onset asthma", etc. => available
84
+ age_row = 2 # "age: 33.42", "age: 46.08", ... => available
85
+ # Row 1 (gender) has only one unique value => treat it as not available
86
+ gender_row = None
87
+
88
+ # 3. Metadata: initial filtering
89
+ # trait_row != None => trait is available
90
+ is_trait_available = (trait_row is not None)
91
+ is_usable = validate_and_save_cohort_info(
92
+ is_final=False,
93
+ cohort=cohort,
94
+ info_path=json_path,
95
+ is_gene_available=is_gene_available,
96
+ is_trait_available=is_trait_available
97
+ )
98
+
99
+ # 4. If trait is available, extract clinical features
100
+ if trait_row is not None:
101
+ selected_clinical_df = geo_select_clinical_features(
102
+ clinical_data,
103
+ trait=trait,
104
+ trait_row=trait_row,
105
+ convert_trait=convert_trait,
106
+ age_row=age_row,
107
+ convert_age=convert_age,
108
+ gender_row=gender_row, # None
109
+ convert_gender=convert_gender
110
+ )
111
+ preview_result = preview_df(selected_clinical_df)
112
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
113
+ print(preview_result)
114
+ # STEP3
115
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
116
+ gene_data = get_genetic_data(matrix_file)
117
+
118
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
119
+ print(gene_data.index[:20])
120
+ # These IDs (e.g., 'A_19_P00315452') appear to be array probe identifiers rather than standard gene symbols.
121
+ # Therefore, gene mapping is required.
122
+ print("requires_gene_mapping = True")
123
+ # STEP5
124
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
125
+ gene_annotation = get_gene_annotation(soft_file)
126
+
127
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
128
+ print("Gene annotation preview:")
129
+ print(preview_df(gene_annotation))
130
+ # STEP: Gene Identifier Mapping
131
+
132
+ # 1) Identify the appropriate columns in the gene annotation
133
+ # - The probe ID column in the annotation that matches the expression data index is "ID"
134
+ # - The gene symbol column is "GENE_SYMBOL"
135
+
136
+ # 2) Get a dataframe mapping probe IDs to gene symbols
137
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
138
+
139
+ # 3) Convert probe-level expression data into gene-level expression data
140
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
141
+
142
+ # (Optional) Print the shape or a small preview of the resulting gene_data
143
+ print("Gene-level expression data shape:", gene_data.shape)
144
+ print("Gene-level expression data (head):")
145
+ print(gene_data.head())
146
+ # STEP 7: Data Normalization and Linking
147
+
148
+ # 1) Normalize gene symbols in the obtained gene expression data;
149
+ # remove unrecognized symbols and average duplicates.
150
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
151
+ normalized_gene_data.to_csv(out_gene_data_file)
152
+ print(f"Saved normalized gene data to {out_gene_data_file}")
153
+
154
+ # 2) Read previously saved clinical data. Because we saved it in Step 2 with index=False and each row representing
155
+ # a feature (trait or age), we need to transpose it so that the samples become rows and features become columns.
156
+ clinical_df = pd.read_csv(out_clinical_data_file, header=0)
157
+ clinical_df = clinical_df.T
158
+ # Rename the columns so they match the variables we want
159
+ clinical_df.columns = [trait, "Age"]
160
+
161
+ # 3) Link clinical with genetic data
162
+ linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
163
+
164
+ # 4) Handle missing values in the linked data:
165
+ # remove samples with missing trait, remove genes with >20% missing,
166
+ # remove samples with >5% missing genes, then impute for the rest.
167
+ linked_data = handle_missing_values(linked_data, trait)
168
+
169
+ # 5) Check for severe bias in the trait and remove biased demographic features
170
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
171
+
172
+ # 6) Conduct final quality validation and save metadata
173
+ is_usable = validate_and_save_cohort_info(
174
+ is_final=True,
175
+ cohort=cohort,
176
+ info_path=json_path,
177
+ is_gene_available=True,
178
+ is_trait_available=True,
179
+ is_biased=trait_biased,
180
+ df=linked_data,
181
+ note="Processed with trait and gene data successfully."
182
+ )
183
+
184
+ # 7) If the dataset is usable, save the final linked data to CSV
185
+ if is_usable:
186
+ linked_data.to_csv(out_data_file)
187
+ print(f"Saved final linked data to {out_data_file}")
188
+ else:
189
+ print("Data not usable. No final linked file was saved.")
p1/preprocess/Asthma/code/GSE184382.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE184382"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE184382"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE184382.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE184382.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE184382.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(
27
+ matrix_file,
28
+ background_prefixes,
29
+ clinical_prefixes
30
+ )
31
+
32
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
33
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
34
+
35
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
36
+ print("Background Information:")
37
+ print(background_info)
38
+ print("\nSample Characteristics Dictionary:")
39
+ print(sample_characteristics_dict)
40
+ # 1. Gene Expression Data Availability
41
+ is_gene_available = True # This dataset includes transcriptome microarray data.
42
+
43
+ # 2. Variable Availability
44
+ trait_row = None # No row indicates "asthma" or similar
45
+ age_row = None # No row for age
46
+ gender_row = None # No row for gender
47
+
48
+ # 2.2 Data Type Conversion
49
+ def convert_trait(value: str) -> int:
50
+ """
51
+ Convert raw trait string to a binary indicator (0 or 1).
52
+ Since trait_row is None, this function won't be used.
53
+ """
54
+ # Placeholder implementation
55
+ return None
56
+
57
+ def convert_age(value: str) -> float:
58
+ """
59
+ Convert raw age string to a float (continuous).
60
+ Since age_row is None, this function won't be used.
61
+ """
62
+ # Placeholder implementation
63
+ return None
64
+
65
+ def convert_gender(value: str) -> int:
66
+ """
67
+ Convert raw gender string to 0 (female) or 1 (male).
68
+ Since gender_row is None, this function won't be used.
69
+ """
70
+ # Placeholder implementation
71
+ return None
72
+
73
+ # 3. Save Metadata
74
+ # Determine trait availability
75
+ is_trait_available = (trait_row is not None)
76
+
77
+ is_usable = validate_and_save_cohort_info(
78
+ is_final=False,
79
+ cohort=cohort,
80
+ info_path=json_path,
81
+ is_gene_available=is_gene_available,
82
+ is_trait_available=is_trait_available
83
+ )
84
+
85
+ # 4. Clinical Feature Extraction
86
+ # Since trait_row is None, we skip feature extraction.
87
+ # STEP3
88
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
89
+ gene_data = get_genetic_data(matrix_file)
90
+
91
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
92
+ print(gene_data.index[:20])
93
+ # These identifiers (e.g., "A_19_P...", "(+)E1A_r60_...", "3xSLv1") are not standard human gene symbols.
94
+ # They appear to be array or custom IDs that require mapping to gene symbols.
95
+
96
+ requires_gene_mapping = True
97
+ # STEP5
98
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
99
+ gene_annotation = get_gene_annotation(soft_file)
100
+
101
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
102
+ print("Gene annotation preview:")
103
+ print(preview_df(gene_annotation))
104
+ # STEP: Gene Identifier Mapping
105
+
106
+ # 1 & 2. Identify the columns in the annotation corresponding to the gene expression IDs and the gene symbols
107
+ # Here, 'ID' holds probe identifiers matching those in 'gene_data'
108
+ # and 'GENE_SYMBOL' holds the corresponding gene symbols.
109
+
110
+ gene_mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
111
+
112
+ # 3. Convert probe-level measurements to gene-level data using the mapping.
113
+ gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
114
+ # STEP 7: Data Normalization and Linking
115
+
116
+ # We know from prior steps:
117
+ # - Trait is NOT available (trait_row = None), so no clinical CSV was saved.
118
+ # - We do have gene data, so we will at least normalize it.
119
+
120
+ # 1) Normalize gene symbols
121
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
122
+ normalized_gene_data.to_csv(out_gene_data_file)
123
+ print(f"Saved normalized gene data to {out_gene_data_file}")
124
+
125
+ # 2) Since trait is not available, we cannot link or handle clinical data.
126
+ # We'll set up placeholders for final validation.
127
+ is_trait_available = False
128
+ trait_biased = False # Arbitrarily set; the library requires a boolean.
129
+
130
+ # 3) We have no clinical data to integrate; skip missing value handling.
131
+
132
+ # 4) With no trait, we cannot check bias meaningfully. Skipped.
133
+
134
+ # 5) Final dataset validation
135
+ # The library requires df and is_biased if is_final=True, so we provide an empty DataFrame.
136
+ # This ensures it records the dataset as not usable.
137
+ empty_df = pd.DataFrame()
138
+ is_usable = validate_and_save_cohort_info(
139
+ is_final=True,
140
+ cohort=cohort,
141
+ info_path=json_path,
142
+ is_gene_available=True, # Gene data is available
143
+ is_trait_available=False, # Trait is not available
144
+ is_biased=trait_biased,
145
+ df=empty_df,
146
+ note="No trait data; final record."
147
+ )
148
+
149
+ # 6) If the linked data were usable, we would save it. But here, is_usable will be False.
150
+ if is_usable:
151
+ # This block won't run in our scenario, but included for completeness
152
+ empty_df.to_csv(out_data_file)
153
+ print(f"Saved final linked data to {out_data_file}")
154
+ else:
155
+ print("Data not usable (no trait). No final linked file was saved.")
p1/preprocess/Asthma/code/GSE185658.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE185658"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE185658"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE185658.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE185658.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE185658.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(
27
+ matrix_file,
28
+ background_prefixes,
29
+ clinical_prefixes
30
+ )
31
+
32
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
33
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
34
+
35
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
36
+ print("Background Information:")
37
+ print(background_info)
38
+ print("\nSample Characteristics Dictionary:")
39
+ print(sample_characteristics_dict)
40
+ # 1) Gene Expression Data Availability
41
+ is_gene_available = True # The background indicates Affymetrix microarrays for global gene expression
42
+
43
+ # 2) Variable Availability and Data Type Conversion
44
+ # Based on the sample characteristics dictionary, we only see a "group" field (row=1) that includes asthma vs healthy.
45
+ trait_row = 1
46
+ age_row = None
47
+ gender_row = None
48
+
49
+ # Define the conversion function for the trait (binary: 1 for Asthma, 0 for Healthy, None otherwise).
50
+ def convert_trait(value):
51
+ parts = value.split(':')
52
+ label = parts[-1].strip().lower() # Take text after ':'
53
+ if 'asthma' in label:
54
+ return 1
55
+ elif 'healthy' in label:
56
+ return 0
57
+ return None
58
+
59
+ # We do not have age or gender data, so these conversion functions are not used.
60
+ convert_age = None
61
+ convert_gender = None
62
+
63
+ # 3) Save Metadata (initial filtering)
64
+ is_trait_available = (trait_row is not None)
65
+ is_usable = validate_and_save_cohort_info(
66
+ is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=is_trait_available
71
+ )
72
+
73
+ # 4) Clinical Feature Extraction (only if trait data is available)
74
+ if trait_row is not None:
75
+ selected_clinical_df = geo_select_clinical_features(
76
+ clinical_df=clinical_data, # previously obtained DataFrame of sample characteristics
77
+ trait=trait,
78
+ trait_row=trait_row,
79
+ convert_trait=convert_trait,
80
+ age_row=age_row,
81
+ convert_age=convert_age,
82
+ gender_row=gender_row,
83
+ convert_gender=convert_gender
84
+ )
85
+ preview_dict = preview_df(selected_clinical_df)
86
+ print("Preview of selected clinical features:", preview_dict)
87
+
88
+ # Save the extracted clinical features to CSV
89
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
90
+ # STEP3
91
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
92
+ gene_data = get_genetic_data(matrix_file)
93
+
94
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
95
+ print(gene_data.index[:20])
96
+ # Based on the numeric format (e.g., '7892501'), these are likely not standard human gene symbols.
97
+ # Therefore, we conclude that gene mapping is required.
98
+ print("requires_gene_mapping = True")
99
+ # STEP5
100
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
101
+ gene_annotation = get_gene_annotation(soft_file)
102
+
103
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
104
+ print("Gene annotation preview:")
105
+ print(preview_df(gene_annotation))
106
+ # STEP: Gene Identifier Mapping
107
+
108
+ # 1. Decide which columns in the gene_annotation dataframe correspond to the probe ID and the gene symbol text.
109
+ # From the preview, "ID" appears to match the probe identifier (same as gene_data index),
110
+ # and "gene_assignment" appears to contain the gene symbols (though in a messy string).
111
+
112
+ # 2. Build a mapping dataframe using these two columns.
113
+ mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col="ID", gene_col="gene_assignment")
114
+
115
+ # 3. Convert the probe-level measurements to gene expression data using the mapping,
116
+ # distributing expression when a probe maps to multiple genes and summing the contributions for each gene.
117
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
118
+ # STEP 7: Data Normalization and Linking
119
+
120
+ # 1) Normalize gene symbols
121
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
122
+ normalized_gene_data.to_csv(out_gene_data_file)
123
+ print(f"Saved normalized gene data to {out_gene_data_file}")
124
+
125
+ # 2) Link clinical and genetic data
126
+ # We know from previous steps that we do have trait data in out_clinical_data_file.
127
+ clinical_df = pd.read_csv(out_clinical_data_file, header=0)
128
+ # The clinical CSV contains a single row with the trait values and columns as sample IDs.
129
+ # Label that row with the trait name, so that geo_link_clinical_genetic_data can handle it properly.
130
+ clinical_df.index = [trait]
131
+
132
+ linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
133
+
134
+ # 3) Handle missing values
135
+ linked_data = handle_missing_values(df=linked_data, trait_col=trait)
136
+
137
+ # 4) Determine bias
138
+ trait_biased, linked_data = judge_and_remove_biased_features(df=linked_data, trait=trait)
139
+
140
+ # 5) Final dataset validation
141
+ is_usable = validate_and_save_cohort_info(
142
+ is_final=True,
143
+ cohort=cohort,
144
+ info_path=json_path,
145
+ is_gene_available=True,
146
+ is_trait_available=True,
147
+ is_biased=trait_biased,
148
+ df=linked_data,
149
+ note="Completed data preprocessing and quality checks."
150
+ )
151
+
152
+ # 6) If usable, save the final linked data
153
+ if is_usable:
154
+ linked_data.to_csv(out_data_file, index=True)
155
+ print(f"Saved final linked data to {out_data_file}")
156
+ else:
157
+ print("Data not usable. No final file was saved.")
p1/preprocess/Asthma/code/GSE188424.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE188424"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE188424"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE188424.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE188424.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE188424.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(
27
+ matrix_file,
28
+ background_prefixes,
29
+ clinical_prefixes
30
+ )
31
+
32
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
33
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
34
+
35
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
36
+ print("Background Information:")
37
+ print(background_info)
38
+ print("\nSample Characteristics Dictionary:")
39
+ print(sample_characteristics_dict)
40
+ # Step 1: Determine gene expression data availability
41
+ is_gene_available = True # Transcriptome data indicated in the series description
42
+
43
+ # Step 2.1: Determine availability of trait, age, and gender data
44
+ # From the dictionary {0: ['gender: female', 'gender: male']},
45
+ # only gender data is found under key=0. No separate entries for trait or age are available.
46
+ trait_row = None
47
+ age_row = None
48
+ gender_row = 0
49
+
50
+ # Step 2.2: Define data conversion functions
51
+ def convert_trait(value: str):
52
+ # No trait data row is available; return None.
53
+ return None
54
+
55
+ def convert_age(value: str):
56
+ # No age data row is available; return None.
57
+ return None
58
+
59
+ def convert_gender(value: str):
60
+ """
61
+ Convert the gender string to 0 or 1:
62
+ - female -> 0
63
+ - male -> 1
64
+ - others/unknown -> None
65
+ """
66
+ parts = value.split(':', 1)
67
+ if len(parts) < 2:
68
+ return None
69
+ gender_str = parts[1].strip().lower()
70
+ if gender_str == 'female':
71
+ return 0
72
+ elif gender_str == 'male':
73
+ return 1
74
+ return None
75
+
76
+ # Step 3: Save metadata via initial filtering
77
+ # Trait data availability is determined by whether trait_row is None.
78
+ is_trait_available = (trait_row is not None)
79
+
80
+ is_usable = validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=is_trait_available
86
+ )
87
+
88
+ # Step 4: Since trait_row is None, we skip clinical feature extraction.
89
+ # STEP3
90
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
91
+ gene_data = get_genetic_data(matrix_file)
92
+
93
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
94
+ print(gene_data.index[:20])
95
+ # Based on the observed identifiers (e.g., ILMN_1651199), these are Illumina probe IDs
96
+ # rather than human gene symbols and require mapping.
97
+ print("requires_gene_mapping = True")
98
+ # STEP5
99
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
100
+ gene_annotation = get_gene_annotation(soft_file)
101
+
102
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
103
+ print("Gene annotation preview:")
104
+ print(preview_df(gene_annotation))
105
+ # STEP: Gene Identifier Mapping
106
+
107
+ # 1 & 2. Identify the correct columns in gene_annotation corresponding to the Illumina probe IDs and gene symbols
108
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
109
+
110
+ # 3. Convert probe-level measurements to gene expression data by applying the gene mapping
111
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
112
+ # STEP 7: Data Normalization and Linking
113
+
114
+ # 1. Normalize gene symbols in the obtained gene expression data
115
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
116
+ normalized_gene_data.to_csv(out_gene_data_file)
117
+ print(f"Saved normalized gene data to {out_gene_data_file}")
118
+
119
+ # Since 'trait_row' was None, no clinical feature extraction occurred and trait data is unavailable.
120
+ # We must skip linking and final data prep steps and directly do final validation to record that this dataset is unusable for trait-based analysis.
121
+
122
+ empty_df = pd.DataFrame() # Placeholder, as df must be provided to the validation function
123
+ is_usable = validate_and_save_cohort_info(
124
+ is_final=True,
125
+ cohort=cohort,
126
+ info_path=json_path,
127
+ is_gene_available=True,
128
+ is_trait_available=False, # No trait data was found
129
+ is_biased=True, # Arbitrary True to pass validation, making the dataset not usable
130
+ df=empty_df,
131
+ note="Trait data is unavailable; skipping linking and final data steps."
132
+ )
133
+
134
+ print("Trait data unavailable. Skipping linking and final data output.")
p1/preprocess/Asthma/code/GSE205151.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE205151"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE205151"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE205151.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE205151.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE205151.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(
27
+ matrix_file,
28
+ background_prefixes,
29
+ clinical_prefixes
30
+ )
31
+
32
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
33
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
34
+
35
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
36
+ print("Background Information:")
37
+ print(background_info)
38
+ print("\nSample Characteristics Dictionary:")
39
+ print(sample_characteristics_dict)
40
+ # 1. Gene expression data availability
41
+ # Based on the metadata: "mRNA was analyzed using a targeted Nanostring immunology array,"
42
+ # indicating this study involves gene expression data.
43
+ is_gene_available = True
44
+
45
+ # 2. Variable Availability and Conversion
46
+
47
+ # From the sample characteristics, only two keys (0 and 1) are available:
48
+ # 0 -> polyic_stimulation, and 1 -> cluster
49
+ # There's no mention of 'Asthma' variation, age, or gender.
50
+ # So, all samples are asthmatic, which yields no variability in 'trait',
51
+ # and age/gender aren't in the dictionary.
52
+
53
+ trait_row = None # No variation in "Asthma" (everyone is asthmatic)
54
+ age_row = None # Not found
55
+ gender_row = None # Not found
56
+
57
+ def convert_trait(value: str) -> int:
58
+ """
59
+ Trait data is not available/variable here,
60
+ so we won't actually use this function.
61
+ """
62
+ return None
63
+
64
+ def convert_age(value: str) -> float:
65
+ """
66
+ Age data not available.
67
+ """
68
+ return None
69
+
70
+ def convert_gender(value: str) -> int:
71
+ """
72
+ Gender data not available.
73
+ """
74
+ return None
75
+
76
+ # 3. Save Metadata (initial filtering)
77
+ # Trait data is not available because there's no variability.
78
+ is_trait_available = False
79
+ is_usable = validate_and_save_cohort_info(
80
+ is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=is_trait_available
85
+ )
86
+
87
+ # 4. Clinical Feature Extraction
88
+ # Since trait_row is None, we skip extraction for this dataset.
89
+ # STEP3
90
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
91
+ gene_data = get_genetic_data(matrix_file)
92
+
93
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
94
+ print(gene_data.index[:20])
95
+ # Based on inspection, these appear to be standard human gene symbols.
96
+ print("requires_gene_mapping = False")
p1/preprocess/Asthma/code/GSE230164.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE230164"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE230164"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE230164.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE230164.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE230164.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # Step 1: Determine if gene expression data is likely available
43
+ is_gene_available = True # Based on the title "Gene expression profiling of asthma"
44
+
45
+ # Step 2: Identify the rows for trait, age, and gender
46
+ # From the provided sample characteristics dictionary (only key 0 with gender info),
47
+ # we see no mention of the trait (asthma) or age, so these are not available.
48
+ trait_row = None
49
+ age_row = None
50
+ gender_row = 0 # "gender: female" and "gender: male" are present
51
+
52
+ # Data type conversion functions
53
+
54
+ def convert_trait(value: str) -> Optional[int]:
55
+ """
56
+ Convert trait values to binary (e.g., 'asthma' -> 1, 'control' or 'healthy' -> 0).
57
+ Returns None if unknown.
58
+ """
59
+ # Extract the actual data after the colon if present
60
+ parts = value.split(':', 1)
61
+ val = parts[1].strip().lower() if len(parts) > 1 else value.lower()
62
+
63
+ # Example mapping (if we had trait data)
64
+ if 'asthma' in val:
65
+ return 1
66
+ if 'control' in val or 'healthy' in val:
67
+ return 0
68
+
69
+ return None
70
+
71
+ def convert_age(value: str) -> Optional[float]:
72
+ """
73
+ Convert age values to continuous floats.
74
+ Returns None if parsing fails or data is unknown.
75
+ """
76
+ parts = value.split(':', 1)
77
+ val = parts[1].strip() if len(parts) > 1 else value
78
+ try:
79
+ return float(val)
80
+ except ValueError:
81
+ return None
82
+
83
+ def convert_gender(value: str) -> Optional[int]:
84
+ """
85
+ Convert gender to binary (female -> 0, male -> 1).
86
+ Returns None if unknown.
87
+ """
88
+ parts = value.split(':', 1)
89
+ val = parts[1].strip().lower() if len(parts) > 1 else value.lower()
90
+ if 'female' in val:
91
+ return 0
92
+ if 'male' in val:
93
+ return 1
94
+ return None
95
+
96
+ # Step 3: Initial filtering and saving of metadata
97
+ is_trait_available = trait_row is not None
98
+
99
+ dataset_usable = validate_and_save_cohort_info(
100
+ is_final=False,
101
+ cohort=cohort,
102
+ info_path=json_path,
103
+ is_gene_available=is_gene_available,
104
+ is_trait_available=is_trait_available
105
+ )
106
+
107
+ # Step 4: Since trait_row is None, we skip substep of clinical feature extraction
108
+ # STEP3
109
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
110
+ gene_data = get_genetic_data(matrix_file)
111
+
112
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
113
+ print(gene_data.index[:20])
114
+ # Based on the given identifiers (e.g., ILMN_1651199), these appear to be Illumina probe IDs
115
+ # rather than standard human gene symbols. Therefore, gene symbol mapping is required.
116
+
117
+ print("requires_gene_mapping = True")
118
+ # STEP5
119
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
120
+ gene_annotation = get_gene_annotation(soft_file)
121
+
122
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
123
+ print("Gene annotation preview:")
124
+ print(preview_df(gene_annotation))
125
+ # STEP: Gene Identifier Mapping
126
+
127
+ # 1. Identify the columns in the gene annotation dataframe
128
+ # - "ID" column contains Illumina probe IDs matching those in the expression data
129
+ # - "Symbol" column contains the gene symbols
130
+ prob_col = 'ID'
131
+ gene_col = 'Symbol'
132
+
133
+ # 2. Get a gene mapping dataframe by extracting the two columns
134
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
135
+
136
+ # 3. Convert probe-level measurements to gene expression data
137
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
138
+ # STEP 7: Data Normalization and Linking
139
+
140
+ # 1. Normalize gene symbols in the obtained gene expression data
141
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
142
+ normalized_gene_data.to_csv(out_gene_data_file)
143
+ print(f"Saved normalized gene data to {out_gene_data_file}")
144
+
145
+ # Since 'trait_row' was None, no clinical feature extraction occurred and trait data is unavailable.
146
+ # We must skip linking and final data prep steps and directly do final validation to record that this dataset is unusable for trait-based analysis.
147
+
148
+ empty_df = pd.DataFrame() # Placeholder, as df must be provided to the validation function
149
+ is_usable = validate_and_save_cohort_info(
150
+ is_final=True,
151
+ cohort=cohort,
152
+ info_path=json_path,
153
+ is_gene_available=True,
154
+ is_trait_available=False, # No trait data was found
155
+ is_biased=True, # Arbitrary True to pass validation, making the dataset not usable
156
+ df=empty_df,
157
+ note="Trait data is unavailable; skipping linking and final data steps."
158
+ )
159
+
160
+ print("Trait data unavailable. Skipping linking and final data output.")
p1/preprocess/Asthma/code/GSE270312.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+ cohort = "GSE270312"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Asthma"
10
+ in_cohort_dir = "../DATA/GEO/Asthma/GSE270312"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Asthma/GSE270312.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE270312.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE270312.csv"
16
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # Step 1: Gene Expression Data Availability
43
+ # Based on the background stating "RNA transcriptome responses" were measured, we consider it gene expression data.
44
+ is_gene_available = True
45
+
46
+ # Step 2: Variable Availability and Conversion
47
+
48
+ # 2.1 Identify rows for trait, age, and gender
49
+ # From the sample characteristics dictionary, 'asthma status' = row 3, 'gender' = row 2.
50
+ # No age information is provided.
51
+ trait_row = 3
52
+ age_row = None
53
+ gender_row = 2
54
+
55
+ # 2.2 Define data conversion functions
56
+ def convert_trait(value: str):
57
+ # Example: "asthma status: Yes"
58
+ # Split by colon, then strip extra spaces
59
+ parts = value.split(":")
60
+ if len(parts) < 2:
61
+ return None
62
+ val = parts[1].strip().lower()
63
+ if val == "yes":
64
+ return 1
65
+ elif val == "no":
66
+ return 0
67
+ return None
68
+
69
+ def convert_age(value: str):
70
+ # No age data available, so return None
71
+ return None
72
+
73
+ def convert_gender(value: str):
74
+ # Example: "gender: Female"
75
+ parts = value.split(":")
76
+ if len(parts) < 2:
77
+ return None
78
+ val = parts[1].strip().lower()
79
+ if val == "female":
80
+ return 0
81
+ elif val == "male":
82
+ return 1
83
+ return None
84
+
85
+ # Step 3: Save Metadata (initial filtering)
86
+ # Trait data is considered available if we have a valid row for it
87
+ is_trait_available = (trait_row is not None)
88
+
89
+ filter_pass = validate_and_save_cohort_info(
90
+ is_final=False,
91
+ cohort=cohort,
92
+ info_path=json_path,
93
+ is_gene_available=is_gene_available,
94
+ is_trait_available=is_trait_available
95
+ )
96
+
97
+ # Step 4: Clinical Feature Extraction
98
+ if trait_row is not None:
99
+ selected_clinical_df = geo_select_clinical_features(
100
+ clinical_df=clinical_data,
101
+ trait=trait,
102
+ trait_row=trait_row,
103
+ convert_trait=convert_trait,
104
+ age_row=age_row,
105
+ convert_age=convert_age,
106
+ gender_row=gender_row,
107
+ convert_gender=convert_gender
108
+ )
109
+
110
+ # Preview the selected clinical features
111
+ preview_clinical = preview_df(selected_clinical_df)
112
+ # (You could print the preview or store it if needed; omitted here for brevity.)
113
+
114
+ # Save the clinical data
115
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
116
+ # STEP3
117
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
118
+ gene_data = get_genetic_data(matrix_file)
119
+
120
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
121
+ print(gene_data.index[:20])
122
+ # Based on the observed gene identifiers such as ABCF1, ACE, ACKR2, etc.,
123
+ # these appear to be valid human gene symbols and do not require additional mapping.
124
+
125
+ print("These genes are human gene symbols.")
126
+
127
+ # Conclusion
128
+ print("\nrequires_gene_mapping = False")
129
+ # STEP 7: Data Normalization and Linking
130
+
131
+ # 1. Normalize gene symbols in the obtained gene expression data
132
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
133
+ normalized_gene_data.to_csv(out_gene_data_file)
134
+ print(f"Saved normalized gene data to {out_gene_data_file}")
135
+
136
+ # 2. Link the clinical and genetic data on sample IDs
137
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
138
+
139
+ # 3. Handle missing values in the linked data
140
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
141
+
142
+ # 4. Determine whether the trait/demographic features are severely biased
143
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)
144
+
145
+ # 5. Conduct final quality validation and save metadata
146
+ is_usable = validate_and_save_cohort_info(
147
+ is_final=True,
148
+ cohort=cohort,
149
+ info_path=json_path,
150
+ is_gene_available=True,
151
+ is_trait_available=True,
152
+ is_biased=trait_biased,
153
+ df=linked_data,
154
+ note="Trait data and gene data successfully linked."
155
+ )
156
+
157
+ # 6. If the dataset is deemed usable, save the final linked data as a CSV file
158
+ if is_usable:
159
+ linked_data.to_csv(out_data_file)
160
+ print(f"Saved final linked data to {out_data_file}")
161
+ else:
162
+ print("Dataset was not deemed usable; final linked data not saved.")
p1/preprocess/Asthma/code/TCGA.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Asthma"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Asthma/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Asthma/cohort_info.json"
15
+
16
+ import os
17
+
18
+ # Step 1: Identify subdirectory that might relate to "Asthma"
19
+ subdirs = [
20
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
21
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
22
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
23
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
24
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
25
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
26
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
27
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
28
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
29
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
30
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
31
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
32
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
33
+ ]
34
+
35
+ # Since we're looking for "Asthma" and no subdirectory name suggests an asthma-related cancer,
36
+ # no suitable subdirectory is found.
37
+ suitable_subdir = None
38
+
39
+ # Confirm no matching subdirectory
40
+ for sd in subdirs:
41
+ # Normally, you'd check synonyms for "Asthma" if needed.
42
+ if "asthma" in sd.lower():
43
+ suitable_subdir = sd
44
+ break
45
+
46
+ # If not found, skip the trait:
47
+ if not suitable_subdir:
48
+ print("No suitable subdirectory found for trait 'Asthma'. Skipping this trait.")
49
+ # Mark as completed but unavailable in metadata
50
+ validate_and_save_cohort_info(
51
+ is_final=False,
52
+ cohort="TCGA",
53
+ info_path=json_path,
54
+ is_gene_available=False,
55
+ is_trait_available=False
56
+ )
57
+ else:
58
+ # (Would proceed to load data if a matching subdirectory was found.)
59
+ pass
p1/preprocess/Asthma/gene_data/GSE123086.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
p1/preprocess/Asthma/gene_data/GSE123088.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049,GSM3495050,GSM3495051,GSM3495052,GSM3495053,GSM3495054,GSM3495055,GSM3495056,GSM3495057,GSM3495058,GSM3495059,GSM3495060,GSM3495061,GSM3495062,GSM3495063,GSM3495064,GSM3495065,GSM3495066,GSM3495067,GSM3495068,GSM3495069,GSM3495070,GSM3495071,GSM3495072,GSM3495073,GSM3495074,GSM3495075,GSM3495076,GSM3495077,GSM3495078,GSM3495079,GSM3495080,GSM3495081,GSM3495082,GSM3495083,GSM3495084,GSM3495085,GSM3495086,GSM3495087
p1/preprocess/Asthma/gene_data/GSE182797.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM5537157,GSM5537158,GSM5537159,GSM5537160,GSM5537161,GSM5537162,GSM5537163,GSM5537164,GSM5537165,GSM5537166,GSM5537167,GSM5537168,GSM5537169,GSM5537170,GSM5537171,GSM5537172,GSM5537173,GSM5537174,GSM5537175,GSM5537176,GSM5537177,GSM5537178,GSM5537179,GSM5537180,GSM5537181,GSM5537182,GSM5537183,GSM5537184,GSM5537185,GSM5537186,GSM5537187,GSM5537188,GSM5537189,GSM5537190,GSM5537191,GSM5537192,GSM5537193,GSM5537194,GSM5537195,GSM5537196,GSM5537197,GSM5537198,GSM5537199,GSM5537200,GSM5537201,GSM5537202,GSM5537203,GSM5537204,GSM5537205,GSM5537206,GSM5537207,GSM5537208,GSM5537209,GSM5537210,GSM5537211,GSM5537212,GSM5537213,GSM5537214,GSM5537215,GSM5537216,GSM5537217,GSM5537218,GSM5537219,GSM5537220,GSM5537221,GSM5537222,GSM5537223,GSM5537224,GSM5537225,GSM5537226,GSM5537227,GSM5537228,GSM5537229,GSM5537230,GSM5537231,GSM5537232,GSM5537233,GSM5537234,GSM5537235,GSM5537236
p1/preprocess/Asthma/gene_data/GSE182798.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM5530417,GSM5530418,GSM5530419,GSM5530420,GSM5530421,GSM5530422,GSM5530423,GSM5530424,GSM5530425,GSM5530426,GSM5530427,GSM5530428,GSM5530429,GSM5530430,GSM5530431,GSM5530432,GSM5530433,GSM5530434,GSM5530435,GSM5530436,GSM5530437,GSM5530438,GSM5530439,GSM5530440,GSM5530441,GSM5530442,GSM5530443,GSM5530444,GSM5530445,GSM5530446,GSM5530447,GSM5530448,GSM5530449,GSM5530450,GSM5530451,GSM5530452,GSM5530453,GSM5530454,GSM5530455,GSM5530456,GSM5530457,GSM5530458,GSM5530459,GSM5530460,GSM5530461,GSM5530462,GSM5530463,GSM5530464,GSM5530465,GSM5530466,GSM5530467,GSM5530468,GSM5530469,GSM5530470,GSM5530471,GSM5530472,GSM5530473,GSM5530474,GSM5530475,GSM5530476,GSM5530477,GSM5530478,GSM5530479,GSM5530480,GSM5530481,GSM5530482,GSM5530483,GSM5530484,GSM5530485,GSM5530486,GSM5530487,GSM5530488,GSM5530489,GSM5530490,GSM5530491,GSM5530492,GSM5530493,GSM5530494,GSM5530495,GSM5530496,GSM5530497,GSM5530498,GSM5530499,GSM5530500,GSM5530501,GSM5530502,GSM5530503,GSM5530504,GSM5530505,GSM5530506,GSM5530507,GSM5530508,GSM5530509,GSM5530510,GSM5530511,GSM5530512,GSM5530513,GSM5530514,GSM5530515,GSM5530516,GSM5530517,GSM5530518,GSM5537157,GSM5537158,GSM5537159,GSM5537160,GSM5537161,GSM5537162,GSM5537163,GSM5537164,GSM5537165,GSM5537166,GSM5537167,GSM5537168,GSM5537169,GSM5537170,GSM5537171,GSM5537172,GSM5537173,GSM5537174,GSM5537175,GSM5537176,GSM5537177,GSM5537178,GSM5537179,GSM5537180,GSM5537181,GSM5537182,GSM5537183,GSM5537184,GSM5537185,GSM5537186,GSM5537187,GSM5537188,GSM5537189,GSM5537190,GSM5537191,GSM5537192,GSM5537193,GSM5537194,GSM5537195,GSM5537196,GSM5537197,GSM5537198,GSM5537199,GSM5537200,GSM5537201,GSM5537202,GSM5537203,GSM5537204,GSM5537205,GSM5537206,GSM5537207,GSM5537208,GSM5537209,GSM5537210,GSM5537211,GSM5537212,GSM5537213,GSM5537214,GSM5537215,GSM5537216,GSM5537217,GSM5537218,GSM5537219,GSM5537220,GSM5537221,GSM5537222,GSM5537223,GSM5537224,GSM5537225,GSM5537226,GSM5537227,GSM5537228,GSM5537229,GSM5537230,GSM5537231,GSM5537232,GSM5537233,GSM5537234,GSM5537235,GSM5537236
p1/preprocess/Asthma/gene_data/GSE184382.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM5585358,GSM5585359,GSM5585360,GSM5585361,GSM5585362,GSM5585363,GSM5585364,GSM5585365,GSM5585366,GSM5585367,GSM5585368,GSM5585369,GSM5585370,GSM5585371,GSM5585372,GSM5585373,GSM5585374,GSM5585375,GSM5585376,GSM5585377,GSM5585378,GSM5585379,GSM5585380,GSM5585381,GSM5585382,GSM5585383,GSM5585384,GSM5585385,GSM5585386,GSM5585387,GSM5585388,GSM5585389,GSM5585390,GSM5585391,GSM5585392,GSM5585393,GSM5585394,GSM5585395,GSM5585396
p1/preprocess/Asthma/gene_data/GSE185658.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM5621296,GSM5621297,GSM5621298,GSM5621299,GSM5621300,GSM5621301,GSM5621302,GSM5621303,GSM5621304,GSM5621305,GSM5621306,GSM5621307,GSM5621308,GSM5621309,GSM5621310,GSM5621311,GSM5621312,GSM5621313,GSM5621314,GSM5621315,GSM5621316,GSM5621317,GSM5621318,GSM5621319,GSM5621320,GSM5621321,GSM5621322,GSM5621323,GSM5621324,GSM5621325,GSM5621326,GSM5621327,GSM5621328,GSM5621329,GSM5621330,GSM5621331,GSM5621332,GSM5621333,GSM5621334,GSM5621335,GSM5621336,GSM5621337,GSM5621338,GSM5621339,GSM5621340,GSM5621341,GSM5621342,GSM5621343
p1/preprocess/Asthma/gene_data/GSE188424.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM5681954,GSM5681955,GSM5681956,GSM5681957,GSM5681958,GSM5681959,GSM5681960,GSM5681961,GSM5681962,GSM5681963,GSM5681964,GSM5681965,GSM5681966,GSM5681967,GSM5681968,GSM5681969,GSM5681970,GSM5681971,GSM5681972,GSM5681973,GSM5681974,GSM5681975,GSM5681976,GSM5681977,GSM5681978,GSM5681979,GSM5681980,GSM5681981,GSM5681982,GSM5681983,GSM5681984,GSM5681985,GSM5681986,GSM5681987,GSM5681988,GSM5681989,GSM5681990,GSM5681991,GSM5681992,GSM5681993,GSM5681994,GSM5681995,GSM5681996,GSM5681997,GSM5681998,GSM5681999,GSM5682000,GSM5682001,GSM5682002,GSM5682003,GSM5682004,GSM5682005,GSM5682006,GSM5682007,GSM5682008,GSM5682009,GSM5682010,GSM5682011,GSM5682012,GSM5682013,GSM5682014,GSM5682015,GSM5682016,GSM5682017,GSM5682018,GSM5682019,GSM5682020,GSM5682021,GSM5682022,GSM5682023,GSM5682024,GSM5682025,GSM5682026,GSM5682027,GSM5682028,GSM5682029,GSM5682030,GSM5682031,GSM5682032,GSM5682033,GSM5682034,GSM5682035,GSM5682036,GSM5682037,GSM5682038,GSM5682039,GSM5682040,GSM5682041,GSM5682042,GSM5682043,GSM5682044,GSM5682045,GSM5682046,GSM5682047,GSM5682048,GSM5682049,GSM5682050,GSM5682051,GSM5682052
p1/preprocess/Asthma/gene_data/GSE230164.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM5681954,GSM5681955,GSM5681956,GSM5681957,GSM5681958,GSM5681959,GSM5681960,GSM5681961,GSM5681962,GSM5681963,GSM5681964,GSM5681965,GSM5681966,GSM5681967,GSM5681968,GSM5681969,GSM5681970,GSM5681971,GSM5681972,GSM5681973,GSM5681974,GSM5681975,GSM5681976,GSM5681977,GSM5681978,GSM5681979,GSM5681980,GSM5681981,GSM5681982,GSM5681983,GSM5681984,GSM5681985,GSM5681986,GSM5681987,GSM5681988,GSM5681989,GSM5681990,GSM5681991,GSM5681992,GSM5681993,GSM5681994,GSM5681995,GSM5681996,GSM5681997,GSM5681998,GSM5681999,GSM5682000,GSM5682001,GSM5682002,GSM5682003,GSM5682004,GSM5682005,GSM5682006,GSM5682007,GSM5682008,GSM5682009,GSM5682010,GSM5682011,GSM5682012,GSM5682013,GSM5682014,GSM5682015,GSM5682016,GSM5682017,GSM5682018,GSM5682019,GSM5682020,GSM5682021,GSM5682022,GSM5682023,GSM5682024,GSM5682025,GSM5682026,GSM5682027,GSM5682028,GSM5682029,GSM5682030,GSM5682031,GSM5682032,GSM5682033,GSM5682034,GSM5682035,GSM5682036,GSM5682037,GSM5682038,GSM5682039,GSM5682040,GSM5682041,GSM5682042,GSM5682043,GSM5682044,GSM5682045,GSM5682046,GSM5682047,GSM5682048,GSM5682049,GSM5682050,GSM5682051,GSM5682052
p1/preprocess/Asthma/gene_data/GSE270312.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM8339381,GSM8339382,GSM8339383,GSM8339384,GSM8339385,GSM8339386,GSM8339387,GSM8339388,GSM8339389,GSM8339390,GSM8339391,GSM8339392,GSM8339393,GSM8339394,GSM8339395,GSM8339396,GSM8339397,GSM8339398,GSM8339399,GSM8339400,GSM8339401,GSM8339402,GSM8339403,GSM8339404,GSM8339405,GSM8339406,GSM8339407,GSM8339408,GSM8339409,GSM8339410,GSM8339411,GSM8339412,GSM8339413,GSM8339414,GSM8339415,GSM8339416,GSM8339417,GSM8339418,GSM8339419,GSM8339420,GSM8339421,GSM8339422,GSM8339423,GSM8339424,GSM8339425,GSM8339426,GSM8339427,GSM8339428,GSM8339429,GSM8339430,GSM8339431,GSM8339432,GSM8339433,GSM8339434,GSM8339435,GSM8339436,GSM8339437,GSM8339438,GSM8339439,GSM8339440,GSM8339441,GSM8339442,GSM8339443,GSM8339444,GSM8339445,GSM8339446,GSM8339447,GSM8339448,GSM8339449,GSM8339450,GSM8339451,GSM8339452,GSM8339453,GSM8339454,GSM8339455,GSM8339456,GSM8339457,GSM8339458,GSM8339459,GSM8339460,GSM8339461,GSM8339462,GSM8339463,GSM8339464,GSM8339465,GSM8339466,GSM8339467,GSM8339468,GSM8339469,GSM8339470
p1/preprocess/Atrial_Fibrillation/GSE143924.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Atrial_Fibrillation/clinical_data/GSE115574.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM3182680,GSM3182681,GSM3182682,GSM3182683,GSM3182684,GSM3182685,GSM3182686,GSM3182687,GSM3182688,GSM3182689,GSM3182690,GSM3182691,GSM3182692,GSM3182693,GSM3182694,GSM3182695,GSM3182696,GSM3182697,GSM3182698,GSM3182699,GSM3182700,GSM3182701,GSM3182702,GSM3182703,GSM3182704,GSM3182705,GSM3182706,GSM3182707,GSM3182708,GSM3182709,GSM3182710,GSM3182711,GSM3182712,GSM3182713,GSM3182714,GSM3182715,GSM3182716,GSM3182717,GSM3182718,GSM3182719,GSM3182720,GSM3182721,GSM3182722,GSM3182723,GSM3182724,GSM3182725,GSM3182726,GSM3182727,GSM3182728,GSM3182729,GSM3182730,GSM3182731,GSM3182732,GSM3182733,GSM3182734,GSM3182735,GSM3182736,GSM3182737,GSM3182738
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0