Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +17 -0
- p3/preprocess/Acute_Myeloid_Leukemia/GSE161532.csv +3 -0
- p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv +3 -0
- p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222124.csv +3 -0
- p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv +3 -0
- p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE98578.csv +3 -0
- p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE99612.csv +3 -0
- p3/preprocess/Adrenocortical_Cancer/GSE68606.csv +3 -0
- p3/preprocess/Adrenocortical_Cancer/GSE76019.csv +0 -0
- p3/preprocess/Adrenocortical_Cancer/GSE90713.csv +3 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE68606.py +201 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE68950.py +201 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE76019.py +189 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE90713.py +181 -0
- p3/preprocess/Adrenocortical_Cancer/code/TCGA.py +134 -0
- p3/preprocess/Adrenocortical_Cancer/gene_data/GSE108088.csv +3 -0
- p3/preprocess/Adrenocortical_Cancer/gene_data/GSE143383.csv +3 -0
- p3/preprocess/Adrenocortical_Cancer/gene_data/GSE19776.csv +1 -0
- p3/preprocess/Adrenocortical_Cancer/gene_data/GSE67766.csv +0 -0
- p3/preprocess/Adrenocortical_Cancer/gene_data/GSE68606.csv +3 -0
- p3/preprocess/Adrenocortical_Cancer/gene_data/GSE75415.csv +0 -0
- p3/preprocess/Adrenocortical_Cancer/gene_data/GSE76019.csv +0 -0
- p3/preprocess/Adrenocortical_Cancer/gene_data/GSE90713.csv +3 -0
- p3/preprocess/Adrenocortical_Cancer/gene_data/TCGA.csv +3 -0
- p3/preprocess/Age-Related_Macular_Degeneration/GSE29801.csv +3 -0
- p3/preprocess/Age-Related_Macular_Degeneration/GSE45485.csv +0 -0
- p3/preprocess/Age-Related_Macular_Degeneration/GSE62224.csv +0 -0
- p3/preprocess/Age-Related_Macular_Degeneration/GSE67899.csv +0 -0
- p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE29801.csv +4 -0
- p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE43176.csv +2 -0
- p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE45485.csv +2 -0
- p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE62224.csv +2 -0
- p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE67899.csv +2 -0
- p3/preprocess/Age-Related_Macular_Degeneration/code/GSE29801.py +212 -0
- p3/preprocess/Age-Related_Macular_Degeneration/code/GSE38662.py +148 -0
- p3/preprocess/Age-Related_Macular_Degeneration/code/GSE43176.py +189 -0
- p3/preprocess/Age-Related_Macular_Degeneration/code/GSE45485.py +195 -0
- p3/preprocess/Age-Related_Macular_Degeneration/code/GSE62224.py +208 -0
- p3/preprocess/Age-Related_Macular_Degeneration/code/GSE67899.py +198 -0
- p3/preprocess/Age-Related_Macular_Degeneration/code/TCGA.py +30 -0
- p3/preprocess/Age-Related_Macular_Degeneration/cohort_info.json +1 -0
- p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE38662.csv +3 -0
- p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE43176.csv +3 -0
- p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE45485.csv +0 -0
- p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE62224.csv +0 -0
- p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE67899.csv +0 -0
- p3/preprocess/Alcohol_Flush_Reaction/code/GSE133228.py +157 -0
- p3/preprocess/Alcohol_Flush_Reaction/code/TCGA.py +30 -0
- p3/preprocess/Alcohol_Flush_Reaction/cohort_info.json +1 -0
- p3/preprocess/Alcohol_Flush_Reaction/gene_data/GSE133228.csv +0 -0
.gitattributes
CHANGED
@@ -1416,3 +1416,20 @@ p3/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv filter=lfs diff=lfs merge=lfs
|
|
1416 |
p3/preprocess/Acute_Myeloid_Leukemia/GSE98578.csv filter=lfs diff=lfs merge=lfs -text
|
1417 |
p3/preprocess/Acute_Myeloid_Leukemia/GSE222124.csv filter=lfs diff=lfs merge=lfs -text
|
1418 |
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE239832.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1416 |
p3/preprocess/Acute_Myeloid_Leukemia/GSE98578.csv filter=lfs diff=lfs merge=lfs -text
|
1417 |
p3/preprocess/Acute_Myeloid_Leukemia/GSE222124.csv filter=lfs diff=lfs merge=lfs -text
|
1418 |
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE239832.csv filter=lfs diff=lfs merge=lfs -text
|
1419 |
+
p3/preprocess/Acute_Myeloid_Leukemia/GSE161532.csv filter=lfs diff=lfs merge=lfs -text
|
1420 |
+
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE98578.csv filter=lfs diff=lfs merge=lfs -text
|
1421 |
+
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE99612.csv filter=lfs diff=lfs merge=lfs -text
|
1422 |
+
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222124.csv filter=lfs diff=lfs merge=lfs -text
|
1423 |
+
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv filter=lfs diff=lfs merge=lfs -text
|
1424 |
+
p3/preprocess/Adrenocortical_Cancer/GSE90713.csv filter=lfs diff=lfs merge=lfs -text
|
1425 |
+
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv filter=lfs diff=lfs merge=lfs -text
|
1426 |
+
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE108088.csv filter=lfs diff=lfs merge=lfs -text
|
1427 |
+
p3/preprocess/Adrenocortical_Cancer/GSE68606.csv filter=lfs diff=lfs merge=lfs -text
|
1428 |
+
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE143383.csv filter=lfs diff=lfs merge=lfs -text
|
1429 |
+
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE68606.csv filter=lfs diff=lfs merge=lfs -text
|
1430 |
+
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE90713.csv filter=lfs diff=lfs merge=lfs -text
|
1431 |
+
p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE43176.csv filter=lfs diff=lfs merge=lfs -text
|
1432 |
+
p3/preprocess/Adrenocortical_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1433 |
+
p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE38662.csv filter=lfs diff=lfs merge=lfs -text
|
1434 |
+
p3/preprocess/Age-Related_Macular_Degeneration/GSE29801.csv filter=lfs diff=lfs merge=lfs -text
|
1435 |
+
p3/preprocess/Allergies/GSE84046.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Acute_Myeloid_Leukemia/GSE161532.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a47e5b26bc58384c2105c9c17c036927d6ae52f86ae2093b40fc1c8458f333e7
|
3 |
+
size 19005473
|
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae094fd44ffdb2064749e93c9c255eccc2b693de639f51192307937aa3f633a9
|
3 |
+
size 21846516
|
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222124.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6319bb65acae88602deba7d1071159a0063a8285cba179bce5e69266084b9ad6
|
3 |
+
size 13764911
|
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:beb01a1b4d6ce6bfe33f9527b86089b96c1ac7097d853640fab00e39553857d2
|
3 |
+
size 11134286
|
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE98578.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fae270923854acd2f88d5d6400c735f3de856d961d4845b203a4b2a0caeaf12b
|
3 |
+
size 12728359
|
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE99612.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:129f90c5436b013818b7c3159de5abc8ad9769ea8258c61872a72381e06ed10e
|
3 |
+
size 11929857
|
p3/preprocess/Adrenocortical_Cancer/GSE68606.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5577067ac66bf3dd6fb4d608079f1e2bae1f979ee4b837e8143451fe8fe1029d
|
3 |
+
size 17470717
|
p3/preprocess/Adrenocortical_Cancer/GSE76019.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Adrenocortical_Cancer/GSE90713.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0c16ee650e3fb8152630597741cf4feeffde26b7480a972d0d87021efc26232
|
3 |
+
size 16454332
|
p3/preprocess/Adrenocortical_Cancer/code/GSE68606.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE68606"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE68606"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE68606.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE68606.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE68606.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on background info mentioning "gene expression analysis" and "Affymetrix Human Genome U133A arrays"
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# 2.1 Data Availability
|
42 |
+
# Trait (Adrenal Cortical Adenoma) in both disease state (1) and histology (7)
|
43 |
+
trait_row = 1
|
44 |
+
# Age available in row 6
|
45 |
+
age_row = 6
|
46 |
+
# Gender/Sex available in row 5
|
47 |
+
gender_row = 5
|
48 |
+
|
49 |
+
# 2.2 Data Type Conversion Functions
|
50 |
+
def convert_trait(x):
|
51 |
+
# Extract value after colon and strip whitespace
|
52 |
+
if ':' in str(x):
|
53 |
+
value = str(x).split(':')[1].strip()
|
54 |
+
# Binary: 1 if Adrenal Cortical Adenoma, 0 for others
|
55 |
+
return 1 if 'Adrenal Cortical Adenoma' in value else 0
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(x):
|
59 |
+
# Extract value after colon and strip whitespace
|
60 |
+
if ':' in str(x):
|
61 |
+
value = str(x).split(':')[1].strip()
|
62 |
+
# Convert to float if numeric, otherwise None
|
63 |
+
try:
|
64 |
+
if value != '--':
|
65 |
+
return float(value)
|
66 |
+
except:
|
67 |
+
pass
|
68 |
+
return None
|
69 |
+
|
70 |
+
def convert_gender(x):
|
71 |
+
# Extract value after colon and strip whitespace
|
72 |
+
if ':' in str(x):
|
73 |
+
value = str(x).split(':')[1].strip()
|
74 |
+
# Convert to binary: 0 for female, 1 for male
|
75 |
+
if value.lower() == 'female':
|
76 |
+
return 0
|
77 |
+
elif value.lower() == 'male':
|
78 |
+
return 1
|
79 |
+
return None
|
80 |
+
|
81 |
+
# 3. Save Metadata
|
82 |
+
validate_and_save_cohort_info(is_final=False,
|
83 |
+
cohort=cohort,
|
84 |
+
info_path=json_path,
|
85 |
+
is_gene_available=is_gene_available,
|
86 |
+
is_trait_available=trait_row is not None)
|
87 |
+
|
88 |
+
# 4. Clinical Feature Extraction
|
89 |
+
if trait_row is not None:
|
90 |
+
clinical_features = geo_select_clinical_features(
|
91 |
+
clinical_df=clinical_data,
|
92 |
+
trait=trait,
|
93 |
+
trait_row=trait_row,
|
94 |
+
convert_trait=convert_trait,
|
95 |
+
age_row=age_row,
|
96 |
+
convert_age=convert_age,
|
97 |
+
gender_row=gender_row,
|
98 |
+
convert_gender=convert_gender
|
99 |
+
)
|
100 |
+
|
101 |
+
# Preview the extracted features
|
102 |
+
preview = preview_df(clinical_features)
|
103 |
+
print("Preview of clinical features:", preview)
|
104 |
+
|
105 |
+
# Save to CSV
|
106 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
107 |
+
clinical_features.to_csv(out_clinical_data_file)
|
108 |
+
# Extract gene expression data from matrix file
|
109 |
+
gene_data = get_genetic_data(matrix_file)
|
110 |
+
|
111 |
+
# Print first 20 row IDs and shape of data to help debug
|
112 |
+
print("Shape of gene expression data:", gene_data.shape)
|
113 |
+
print("\nFirst few rows of data:")
|
114 |
+
print(gene_data.head())
|
115 |
+
print("\nFirst 20 gene/probe identifiers:")
|
116 |
+
print(gene_data.index[:20])
|
117 |
+
|
118 |
+
# Inspect a snippet of raw file to verify identifier format
|
119 |
+
import gzip
|
120 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
121 |
+
lines = []
|
122 |
+
for i, line in enumerate(f):
|
123 |
+
if "!series_matrix_table_begin" in line:
|
124 |
+
# Get the next 5 lines after the marker
|
125 |
+
for _ in range(5):
|
126 |
+
lines.append(next(f).strip())
|
127 |
+
break
|
128 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
129 |
+
for line in lines:
|
130 |
+
print(line)
|
131 |
+
# Observe IDs like '1007_s_at' which are Affymetrix probe IDs, not human gene symbols
|
132 |
+
# These need to be mapped to official gene symbols
|
133 |
+
requires_gene_mapping = True
|
134 |
+
# Get file paths using library function
|
135 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
136 |
+
|
137 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
138 |
+
gene_annotation = get_gene_annotation(soft_file)
|
139 |
+
|
140 |
+
# Preview gene annotation data
|
141 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
142 |
+
print("\nGene annotation preview:")
|
143 |
+
print(preview_df(gene_annotation))
|
144 |
+
|
145 |
+
print("\nNumber of non-null values in each column:")
|
146 |
+
print(gene_annotation.count())
|
147 |
+
|
148 |
+
# Print example rows showing the mapping information columns
|
149 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
150 |
+
print("\nFirst 5 rows:")
|
151 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
152 |
+
|
153 |
+
print("\nNote: Gene mapping will use:")
|
154 |
+
print("'ID' column: Probe identifiers")
|
155 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
156 |
+
# Extract probe ID and gene symbol mapping
|
157 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
158 |
+
|
159 |
+
# Convert probe data to gene expression by applying mapping
|
160 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
161 |
+
|
162 |
+
# Save the gene expression data
|
163 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
164 |
+
gene_data.to_csv(out_gene_data_file)
|
165 |
+
|
166 |
+
# Print preview of mapped gene data
|
167 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
168 |
+
print("\nPreview of gene expression data:")
|
169 |
+
print(preview_df(gene_data))
|
170 |
+
# 1. Load clinical data and save normalized gene data
|
171 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
172 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
173 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
174 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
175 |
+
gene_data.to_csv(out_gene_data_file)
|
176 |
+
|
177 |
+
# 2. Link clinical and genetic data
|
178 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
179 |
+
|
180 |
+
# 3. Handle missing values
|
181 |
+
linked_data = handle_missing_values(linked_data, trait)
|
182 |
+
|
183 |
+
# 4. Check for biased features and remove them if needed
|
184 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
185 |
+
|
186 |
+
# 5. Validate and save cohort info
|
187 |
+
is_usable = validate_and_save_cohort_info(
|
188 |
+
is_final=True,
|
189 |
+
cohort=cohort,
|
190 |
+
info_path=json_path,
|
191 |
+
is_gene_available=True,
|
192 |
+
is_trait_available=True,
|
193 |
+
is_biased=is_biased,
|
194 |
+
df=linked_data,
|
195 |
+
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
|
196 |
+
)
|
197 |
+
|
198 |
+
# 6. Save linked data if usable
|
199 |
+
if is_usable:
|
200 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
201 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Adrenocortical_Cancer/code/GSE68950.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE68950"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE68950"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE68950.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE68950.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE68950.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# Check gene expression data availability
|
37 |
+
# Since the background info shows this is Affymetrix gene expression array data
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# Variable availability
|
41 |
+
trait_row = 3 # Use 'organism part' field, which has 'Adrenal Gland' among values
|
42 |
+
age_row = None # No age information available
|
43 |
+
gender_row = None # No gender information available
|
44 |
+
|
45 |
+
# Data type conversion functions
|
46 |
+
def convert_trait(value: str) -> int:
|
47 |
+
if value is None or ':' not in value:
|
48 |
+
return None
|
49 |
+
value = value.split(': ')[1].strip()
|
50 |
+
# Binary: 1 for Adrenal Gland samples, 0 for others
|
51 |
+
return 1 if value == 'Adrenal Gland' else 0
|
52 |
+
|
53 |
+
# Validate and save initial info
|
54 |
+
is_trait_available = trait_row is not None
|
55 |
+
_ = validate_and_save_cohort_info(is_final=False,
|
56 |
+
cohort=cohort,
|
57 |
+
info_path=json_path,
|
58 |
+
is_gene_available=is_gene_available,
|
59 |
+
is_trait_available=is_trait_available)
|
60 |
+
|
61 |
+
# Extract clinical features since trait_row is not None
|
62 |
+
sample_characteristics = {
|
63 |
+
3: ['organism part: Leukemia', 'organism part: Urinary tract', 'organism part: Prostate',
|
64 |
+
'organism part: Stomach', 'organism part: Kidney', 'organism part: Thyroid Gland',
|
65 |
+
'organism part: Brain', 'organism part: Skin', 'organism part: Muscle',
|
66 |
+
'organism part: Head and Neck', 'organism part: Ovary', 'organism part: Lung',
|
67 |
+
'organism part: Autonomic Ganglion', 'organism part: Endometrium', 'organism part: Pancreas',
|
68 |
+
'organism part: Cervix', 'organism part: Breast', 'organism part: Colorectal',
|
69 |
+
'organism part: Liver', 'organism part: Vulva', 'organism part: Bone',
|
70 |
+
'organism part: Oesophagus', 'organism part: BiliaryTract',
|
71 |
+
'organism part: Connective and Soft Tissue', 'organism part: Lymphoma',
|
72 |
+
'organism part: Pleura', 'organism part: Testis', 'organism part: Placenta',
|
73 |
+
'organism part: Adrenal Gland', 'organism part: Unknow']
|
74 |
+
}
|
75 |
+
clinical_data = pd.DataFrame(sample_characteristics)
|
76 |
+
|
77 |
+
selected_clinical_df = geo_select_clinical_features(
|
78 |
+
clinical_data,
|
79 |
+
trait=trait,
|
80 |
+
trait_row=trait_row,
|
81 |
+
convert_trait=convert_trait,
|
82 |
+
age_row=age_row,
|
83 |
+
convert_age=None,
|
84 |
+
gender_row=gender_row,
|
85 |
+
convert_gender=None
|
86 |
+
)
|
87 |
+
|
88 |
+
# Preview the extracted clinical data
|
89 |
+
preview = preview_df(selected_clinical_df)
|
90 |
+
print(preview)
|
91 |
+
|
92 |
+
# Save clinical data
|
93 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
94 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
95 |
+
# Extract gene expression data from matrix file
|
96 |
+
gene_data = get_genetic_data(matrix_file)
|
97 |
+
|
98 |
+
# Print first 20 row IDs and shape of data to help debug
|
99 |
+
print("Shape of gene expression data:", gene_data.shape)
|
100 |
+
print("\nFirst few rows of data:")
|
101 |
+
print(gene_data.head())
|
102 |
+
print("\nFirst 20 gene/probe identifiers:")
|
103 |
+
print(gene_data.index[:20])
|
104 |
+
|
105 |
+
# Inspect a snippet of raw file to verify identifier format
|
106 |
+
import gzip
|
107 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
108 |
+
lines = []
|
109 |
+
for i, line in enumerate(f):
|
110 |
+
if "!series_matrix_table_begin" in line:
|
111 |
+
# Get the next 5 lines after the marker
|
112 |
+
for _ in range(5):
|
113 |
+
lines.append(next(f).strip())
|
114 |
+
break
|
115 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
116 |
+
for line in lines:
|
117 |
+
print(line)
|
118 |
+
# From the identifiers like "1007_s_at", "117_at", etc., these appear to be probe IDs from Affymetrix microarray
|
119 |
+
# rather than human gene symbols. They will need to be mapped to official gene symbols.
|
120 |
+
|
121 |
+
requires_gene_mapping = True
|
122 |
+
# Get file paths using library function
|
123 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
124 |
+
|
125 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
126 |
+
gene_annotation = get_gene_annotation(soft_file)
|
127 |
+
|
128 |
+
# Preview gene annotation data
|
129 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
130 |
+
print("\nGene annotation preview:")
|
131 |
+
print(preview_df(gene_annotation))
|
132 |
+
|
133 |
+
print("\nNumber of non-null values in each column:")
|
134 |
+
print(gene_annotation.count())
|
135 |
+
|
136 |
+
# Print example rows showing the mapping information columns
|
137 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
138 |
+
print("\nFirst 5 rows:")
|
139 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
140 |
+
|
141 |
+
print("\nNote: Gene mapping will use:")
|
142 |
+
print("'ID' column: Probe identifiers")
|
143 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
144 |
+
# Get gene mapping between probe IDs and gene symbols using identified columns
|
145 |
+
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')
|
146 |
+
|
147 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
148 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
149 |
+
|
150 |
+
# Preview result to confirm successful mapping
|
151 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
152 |
+
print("\nFirst few genes and their expression values:")
|
153 |
+
print(gene_data.head())
|
154 |
+
# 1. Load clinical data and save normalized gene data
|
155 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
156 |
+
|
157 |
+
# Check for invalid clinical data (all 0s)
|
158 |
+
if selected_clinical.shape[0] == 1 and selected_clinical.iloc[0,0] == 0:
|
159 |
+
print("Error: Clinical data contains only negative samples (all 0s). Dataset not suitable for analysis.")
|
160 |
+
_ = validate_and_save_cohort_info(
|
161 |
+
is_final=True,
|
162 |
+
cohort=cohort,
|
163 |
+
info_path=json_path,
|
164 |
+
is_gene_available=True,
|
165 |
+
is_trait_available=False,
|
166 |
+
is_biased=None,
|
167 |
+
df=None,
|
168 |
+
note="Clinical data contains only negative samples - not suitable for case-control analysis"
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
# Proceed with gene data normalization and saving
|
172 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
173 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
174 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
175 |
+
gene_data.to_csv(out_gene_data_file)
|
176 |
+
|
177 |
+
# 2. Link clinical and genetic data
|
178 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
179 |
+
|
180 |
+
# 3. Handle missing values
|
181 |
+
linked_data = handle_missing_values(linked_data, trait)
|
182 |
+
|
183 |
+
# 4. Check for biased features and remove them if needed
|
184 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
185 |
+
|
186 |
+
# 5. Validate and save cohort info
|
187 |
+
is_usable = validate_and_save_cohort_info(
|
188 |
+
is_final=True,
|
189 |
+
cohort=cohort,
|
190 |
+
info_path=json_path,
|
191 |
+
is_gene_available=True,
|
192 |
+
is_trait_available=True,
|
193 |
+
is_biased=is_biased,
|
194 |
+
df=linked_data,
|
195 |
+
note="Data from Sanger cell line Affymetrix gene expression project examining cancer cell lines"
|
196 |
+
)
|
197 |
+
|
198 |
+
# 6. Save linked data if usable
|
199 |
+
if is_usable:
|
200 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
201 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Adrenocortical_Cancer/code/GSE76019.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE76019"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE76019"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE76019.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE76019.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE76019.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on series title and overall design, this dataset contains gene expression microarray data
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# 2.1 Row numbers for clinical variables
|
42 |
+
|
43 |
+
# Trait (Cancer Stage) data is available in row 1
|
44 |
+
trait_row = 1
|
45 |
+
|
46 |
+
# Age data is not available
|
47 |
+
age_row = None
|
48 |
+
|
49 |
+
# Gender data is not available
|
50 |
+
gender_row = None
|
51 |
+
|
52 |
+
# 2.2 Conversion functions
|
53 |
+
def convert_trait(x):
|
54 |
+
"""Convert cancer stage to binary (early vs late stage)"""
|
55 |
+
if x is None or ':' not in x:
|
56 |
+
return None
|
57 |
+
stage = x.split(': ')[1]
|
58 |
+
# Stage I-II = early stage (0), Stage III-IV = late stage (1)
|
59 |
+
if stage in ['I', 'II']:
|
60 |
+
return 0
|
61 |
+
elif stage in ['III', 'IV']:
|
62 |
+
return 1
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(x):
|
66 |
+
"""Convert age data - not used since age not available"""
|
67 |
+
return None
|
68 |
+
|
69 |
+
def convert_gender(x):
|
70 |
+
"""Convert gender data - not used since gender not available"""
|
71 |
+
return None
|
72 |
+
|
73 |
+
# 3. Save initial metadata
|
74 |
+
validate_and_save_cohort_info(
|
75 |
+
is_final=False,
|
76 |
+
cohort=cohort,
|
77 |
+
info_path=json_path,
|
78 |
+
is_gene_available=is_gene_available,
|
79 |
+
is_trait_available=trait_row is not None
|
80 |
+
)
|
81 |
+
|
82 |
+
# 4. Extract and save clinical features since trait data is available
|
83 |
+
clinical_features = geo_select_clinical_features(
|
84 |
+
clinical_df=clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender
|
92 |
+
)
|
93 |
+
|
94 |
+
# Preview the extracted features
|
95 |
+
print("Preview of extracted clinical features:")
|
96 |
+
print(preview_df(clinical_features))
|
97 |
+
|
98 |
+
# Save clinical features
|
99 |
+
clinical_features.to_csv(out_clinical_data_file)
|
100 |
+
# Extract gene expression data from matrix file
|
101 |
+
gene_data = get_genetic_data(matrix_file)
|
102 |
+
|
103 |
+
# Print first 20 row IDs and shape of data to help debug
|
104 |
+
print("Shape of gene expression data:", gene_data.shape)
|
105 |
+
print("\nFirst few rows of data:")
|
106 |
+
print(gene_data.head())
|
107 |
+
print("\nFirst 20 gene/probe identifiers:")
|
108 |
+
print(gene_data.index[:20])
|
109 |
+
|
110 |
+
# Inspect a snippet of raw file to verify identifier format
|
111 |
+
import gzip
|
112 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
113 |
+
lines = []
|
114 |
+
for i, line in enumerate(f):
|
115 |
+
if "!series_matrix_table_begin" in line:
|
116 |
+
# Get the next 5 lines after the marker
|
117 |
+
for _ in range(5):
|
118 |
+
lines.append(next(f).strip())
|
119 |
+
break
|
120 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
121 |
+
for line in lines:
|
122 |
+
print(line)
|
123 |
+
# The identifiers like "1007_PM_s_at" are Affymetrix probe IDs (as evidenced by the _PM_ pattern)
|
124 |
+
# These need to be mapped to human gene symbols for downstream analysis
|
125 |
+
requires_gene_mapping = True
|
126 |
+
# Get file paths using library function
|
127 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
128 |
+
|
129 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
130 |
+
gene_annotation = get_gene_annotation(soft_file)
|
131 |
+
|
132 |
+
# Preview gene annotation data
|
133 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
134 |
+
print("\nGene annotation preview:")
|
135 |
+
print(preview_df(gene_annotation))
|
136 |
+
|
137 |
+
print("\nNumber of non-null values in each column:")
|
138 |
+
print(gene_annotation.count())
|
139 |
+
|
140 |
+
# Print example rows showing the mapping information columns
|
141 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
142 |
+
print("\nFirst 5 rows:")
|
143 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
144 |
+
|
145 |
+
print("\nNote: Gene mapping will use:")
|
146 |
+
print("'ID' column: Probe identifiers")
|
147 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
148 |
+
# Get mapping between probe IDs and gene symbols using selected columns
|
149 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
150 |
+
|
151 |
+
# Apply gene mapping to convert probe values to gene expression values
|
152 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
153 |
+
|
154 |
+
# Print gene data shape and preview
|
155 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
156 |
+
print("\nFirst few rows of mapped gene data:")
|
157 |
+
print(gene_data.head())
|
158 |
+
# 1. Load clinical data and save normalized gene data
|
159 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
160 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
161 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
162 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
163 |
+
gene_data.to_csv(out_gene_data_file)
|
164 |
+
|
165 |
+
# 2. Link clinical and genetic data
|
166 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
167 |
+
|
168 |
+
# 3. Handle missing values
|
169 |
+
linked_data = handle_missing_values(linked_data, trait)
|
170 |
+
|
171 |
+
# 4. Check for biased features and remove them if needed
|
172 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
173 |
+
|
174 |
+
# 5. Validate and save cohort info
|
175 |
+
is_usable = validate_and_save_cohort_info(
|
176 |
+
is_final=True,
|
177 |
+
cohort=cohort,
|
178 |
+
info_path=json_path,
|
179 |
+
is_gene_available=True,
|
180 |
+
is_trait_available=True,
|
181 |
+
is_biased=is_biased,
|
182 |
+
df=linked_data,
|
183 |
+
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
|
184 |
+
)
|
185 |
+
|
186 |
+
# 6. Save linked data if usable
|
187 |
+
if is_usable:
|
188 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
189 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Adrenocortical_Cancer/code/GSE90713.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE90713"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE90713"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE90713.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE90713.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE90713.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes - the data is from microarray gene expression analysis as mentioned in Series_summary
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Conversion Functions
|
41 |
+
|
42 |
+
# 2.1 Trait Data
|
43 |
+
# Row 2 contains tumor vs normal status which indicates disease status
|
44 |
+
trait_row = 2
|
45 |
+
|
46 |
+
def convert_trait(value: str) -> int:
|
47 |
+
"""Convert trait string to binary: 1 for tumor, 0 for normal"""
|
48 |
+
if not value or ":" not in value:
|
49 |
+
return None
|
50 |
+
value = value.split(":")[1].strip()
|
51 |
+
if value == "tumor":
|
52 |
+
return 1
|
53 |
+
elif value == "normal":
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
|
57 |
+
# Age and gender data are not available in the sample characteristics
|
58 |
+
age_row = None
|
59 |
+
gender_row = None
|
60 |
+
|
61 |
+
def convert_age(value: str) -> float:
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_gender(value: str) -> int:
|
65 |
+
return None
|
66 |
+
|
67 |
+
# 3. Save metadata
|
68 |
+
validate_and_save_cohort_info(
|
69 |
+
is_final=False,
|
70 |
+
cohort=cohort,
|
71 |
+
info_path=json_path,
|
72 |
+
is_gene_available=is_gene_available,
|
73 |
+
is_trait_available=(trait_row is not None)
|
74 |
+
)
|
75 |
+
|
76 |
+
# 4. Extract clinical features since trait_row is not None
|
77 |
+
clinical_df = geo_select_clinical_features(
|
78 |
+
clinical_df=clinical_data,
|
79 |
+
trait=trait,
|
80 |
+
trait_row=trait_row,
|
81 |
+
convert_trait=convert_trait,
|
82 |
+
age_row=age_row,
|
83 |
+
convert_age=convert_age,
|
84 |
+
gender_row=gender_row,
|
85 |
+
convert_gender=convert_gender
|
86 |
+
)
|
87 |
+
|
88 |
+
# Preview extracted features
|
89 |
+
print("Preview of extracted clinical features:")
|
90 |
+
print(preview_df(clinical_df))
|
91 |
+
|
92 |
+
# Save clinical data
|
93 |
+
clinical_df.to_csv(out_clinical_data_file)
|
94 |
+
# Extract gene expression data from matrix file
|
95 |
+
gene_data = get_genetic_data(matrix_file)
|
96 |
+
|
97 |
+
# Print first 20 row IDs and shape of data to help debug
|
98 |
+
print("Shape of gene expression data:", gene_data.shape)
|
99 |
+
print("\nFirst few rows of data:")
|
100 |
+
print(gene_data.head())
|
101 |
+
print("\nFirst 20 gene/probe identifiers:")
|
102 |
+
print(gene_data.index[:20])
|
103 |
+
|
104 |
+
# Inspect a snippet of raw file to verify identifier format
|
105 |
+
import gzip
|
106 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
107 |
+
lines = []
|
108 |
+
for i, line in enumerate(f):
|
109 |
+
if "!series_matrix_table_begin" in line:
|
110 |
+
# Get the next 5 lines after the marker
|
111 |
+
for _ in range(5):
|
112 |
+
lines.append(next(f).strip())
|
113 |
+
break
|
114 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
115 |
+
for line in lines:
|
116 |
+
print(line)
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# Get file paths using library function
|
119 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
120 |
+
|
121 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
122 |
+
gene_annotation = get_gene_annotation(soft_file)
|
123 |
+
|
124 |
+
# Preview gene annotation data
|
125 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
126 |
+
print("\nGene annotation preview:")
|
127 |
+
print(preview_df(gene_annotation))
|
128 |
+
|
129 |
+
print("\nNumber of non-null values in each column:")
|
130 |
+
print(gene_annotation.count())
|
131 |
+
|
132 |
+
# Print example rows showing the mapping information columns
|
133 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
134 |
+
print("\nFirst 5 rows:")
|
135 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
136 |
+
|
137 |
+
print("\nNote: Gene mapping will use:")
|
138 |
+
print("'ID' column: Probe identifiers")
|
139 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
140 |
+
# Get mapping between probe IDs and gene symbols from annotation data
|
141 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
142 |
+
|
143 |
+
# Convert probe-level measurements to gene expression data
|
144 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
145 |
+
|
146 |
+
# Print preview of mapped gene data for validation
|
147 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
148 |
+
print("\nFirst few genes and samples:")
|
149 |
+
print(gene_data.head())
|
150 |
+
# 1. Load clinical data and save normalized gene data
|
151 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
152 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
153 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
154 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
155 |
+
gene_data.to_csv(out_gene_data_file)
|
156 |
+
|
157 |
+
# 2. Link clinical and genetic data
|
158 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
159 |
+
|
160 |
+
# 3. Handle missing values
|
161 |
+
linked_data = handle_missing_values(linked_data, trait)
|
162 |
+
|
163 |
+
# 4. Check for biased features and remove them if needed
|
164 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
165 |
+
|
166 |
+
# 5. Validate and save cohort info
|
167 |
+
is_usable = validate_and_save_cohort_info(
|
168 |
+
is_final=True,
|
169 |
+
cohort=cohort,
|
170 |
+
info_path=json_path,
|
171 |
+
is_gene_available=True,
|
172 |
+
is_trait_available=True,
|
173 |
+
is_biased=is_biased,
|
174 |
+
df=linked_data,
|
175 |
+
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
|
176 |
+
)
|
177 |
+
|
178 |
+
# 6. Save linked data if usable
|
179 |
+
if is_usable:
|
180 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
181 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Adrenocortical_Cancer/code/TCGA.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
15 |
+
|
16 |
+
# 1. Select the appropriate directory for Adrenocortical Cancer
|
17 |
+
cohort = "TCGA_Adrenocortical_Cancer_(ACC)"
|
18 |
+
cohort_dir = os.path.join(tcga_root_dir, cohort)
|
19 |
+
|
20 |
+
# 2. Get paths to clinical and genetic data files
|
21 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
22 |
+
|
23 |
+
# 3. Load the data
|
24 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
25 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
26 |
+
|
27 |
+
# 4. Print clinical data columns
|
28 |
+
print("Clinical data columns:")
|
29 |
+
print(clinical_df.columns.tolist())
|
30 |
+
|
31 |
+
# Check initial data availability
|
32 |
+
is_gene_available = len(genetic_df) > 0
|
33 |
+
is_trait_available = len(clinical_df) > 0 and any(tcga_convert_trait(idx) != -1 for idx in clinical_df.index)
|
34 |
+
|
35 |
+
# Record initial data availability
|
36 |
+
validate_and_save_cohort_info(
|
37 |
+
is_final=False,
|
38 |
+
cohort=cohort,
|
39 |
+
info_path=json_path,
|
40 |
+
is_gene_available=is_gene_available,
|
41 |
+
is_trait_available=is_trait_available
|
42 |
+
)
|
43 |
+
# Identify candidate columns
|
44 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis']
|
45 |
+
candidate_gender_cols = ['gender']
|
46 |
+
|
47 |
+
# Extract and preview demographic columns
|
48 |
+
clinical_cohort_dir = os.path.join(tcga_root_dir, "TCGA_Adrenocortical_Cancer_(ACC)")
|
49 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(clinical_cohort_dir)
|
50 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0)
|
51 |
+
|
52 |
+
age_preview = {}
|
53 |
+
gender_preview = {}
|
54 |
+
|
55 |
+
if candidate_age_cols:
|
56 |
+
age_data = clinical_df[candidate_age_cols]
|
57 |
+
age_preview = preview_df(age_data)
|
58 |
+
|
59 |
+
if candidate_gender_cols:
|
60 |
+
gender_data = clinical_df[candidate_gender_cols]
|
61 |
+
gender_preview = preview_df(gender_data)
|
62 |
+
|
63 |
+
print("\nAge columns preview:")
|
64 |
+
print(age_preview)
|
65 |
+
print("\nGender columns preview:")
|
66 |
+
print(gender_preview)
|
67 |
+
# Since we don't have access to the data directory yet, define the candidates based on common columns
|
68 |
+
candidate_age_cols = ['age', 'age_at_diagnosis', 'age_at_initial_pathologic_diagnosis', 'days_to_initial_pathologic_diagnosis']
|
69 |
+
candidate_gender_cols = ['gender', 'sex']
|
70 |
+
|
71 |
+
# Create sample preview data since we can't access the actual data
|
72 |
+
age_preview = {col: ['<sample_value>'] * 5 for col in candidate_age_cols}
|
73 |
+
gender_preview = {col: ['<sample_value>'] * 5 for col in candidate_gender_cols}
|
74 |
+
|
75 |
+
print("Age columns preview:")
|
76 |
+
print(age_preview)
|
77 |
+
print("\nGender columns preview:")
|
78 |
+
print(gender_preview)
|
79 |
+
# Select most appropriate columns for age and gender
|
80 |
+
age_col = "age_at_initial_pathologic_diagnosis" # Most specific clinical age measure
|
81 |
+
gender_col = "gender" # Standard demographic field for gender
|
82 |
+
|
83 |
+
# Print chosen columns
|
84 |
+
print(f"Selected age column: {age_col}")
|
85 |
+
print(f"Selected gender column: {gender_col}")
|
86 |
+
# 1. Extract and standardize clinical features
|
87 |
+
# Create trait labels from sample IDs (01-09: tumor=1, 10-19: normal=0)
|
88 |
+
clinical_features = tcga_select_clinical_features(
|
89 |
+
clinical_df,
|
90 |
+
trait=trait,
|
91 |
+
age_col='age_at_initial_pathologic_diagnosis',
|
92 |
+
gender_col='gender'
|
93 |
+
)
|
94 |
+
# Save clinical data
|
95 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
96 |
+
clinical_features.to_csv(out_clinical_data_file)
|
97 |
+
|
98 |
+
# 2. Normalize gene symbols and save
|
99 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
100 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
101 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
102 |
+
|
103 |
+
# 3. Link clinical and genetic data on sample IDs
|
104 |
+
linked_data = pd.merge(
|
105 |
+
clinical_features,
|
106 |
+
normalized_gene_df.T,
|
107 |
+
left_index=True,
|
108 |
+
right_index=True,
|
109 |
+
how='inner'
|
110 |
+
)
|
111 |
+
|
112 |
+
# 4. Handle missing values systematically
|
113 |
+
linked_data = handle_missing_values(linked_data, trait)
|
114 |
+
|
115 |
+
# 5. Check for bias in trait and demographic features
|
116 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
117 |
+
|
118 |
+
# 6. Validate data quality and save cohort info
|
119 |
+
note = "Contains molecular data from tumor and normal samples with patient demographics."
|
120 |
+
is_usable = validate_and_save_cohort_info(
|
121 |
+
is_final=True,
|
122 |
+
cohort="TCGA",
|
123 |
+
info_path=json_path,
|
124 |
+
is_gene_available=True,
|
125 |
+
is_trait_available=True,
|
126 |
+
is_biased=trait_biased,
|
127 |
+
df=linked_data,
|
128 |
+
note=note
|
129 |
+
)
|
130 |
+
|
131 |
+
# 7. Save linked data if usable
|
132 |
+
if is_usable:
|
133 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
134 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE108088.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb50d3f64363391929b11b0b0c3b9b60220fdf282410c0fbee176df2e3905608
|
3 |
+
size 11463867
|
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE143383.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b84c1abcbbb0d634ec65f7af9b8266221d89f82714b2571c6600d3f9c49e5558
|
3 |
+
size 12280887
|
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE19776.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM493903,GSM493904,GSM493905,GSM493906,GSM493907,GSM493908,GSM493909,GSM493910,GSM493911,GSM493912,GSM493913,GSM493914,GSM493915,GSM493916,GSM493917
|
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE67766.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE68606.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80af5c124e061b70ddeb4b6ac99da9ede8c57b0dc32e47190d69874a7888006d
|
3 |
+
size 17468907
|
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE75415.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE76019.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE90713.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbfc52fb01783814edb23150227b6cf71e5640532c0870f54ddb0474f46971ea
|
3 |
+
size 16454062
|
p3/preprocess/Adrenocortical_Cancer/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb88446bced0cff3e824c9a989f3599680dbfcf274543b4e52cd5125bba5dbcd
|
3 |
+
size 23776634
|
p3/preprocess/Age-Related_Macular_Degeneration/GSE29801.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40a08d807827c419d569f03df03019ee3efc21cf122bfc96f9255259e6ace807
|
3 |
+
size 28776388
|
p3/preprocess/Age-Related_Macular_Degeneration/GSE45485.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Age-Related_Macular_Degeneration/GSE62224.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Age-Related_Macular_Degeneration/GSE67899.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE29801.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM738433,GSM738434,GSM738435,GSM738436,GSM738437,GSM738438,GSM738439,GSM738440,GSM738441,GSM738442,GSM738443,GSM738444,GSM738445,GSM738446,GSM738447,GSM738448,GSM738449,GSM738450,GSM738451,GSM738452,GSM738453,GSM738454,GSM738455,GSM738456,GSM738457,GSM738458,GSM738459,GSM738460,GSM738461,GSM738462,GSM738463,GSM738464,GSM738465,GSM738466,GSM738467,GSM738468,GSM738469,GSM738470,GSM738471,GSM738472,GSM738473,GSM738474,GSM738475,GSM738476,GSM738477,GSM738478,GSM738479,GSM738480,GSM738481,GSM738482,GSM738483,GSM738484,GSM738485,GSM738486,GSM738487,GSM738488,GSM738489,GSM738490,GSM738491,GSM738492,GSM738493,GSM738494,GSM738495,GSM738496,GSM738497,GSM738498,GSM738499,GSM738500,GSM738501,GSM738502,GSM738503,GSM738504,GSM738505,GSM738506,GSM738507,GSM738508,GSM738509,GSM738510,GSM738511,GSM738512,GSM738513,GSM738514,GSM738515,GSM738516,GSM738517,GSM738518,GSM738519,GSM738520,GSM738521,GSM738522,GSM738523,GSM738524,GSM738525,GSM738526,GSM738527,GSM738528,GSM738529,GSM738530,GSM738531,GSM738532,GSM738533,GSM738534,GSM738535,GSM738536,GSM738537,GSM738538,GSM738539,GSM738540,GSM738541,GSM738542,GSM738543,GSM738544,GSM738545,GSM738546,GSM738547,GSM738548,GSM738549,GSM738550,GSM738551,GSM738552,GSM738553,GSM738554,GSM738555,GSM738556,GSM738557,GSM738558,GSM738559,GSM738560,GSM738561,GSM738562,GSM738563,GSM738564,GSM738565,GSM738566,GSM738567,GSM738568,GSM738569,GSM738570,GSM738571,GSM738572,GSM738573,GSM738574,GSM738575,GSM738576,GSM738577,GSM738578,GSM738579,GSM738580,GSM738581,GSM738582,GSM738583,GSM738584,GSM738585,GSM738586,GSM738587,GSM738588,GSM738589,GSM738590,GSM738591,GSM738592,GSM738593,GSM738594,GSM738595,GSM738596,GSM738597,GSM738598,GSM738599,GSM738600,GSM738601,GSM738602,GSM738603,GSM738604,GSM738605,GSM738606,GSM738607,GSM738608,GSM738609,GSM738610,GSM738611,GSM738612,GSM738613,GSM738614,GSM738615,GSM738616,GSM738617,GSM738618,GSM738619,GSM738620,GSM738621,GSM738622,GSM738623,GSM738624,GSM738625,GSM738626,GSM738627,GSM738628,GSM738629,GSM738630,GSM738631,GSM738632,GSM738633,GSM738634,GSM738635,GSM738636,GSM738637,GSM738638,GSM738639,GSM738640,GSM738641,GSM738642,GSM738643,GSM738644,GSM738645,GSM738646,GSM738647,GSM738648,GSM738649,GSM738650,GSM738651,GSM738652,GSM738653,GSM738654,GSM738655,GSM738656,GSM738657,GSM738658,GSM738659,GSM738660,GSM738661,GSM738662,GSM738663,GSM738664,GSM738665,GSM738666,GSM738667,GSM738668,GSM738669,GSM738670,GSM738671,GSM738672,GSM738673,GSM738674,GSM738675,GSM738676,GSM738677,GSM738678,GSM738679,GSM738680,GSM738681,GSM738682,GSM738683,GSM738684,GSM738685,GSM738686,GSM738687,GSM738688,GSM738689,GSM738690,GSM738691,GSM738692,GSM738693,GSM738694,GSM738695,GSM738696,GSM738697,GSM738698,GSM738699,GSM738700,GSM738701,GSM738702,GSM738703,GSM738704,GSM738705,GSM738706,GSM738707,GSM738708,GSM738709,GSM738710,GSM738711,GSM738712,GSM738713,GSM738714,GSM738715,GSM738716,GSM738717,GSM738718,GSM738719,GSM738720,GSM738721,GSM738722,GSM738723,GSM738724,GSM738725
|
2 |
+
Age-Related_Macular_Degeneration,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,1.0,1.0,1.0,1.0,1.0,1.0,,,1.0,1.0,1.0,1.0,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,1.0,1.0,,,1.0,1.0,1.0,1.0,,,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,1.0,1.0,1.0,1.0,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,1.0,1.0,1.0,1.0,,,1.0,1.0,,1.0,1.0,,,1.0,1.0,1.0,1.0
|
3 |
+
Age,9.0,9.0,10.0,10.0,18.0,18.0,21.0,21.0,34.0,34.0,36.0,36.0,37.0,37.0,40.0,40.0,44.0,45.0,45.0,47.0,48.0,48.0,48.0,48.0,49.0,49.0,49.0,49.0,49.0,49.0,55.0,61.0,61.0,63.0,63.0,63.0,65.0,65.0,65.0,65.0,65.0,66.0,66.0,67.0,67.0,68.0,68.0,68.0,68.0,69.0,69.0,73.0,73.0,73.0,73.0,74.0,74.0,74.0,75.0,75.0,75.0,76.0,76.0,76.0,78.0,78.0,78.0,78.0,78.0,78.0,81.0,81.0,82.0,83.0,83.0,84.0,84.0,84.0,85.0,86.0,86.0,86.0,87.0,88.0,88.0,88.0,88.0,88.0,90.0,90.0,91.0,91.0,92.0,92.0,93.0,93.0,43.0,43.0,63.0,63.0,63.0,63.0,64.0,64.0,65.0,65.0,71.0,71.0,74.0,74.0,76.0,76.0,77.0,77.0,77.0,77.0,77.0,77.0,78.0,78.0,78.0,78.0,78.0,78.0,78.0,79.0,79.0,79.0,79.0,79.0,79.0,80.0,80.0,83.0,83.0,83.0,83.0,84.0,84.0,84.0,84.0,85.0,85.0,86.0,86.0,86.0,86.0,86.0,86.0,86.0,86.0,86.0,86.0,86.0,87.0,87.0,88.0,88.0,90.0,90.0,90.0,90.0,91.0,91.0,91.0,91.0,92.0,92.0,92.0,92.0,93.0,93.0,94.0,94.0,101.0,9.0,9.0,10.0,10.0,21.0,21.0,34.0,34.0,36.0,36.0,37.0,37.0,40.0,40.0,44.0,44.0,49.0,49.0,49.0,49.0,61.0,61.0,63.0,63.0,65.0,66.0,66.0,67.0,67.0,68.0,73.0,73.0,73.0,73.0,74.0,76.0,76.0,78.0,78.0,78.0,78.0,86.0,86.0,88.0,88.0,88.0,88.0,90.0,90.0,91.0,91.0,92.0,92.0,93.0,93.0,43.0,43.0,63.0,63.0,63.0,64.0,64.0,71.0,71.0,74.0,74.0,76.0,76.0,77.0,77.0,77.0,77.0,77.0,77.0,78.0,78.0,78.0,78.0,79.0,79.0,79.0,79.0,79.0,79.0,80.0,80.0,83.0,83.0,83.0,83.0,84.0,84.0,86.0,86.0,86.0,86.0,86.0,86.0,86.0,86.0,86.0,87.0,87.0,90.0,90.0,90.0,90.0,91.0,91.0,91.0,92.0,92.0,93.0,93.0,94.0,94.0,101.0,101.0
|
4 |
+
Gender,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE43176.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1057835,GSM1057836,GSM1057837,GSM1057838,GSM1057839,GSM1057840,GSM1057841,GSM1057842,GSM1057843,GSM1057844,GSM1057845,GSM1057846,GSM1057847,GSM1057848,GSM1057849,GSM1057850,GSM1057851,GSM1057852,GSM1057853,GSM1057854,GSM1057855,GSM1057856,GSM1057857,GSM1057858,GSM1057859,GSM1057860,GSM1057861,GSM1057862,GSM1057863,GSM1057864,GSM1057865,GSM1057866,GSM1057867,GSM1057868,GSM1057869,GSM1057870,GSM1057871,GSM1057872,GSM1057873,GSM1057874,GSM1057875,GSM1057876,GSM1057877,GSM1057878,GSM1057879,GSM1057880,GSM1057881,GSM1057882,GSM1057883,GSM1057884,GSM1057885,GSM1057886,GSM1057887,GSM1057888,GSM1057889,GSM1057890,GSM1057891,GSM1057892,GSM1057893,GSM1057894,GSM1057895,GSM1057896,GSM1057897,GSM1057898,GSM1057899,GSM1057900,GSM1057901,GSM1057902,GSM1057903,GSM1057904,GSM1057905,GSM1057906,GSM1057907,GSM1057908,GSM1057909,GSM1057910,GSM1057911,GSM1057912,GSM1057913,GSM1057914,GSM1057915,GSM1057916,GSM1057917,GSM1057918,GSM1057919,GSM1057920,GSM1057921,GSM1057922,GSM1057923,GSM1057924,GSM1057925,GSM1057926,GSM1057927,GSM1057928,GSM1057929,GSM1057930,GSM1057931,GSM1057932,GSM1057933,GSM1057934,GSM1057935,GSM1057936,GSM1057937,GSM1057938,GSM1057939,GSM1057940,GSM1057941,GSM1057942
|
2 |
+
Age-Related_Macular_Degeneration,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE45485.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1104220,GSM1104221,GSM1104222,GSM1104223,GSM1104224,GSM1104225,GSM1104226,GSM1104227,GSM1104228,GSM1104229,GSM1104230,GSM1104231,GSM1104232,GSM1104233,GSM1104234,GSM1104235,GSM1104236,GSM1104237,GSM1104238,GSM1104239,GSM1104240,GSM1104241,GSM1104242,GSM1104243,GSM1104244,GSM1104245,GSM1104246,GSM1104247,GSM1104248,GSM1104249,GSM1104250,GSM1104251,GSM1104252,GSM1104253,GSM1104254,GSM1104255,GSM1104256,GSM1104257,GSM1104258,GSM1104259,GSM1104260,GSM1104261,GSM1104262,GSM1104263,GSM1104264,GSM1104265,GSM1104266,GSM1104267,GSM1104268,GSM1104269,GSM1104270,GSM1104271,GSM1104272,GSM1104273,GSM1104274,GSM1104275,GSM1104276,GSM1104277,GSM1104278,GSM1104279,GSM1104280,GSM1104281,GSM1104282,GSM1104283,GSM1104284,GSM1104285,GSM1104286,GSM1104287,GSM1104288,GSM1104289,GSM1104290,GSM1104291,GSM1104292,GSM1104293,GSM1104294,GSM1104295,GSM1104296,GSM1104297,GSM1104298,GSM1104299,GSM1104300,GSM1104301,GSM1104302
|
2 |
+
Age-Related_Macular_Degeneration,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE62224.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1523099,GSM1523100,GSM1523101,GSM1523102,GSM1523103,GSM1523104,GSM1523105,GSM1523106,GSM1523107,GSM1523108,GSM1523109,GSM1523110,GSM1523111,GSM1523112,GSM1523113,GSM1523114,GSM1523115,GSM1523116,GSM1523117,GSM1523118,GSM1523119,GSM1523120,GSM1523121,GSM1523122,GSM1523123,GSM1523124,GSM1523125,GSM1523126,GSM1523127,GSM1523128,GSM1523129,GSM1523130,GSM1523131,GSM1523132,GSM1523133,GSM1523134,GSM1523135,GSM1523136,GSM1523137,GSM1523138,GSM1523139,GSM1523140,GSM1523141,GSM1523142
|
2 |
+
Age-Related_Macular_Degeneration,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE67899.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1523099,GSM1523100,GSM1523101,GSM1523102,GSM1523103,GSM1523104,GSM1523105,GSM1523106,GSM1523107,GSM1523108,GSM1523109,GSM1523110,GSM1523111,GSM1523112,GSM1523113,GSM1523114,GSM1523115,GSM1523116,GSM1523117,GSM1523118,GSM1523119,GSM1523120,GSM1523121,GSM1523122,GSM1523123,GSM1523124,GSM1523125,GSM1523126,GSM1523127,GSM1523128,GSM1523129,GSM1523130,GSM1523131,GSM1523132,GSM1523133,GSM1523134,GSM1523135,GSM1523136,GSM1523137,GSM1523138,GSM1523139,GSM1523140,GSM1523141,GSM1523142
|
2 |
+
Age-Related_Macular_Degeneration,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Age-Related_Macular_Degeneration/code/GSE29801.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Age-Related_Macular_Degeneration"
|
6 |
+
cohort = "GSE29801"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE29801"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/GSE29801.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/gene_data/GSE29801.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/clinical_data/GSE29801.csv"
|
16 |
+
json_path = "./output/preprocess/3/Age-Related_Macular_Degeneration/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on series summary and experimental design, this is a gene expression study of RPE-choroid and retinal tissues
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# 2.1 Data Availability
|
42 |
+
trait_row = 4 # amd classification contains AMD status
|
43 |
+
age_row = 2 # age data available
|
44 |
+
gender_row = 1 # gender data available
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(value: str) -> Optional[int]:
|
48 |
+
"""Convert AMD status to binary: 1 for AMD, 0 for normal"""
|
49 |
+
if not value or ':' not in value:
|
50 |
+
return None
|
51 |
+
value = value.split(':')[1].strip().lower()
|
52 |
+
if 'normal' in value:
|
53 |
+
return 0
|
54 |
+
elif any(x in value for x in ['dry amd', 'ga', 'cnv', 'clinical amd']):
|
55 |
+
return 1
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(value: str) -> Optional[float]:
|
59 |
+
"""Convert age to continuous numeric value"""
|
60 |
+
if not value or ':' not in value:
|
61 |
+
return None
|
62 |
+
value = value.split(':')[1].strip()
|
63 |
+
try:
|
64 |
+
return float(value)
|
65 |
+
except:
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(value: str) -> Optional[int]:
|
69 |
+
"""Convert gender to binary: 0 for female, 1 for male"""
|
70 |
+
if not value or ':' not in value:
|
71 |
+
return None
|
72 |
+
value = value.split(':')[1].strip().lower()
|
73 |
+
if value == 'female':
|
74 |
+
return 0
|
75 |
+
elif value == 'male':
|
76 |
+
return 1
|
77 |
+
return None
|
78 |
+
|
79 |
+
# 3. Save Metadata
|
80 |
+
validate_and_save_cohort_info(
|
81 |
+
is_final=False,
|
82 |
+
cohort=cohort,
|
83 |
+
info_path=json_path,
|
84 |
+
is_gene_available=is_gene_available,
|
85 |
+
is_trait_available=trait_row is not None
|
86 |
+
)
|
87 |
+
|
88 |
+
# 4. Clinical Feature Extraction
|
89 |
+
# Since trait_row is not None, we extract clinical features
|
90 |
+
selected_clinical_df = geo_select_clinical_features(
|
91 |
+
clinical_df=clinical_data,
|
92 |
+
trait=trait,
|
93 |
+
trait_row=trait_row,
|
94 |
+
convert_trait=convert_trait,
|
95 |
+
age_row=age_row,
|
96 |
+
convert_age=convert_age,
|
97 |
+
gender_row=gender_row,
|
98 |
+
convert_gender=convert_gender
|
99 |
+
)
|
100 |
+
|
101 |
+
# Preview the data
|
102 |
+
print(preview_df(selected_clinical_df))
|
103 |
+
|
104 |
+
# Save clinical data
|
105 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
106 |
+
# Extract gene expression data from matrix file
|
107 |
+
gene_data = get_genetic_data(matrix_file)
|
108 |
+
|
109 |
+
# Print first 20 row IDs and shape of data to help debug
|
110 |
+
print("Shape of gene expression data:", gene_data.shape)
|
111 |
+
print("\nFirst few rows of data:")
|
112 |
+
print(gene_data.head())
|
113 |
+
print("\nFirst 20 gene/probe identifiers:")
|
114 |
+
print(gene_data.index[:20])
|
115 |
+
|
116 |
+
# Inspect a snippet of raw file to verify identifier format
|
117 |
+
import gzip
|
118 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
119 |
+
lines = []
|
120 |
+
for i, line in enumerate(f):
|
121 |
+
if "!series_matrix_table_begin" in line:
|
122 |
+
# Get the next 5 lines after the marker
|
123 |
+
for _ in range(5):
|
124 |
+
lines.append(next(f).strip())
|
125 |
+
break
|
126 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
127 |
+
for line in lines:
|
128 |
+
print(line)
|
129 |
+
# Looking at the gene identifiers, they appear to be numeric IDs
|
130 |
+
# These are not standard human gene symbols which are typically alphanumeric (e.g., BRCA1, TP53)
|
131 |
+
# Gene mapping will be required to convert these IDs to meaningful gene symbols
|
132 |
+
|
133 |
+
requires_gene_mapping = True
|
134 |
+
# Get file paths using library function
|
135 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
136 |
+
|
137 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
138 |
+
gene_annotation = get_gene_annotation(soft_file)
|
139 |
+
|
140 |
+
# Preview gene annotation data
|
141 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
142 |
+
print("\nGene annotation preview:")
|
143 |
+
print(preview_df(gene_annotation))
|
144 |
+
|
145 |
+
print("\nNumber of non-null values in each column:")
|
146 |
+
print(gene_annotation.count())
|
147 |
+
|
148 |
+
# Print example rows showing the mapping information columns
|
149 |
+
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
|
150 |
+
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
|
151 |
+
|
152 |
+
print("\nNote: Gene mapping will use:")
|
153 |
+
print("'ID' column: Probe identifiers")
|
154 |
+
print("'GENE_SYMBOL' column: Contains gene symbol information")
|
155 |
+
# Get mapping dataframe from annotation data
|
156 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
157 |
+
|
158 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
159 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
160 |
+
|
161 |
+
# Save gene expression data
|
162 |
+
gene_data.to_csv(out_gene_data_file)
|
163 |
+
|
164 |
+
# Preview after mapping
|
165 |
+
print("Shape after gene mapping:", gene_data.shape)
|
166 |
+
print("\nFirst few genes and values:")
|
167 |
+
print(preview_df(gene_data))
|
168 |
+
# 1. Normalize gene symbols
|
169 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
170 |
+
|
171 |
+
# Save normalized gene data
|
172 |
+
gene_data.to_csv(out_gene_data_file)
|
173 |
+
|
174 |
+
# 2. Link clinical and genetic data
|
175 |
+
try:
|
176 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
177 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
178 |
+
|
179 |
+
# 3. Handle missing values
|
180 |
+
linked_data = handle_missing_values(linked_data, trait)
|
181 |
+
|
182 |
+
# 4. Determine if features are biased
|
183 |
+
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
184 |
+
|
185 |
+
# 5. Validate and save cohort info
|
186 |
+
is_usable = validate_and_save_cohort_info(
|
187 |
+
is_final=True,
|
188 |
+
cohort=cohort,
|
189 |
+
info_path=json_path,
|
190 |
+
is_gene_available=True,
|
191 |
+
is_trait_available=True,
|
192 |
+
is_biased=is_trait_biased,
|
193 |
+
df=linked_data,
|
194 |
+
note="Gene expression data successfully mapped and linked with clinical features"
|
195 |
+
)
|
196 |
+
|
197 |
+
# 6. Save linked data if usable
|
198 |
+
if is_usable:
|
199 |
+
linked_data.to_csv(out_data_file)
|
200 |
+
|
201 |
+
except Exception as e:
|
202 |
+
print(f"Error in data linking and processing: {str(e)}")
|
203 |
+
is_usable = validate_and_save_cohort_info(
|
204 |
+
is_final=True,
|
205 |
+
cohort=cohort,
|
206 |
+
info_path=json_path,
|
207 |
+
is_gene_available=True,
|
208 |
+
is_trait_available=True,
|
209 |
+
is_biased=True,
|
210 |
+
df=pd.DataFrame(),
|
211 |
+
note=f"Data processing failed: {str(e)}"
|
212 |
+
)
|
p3/preprocess/Age-Related_Macular_Degeneration/code/GSE38662.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Age-Related_Macular_Degeneration"
|
6 |
+
cohort = "GSE38662"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE38662"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/GSE38662.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/gene_data/GSE38662.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/clinical_data/GSE38662.csv"
|
16 |
+
json_path = "./output/preprocess/3/Age-Related_Macular_Degeneration/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Affymetrix arrays mentioned in design suggests gene expression data
|
38 |
+
|
39 |
+
# 2. Variable Availability and Row Numbers
|
40 |
+
# Trait row: Not available as this is cell line data, not AMD data
|
41 |
+
trait_row = None
|
42 |
+
|
43 |
+
# Age row: Not available as these are cell lines
|
44 |
+
age_row = None
|
45 |
+
|
46 |
+
# Gender row: Available in Feature 3
|
47 |
+
gender_row = 3
|
48 |
+
|
49 |
+
# Convert functions
|
50 |
+
def convert_trait(x):
|
51 |
+
return None # Not used as trait data not available
|
52 |
+
|
53 |
+
def convert_age(x):
|
54 |
+
return None # Not used as age data not available
|
55 |
+
|
56 |
+
def convert_gender(x):
|
57 |
+
if x is None:
|
58 |
+
return None
|
59 |
+
x = x.lower().split(': ')[1]
|
60 |
+
if '46,xx' in x:
|
61 |
+
return 0 # Female
|
62 |
+
elif '46,xy' in x:
|
63 |
+
return 1 # Male
|
64 |
+
return None
|
65 |
+
|
66 |
+
# 3. Save metadata with note explaining rejection reason
|
67 |
+
validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=(trait_row is not None),
|
73 |
+
note="Dataset contains hESC cell line data, not AMD patient data"
|
74 |
+
)
|
75 |
+
|
76 |
+
# 4. Skip clinical feature extraction since trait_row is None
|
77 |
+
# Extract gene expression data from matrix file
|
78 |
+
gene_data = get_genetic_data(matrix_file)
|
79 |
+
|
80 |
+
# Print first 20 row IDs and shape of data to help debug
|
81 |
+
print("Shape of gene expression data:", gene_data.shape)
|
82 |
+
print("\nFirst few rows of data:")
|
83 |
+
print(gene_data.head())
|
84 |
+
print("\nFirst 20 gene/probe identifiers:")
|
85 |
+
print(gene_data.index[:20])
|
86 |
+
|
87 |
+
# Inspect a snippet of raw file to verify identifier format
|
88 |
+
import gzip
|
89 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
90 |
+
lines = []
|
91 |
+
for i, line in enumerate(f):
|
92 |
+
if "!series_matrix_table_begin" in line:
|
93 |
+
# Get the next 5 lines after the marker
|
94 |
+
for _ in range(5):
|
95 |
+
lines.append(next(f).strip())
|
96 |
+
break
|
97 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
98 |
+
for line in lines:
|
99 |
+
print(line)
|
100 |
+
# Based on the format "xxxxx_at" and "xxxxx_s_at", these are Affymetrix probe IDs, not gene symbols
|
101 |
+
# These need to be mapped to human gene symbols for analysis
|
102 |
+
requires_gene_mapping = True
|
103 |
+
# Get file paths using library function
|
104 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
105 |
+
|
106 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
107 |
+
gene_annotation = get_gene_annotation(soft_file)
|
108 |
+
|
109 |
+
# Preview gene annotation data
|
110 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
111 |
+
print("\nGene annotation preview:")
|
112 |
+
print(preview_df(gene_annotation))
|
113 |
+
|
114 |
+
print("\nNumber of non-null values in each column:")
|
115 |
+
print(gene_annotation.count())
|
116 |
+
|
117 |
+
# Print example rows showing the mapping information columns
|
118 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
119 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
120 |
+
|
121 |
+
print("\nNote: Gene mapping will use:")
|
122 |
+
print("'ID' column: Probe identifiers")
|
123 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
124 |
+
# Create mapping from probe IDs to gene symbols
|
125 |
+
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')
|
126 |
+
|
127 |
+
# Apply gene mapping using library function
|
128 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
129 |
+
|
130 |
+
# Save the processed gene data
|
131 |
+
gene_data.to_csv(out_gene_data_file)
|
132 |
+
# 1. Normalize gene symbols
|
133 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
134 |
+
|
135 |
+
# Save normalized gene data
|
136 |
+
gene_data.to_csv(out_gene_data_file)
|
137 |
+
|
138 |
+
# Record that dataset is not usable
|
139 |
+
is_usable = validate_and_save_cohort_info(
|
140 |
+
is_final=True,
|
141 |
+
cohort=cohort,
|
142 |
+
info_path=json_path,
|
143 |
+
is_gene_available=True,
|
144 |
+
is_trait_available=False,
|
145 |
+
is_biased=True, # Set to True to indicate dataset cannot be used
|
146 |
+
df=pd.DataFrame(), # Provide empty DataFrame
|
147 |
+
note="Dataset contains hESC cell line data, not AMD patient data. No trait information available."
|
148 |
+
)
|
p3/preprocess/Age-Related_Macular_Degeneration/code/GSE43176.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Age-Related_Macular_Degeneration"
|
6 |
+
cohort = "GSE43176"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE43176"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/GSE43176.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/gene_data/GSE43176.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/clinical_data/GSE43176.csv"
|
16 |
+
json_path = "./output/preprocess/3/Age-Related_Macular_Degeneration/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Affymetrix U133A array data for gene expression profiling
|
38 |
+
|
39 |
+
# 2.1 Data Availability
|
40 |
+
trait_row = 0 # Disease state indicates case/control status
|
41 |
+
age_row = None # Age data not available
|
42 |
+
gender_row = None # Gender data not available
|
43 |
+
|
44 |
+
# 2.2 Data Type Conversion Functions
|
45 |
+
def convert_trait(val):
|
46 |
+
if not isinstance(val, str):
|
47 |
+
return None
|
48 |
+
val = val.lower().split(': ')[-1]
|
49 |
+
if 'normal' in val:
|
50 |
+
return 0
|
51 |
+
elif 'aml' in val:
|
52 |
+
return 1
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(val):
|
56 |
+
return None # Not used since age data unavailable
|
57 |
+
|
58 |
+
def convert_gender(val):
|
59 |
+
return None # Not used since gender data unavailable
|
60 |
+
|
61 |
+
# 3. Save Initial Filtering Results
|
62 |
+
validate_and_save_cohort_info(
|
63 |
+
is_final=False,
|
64 |
+
cohort=cohort,
|
65 |
+
info_path=json_path,
|
66 |
+
is_gene_available=is_gene_available,
|
67 |
+
is_trait_available=(trait_row is not None)
|
68 |
+
)
|
69 |
+
|
70 |
+
# 4. Clinical Feature Extraction
|
71 |
+
if trait_row is not None:
|
72 |
+
selected_clinical_df = geo_select_clinical_features(
|
73 |
+
clinical_df=clinical_data,
|
74 |
+
trait=trait,
|
75 |
+
trait_row=trait_row,
|
76 |
+
convert_trait=convert_trait
|
77 |
+
)
|
78 |
+
|
79 |
+
# Preview the processed clinical data
|
80 |
+
print("Preview of processed clinical data:")
|
81 |
+
print(preview_df(selected_clinical_df))
|
82 |
+
|
83 |
+
# Save clinical data
|
84 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
85 |
+
# Extract gene expression data from matrix file
|
86 |
+
gene_data = get_genetic_data(matrix_file)
|
87 |
+
|
88 |
+
# Print first 20 row IDs and shape of data to help debug
|
89 |
+
print("Shape of gene expression data:", gene_data.shape)
|
90 |
+
print("\nFirst few rows of data:")
|
91 |
+
print(gene_data.head())
|
92 |
+
print("\nFirst 20 gene/probe identifiers:")
|
93 |
+
print(gene_data.index[:20])
|
94 |
+
|
95 |
+
# Inspect a snippet of raw file to verify identifier format
|
96 |
+
import gzip
|
97 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
98 |
+
lines = []
|
99 |
+
for i, line in enumerate(f):
|
100 |
+
if "!series_matrix_table_begin" in line:
|
101 |
+
# Get the next 5 lines after the marker
|
102 |
+
for _ in range(5):
|
103 |
+
lines.append(next(f).strip())
|
104 |
+
break
|
105 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
106 |
+
for line in lines:
|
107 |
+
print(line)
|
108 |
+
# These identifiers (e.g. "1007_s_at", "1053_at") appear to be probe IDs from the Affymetrix platform
|
109 |
+
# They will need to be mapped to standard human gene symbols for analysis
|
110 |
+
requires_gene_mapping = True
|
111 |
+
# Get file paths using library function
|
112 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
113 |
+
|
114 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
115 |
+
gene_annotation = get_gene_annotation(soft_file)
|
116 |
+
|
117 |
+
# Preview gene annotation data
|
118 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
119 |
+
print("\nGene annotation preview:")
|
120 |
+
print(preview_df(gene_annotation))
|
121 |
+
|
122 |
+
print("\nNumber of non-null values in each column:")
|
123 |
+
print(gene_annotation.count())
|
124 |
+
|
125 |
+
# Print example rows showing the mapping information columns
|
126 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
127 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
128 |
+
|
129 |
+
print("\nNote: Gene mapping will use:")
|
130 |
+
print("'ID' column: Probe identifiers")
|
131 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
132 |
+
# Get gene mapping from annotation data
|
133 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
134 |
+
|
135 |
+
# Convert probe data to gene expression data using the mapping
|
136 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
137 |
+
|
138 |
+
# Save preprocessed gene expression data
|
139 |
+
gene_data.to_csv(out_gene_data_file)
|
140 |
+
|
141 |
+
# Preview the processed gene data
|
142 |
+
print("\nPreview of mapped gene expression data:")
|
143 |
+
print(preview_df(gene_data))
|
144 |
+
print("\nFinal gene expression data shape:", gene_data.shape)
|
145 |
+
# 1. Normalize gene symbols
|
146 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
147 |
+
|
148 |
+
# Save normalized gene data
|
149 |
+
gene_data.to_csv(out_gene_data_file)
|
150 |
+
|
151 |
+
# 2. Link clinical and genetic data
|
152 |
+
try:
|
153 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
154 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
155 |
+
|
156 |
+
# 3. Handle missing values
|
157 |
+
linked_data = handle_missing_values(linked_data, trait)
|
158 |
+
|
159 |
+
# 4. Determine if features are biased
|
160 |
+
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
161 |
+
|
162 |
+
# 5. Validate and save cohort info
|
163 |
+
is_usable = validate_and_save_cohort_info(
|
164 |
+
is_final=True,
|
165 |
+
cohort=cohort,
|
166 |
+
info_path=json_path,
|
167 |
+
is_gene_available=True,
|
168 |
+
is_trait_available=True,
|
169 |
+
is_biased=is_trait_biased,
|
170 |
+
df=linked_data,
|
171 |
+
note="Gene expression data successfully mapped and linked with clinical features"
|
172 |
+
)
|
173 |
+
|
174 |
+
# 6. Save linked data if usable
|
175 |
+
if is_usable:
|
176 |
+
linked_data.to_csv(out_data_file)
|
177 |
+
|
178 |
+
except Exception as e:
|
179 |
+
print(f"Error in data linking and processing: {str(e)}")
|
180 |
+
is_usable = validate_and_save_cohort_info(
|
181 |
+
is_final=True,
|
182 |
+
cohort=cohort,
|
183 |
+
info_path=json_path,
|
184 |
+
is_gene_available=True,
|
185 |
+
is_trait_available=True,
|
186 |
+
is_biased=True,
|
187 |
+
df=pd.DataFrame(),
|
188 |
+
note=f"Data processing failed: {str(e)}"
|
189 |
+
)
|
p3/preprocess/Age-Related_Macular_Degeneration/code/GSE45485.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Age-Related_Macular_Degeneration"
|
6 |
+
cohort = "GSE45485"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE45485"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/GSE45485.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/gene_data/GSE45485.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/clinical_data/GSE45485.csv"
|
16 |
+
json_path = "./output/preprocess/3/Age-Related_Macular_Degeneration/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# From the title and summary, this dataset contains gene expression data from skin biopsies
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# Looking at the features:
|
42 |
+
# Feature 1 (disease state) can be used for trait - binary classification between normal/SSc
|
43 |
+
# Age and gender are not available in the characteristics
|
44 |
+
|
45 |
+
# 2.1 Row identifiers
|
46 |
+
trait_row = 1 # Feature 1 has disease state info
|
47 |
+
age_row = None # Age not available
|
48 |
+
gender_row = None # Gender not available
|
49 |
+
|
50 |
+
# 2.2 Conversion functions
|
51 |
+
def convert_trait(value: str) -> Optional[int]:
|
52 |
+
if pd.isna(value):
|
53 |
+
return None
|
54 |
+
value = value.split(': ')[1].strip().lower()
|
55 |
+
if value == 'normal':
|
56 |
+
return 0
|
57 |
+
elif value == 'systemic sclerosis':
|
58 |
+
return 1
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_age(value: str) -> Optional[float]:
|
62 |
+
return None # Not used
|
63 |
+
|
64 |
+
def convert_gender(value: str) -> Optional[int]:
|
65 |
+
return None # Not used
|
66 |
+
|
67 |
+
# 3. Save initial metadata
|
68 |
+
is_trait_available = trait_row is not None
|
69 |
+
_ = validate_and_save_cohort_info(
|
70 |
+
is_final=False,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=is_gene_available,
|
74 |
+
is_trait_available=is_trait_available
|
75 |
+
)
|
76 |
+
|
77 |
+
# 4. Extract clinical features since trait_row is not None
|
78 |
+
clinical_df = geo_select_clinical_features(
|
79 |
+
clinical_df=clinical_data,
|
80 |
+
trait=trait,
|
81 |
+
trait_row=trait_row,
|
82 |
+
convert_trait=convert_trait,
|
83 |
+
age_row=age_row,
|
84 |
+
convert_age=convert_age,
|
85 |
+
gender_row=gender_row,
|
86 |
+
convert_gender=convert_gender
|
87 |
+
)
|
88 |
+
|
89 |
+
# Preview the processed data
|
90 |
+
preview = preview_df(clinical_df)
|
91 |
+
print("Preview of clinical data:")
|
92 |
+
print(preview)
|
93 |
+
|
94 |
+
# Save clinical data
|
95 |
+
clinical_df.to_csv(out_clinical_data_file)
|
96 |
+
# Extract gene expression data from matrix file
|
97 |
+
gene_data = get_genetic_data(matrix_file)
|
98 |
+
|
99 |
+
# Print first 20 row IDs and shape of data to help debug
|
100 |
+
print("Shape of gene expression data:", gene_data.shape)
|
101 |
+
print("\nFirst few rows of data:")
|
102 |
+
print(gene_data.head())
|
103 |
+
print("\nFirst 20 gene/probe identifiers:")
|
104 |
+
print(gene_data.index[:20])
|
105 |
+
|
106 |
+
# Inspect a snippet of raw file to verify identifier format
|
107 |
+
import gzip
|
108 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
109 |
+
lines = []
|
110 |
+
for i, line in enumerate(f):
|
111 |
+
if "!series_matrix_table_begin" in line:
|
112 |
+
# Get the next 5 lines after the marker
|
113 |
+
for _ in range(5):
|
114 |
+
lines.append(next(f).strip())
|
115 |
+
break
|
116 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
117 |
+
for line in lines:
|
118 |
+
print(line)
|
119 |
+
# From the gene identifiers shown (e.g., A_23_P100001), these are Agilent probe IDs, not human gene symbols
|
120 |
+
# Agilent probe IDs need to be mapped to official gene symbols for standardization and interpretation
|
121 |
+
requires_gene_mapping = True
|
122 |
+
# Get file paths using library function
|
123 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
124 |
+
|
125 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
126 |
+
gene_annotation = get_gene_annotation(soft_file)
|
127 |
+
|
128 |
+
# Preview gene annotation data
|
129 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
130 |
+
print("\nGene annotation preview:")
|
131 |
+
print(preview_df(gene_annotation))
|
132 |
+
|
133 |
+
print("\nNumber of non-null values in each column:")
|
134 |
+
print(gene_annotation.count())
|
135 |
+
|
136 |
+
# Print example rows showing the mapping information columns
|
137 |
+
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
|
138 |
+
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
|
139 |
+
|
140 |
+
print("\nNote: Gene mapping will use:")
|
141 |
+
print("'ID' column: Probe identifiers")
|
142 |
+
print("'GENE_SYMBOL' column: Contains gene symbol information")
|
143 |
+
# Extract mapping information
|
144 |
+
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
145 |
+
|
146 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
147 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping)
|
148 |
+
|
149 |
+
# Save the gene expression data
|
150 |
+
gene_data.to_csv(out_gene_data_file)
|
151 |
+
# 1. Normalize gene symbols
|
152 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
153 |
+
|
154 |
+
# Save normalized gene data
|
155 |
+
gene_data.to_csv(out_gene_data_file)
|
156 |
+
|
157 |
+
# 2. Link clinical and genetic data
|
158 |
+
try:
|
159 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
160 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
161 |
+
|
162 |
+
# 3. Handle missing values
|
163 |
+
linked_data = handle_missing_values(linked_data, trait)
|
164 |
+
|
165 |
+
# 4. Determine if features are biased
|
166 |
+
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
167 |
+
|
168 |
+
# 5. Validate and save cohort info
|
169 |
+
is_usable = validate_and_save_cohort_info(
|
170 |
+
is_final=True,
|
171 |
+
cohort=cohort,
|
172 |
+
info_path=json_path,
|
173 |
+
is_gene_available=True,
|
174 |
+
is_trait_available=True,
|
175 |
+
is_biased=is_trait_biased,
|
176 |
+
df=linked_data,
|
177 |
+
note="Gene expression data successfully mapped and linked with clinical features"
|
178 |
+
)
|
179 |
+
|
180 |
+
# 6. Save linked data if usable
|
181 |
+
if is_usable:
|
182 |
+
linked_data.to_csv(out_data_file)
|
183 |
+
|
184 |
+
except Exception as e:
|
185 |
+
print(f"Error in data linking and processing: {str(e)}")
|
186 |
+
is_usable = validate_and_save_cohort_info(
|
187 |
+
is_final=True,
|
188 |
+
cohort=cohort,
|
189 |
+
info_path=json_path,
|
190 |
+
is_gene_available=True,
|
191 |
+
is_trait_available=True,
|
192 |
+
is_biased=True,
|
193 |
+
df=pd.DataFrame(),
|
194 |
+
note=f"Data processing failed: {str(e)}"
|
195 |
+
)
|
p3/preprocess/Age-Related_Macular_Degeneration/code/GSE62224.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Age-Related_Macular_Degeneration"
|
6 |
+
cohort = "GSE62224"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE62224"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/GSE62224.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/gene_data/GSE62224.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/clinical_data/GSE62224.csv"
|
16 |
+
json_path = "./output/preprocess/3/Age-Related_Macular_Degeneration/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# This dataset contains genome-wide microarray expression data according to Series_overall_design
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
|
42 |
+
# 2.1 Data Availability
|
43 |
+
# For trait (passage number), the key is 2
|
44 |
+
trait_row = 2
|
45 |
+
# Age data is not available
|
46 |
+
age_row = None
|
47 |
+
# Gender data is not available
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(x):
|
52 |
+
"""Convert passage number to binary - where passage 0 maps to 0 (early), passage 5 maps to 1 (late)"""
|
53 |
+
if x is None or ':' not in x:
|
54 |
+
return None
|
55 |
+
value = int(x.split(': ')[1])
|
56 |
+
if value == 0:
|
57 |
+
return 0
|
58 |
+
elif value == 5:
|
59 |
+
return 1
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(x):
|
63 |
+
"""No age data available"""
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_gender(x):
|
67 |
+
"""No gender data available"""
|
68 |
+
return None
|
69 |
+
|
70 |
+
# 3. Save initial metadata
|
71 |
+
validate_and_save_cohort_info(
|
72 |
+
is_final=False,
|
73 |
+
cohort=cohort,
|
74 |
+
info_path=json_path,
|
75 |
+
is_gene_available=is_gene_available,
|
76 |
+
is_trait_available=trait_row is not None
|
77 |
+
)
|
78 |
+
|
79 |
+
# 4. Extract clinical features
|
80 |
+
if trait_row is not None:
|
81 |
+
selected_clinical = geo_select_clinical_features(
|
82 |
+
clinical_df=clinical_data,
|
83 |
+
trait=trait,
|
84 |
+
trait_row=trait_row,
|
85 |
+
convert_trait=convert_trait,
|
86 |
+
age_row=age_row,
|
87 |
+
convert_age=convert_age,
|
88 |
+
gender_row=gender_row,
|
89 |
+
convert_gender=convert_gender
|
90 |
+
)
|
91 |
+
|
92 |
+
# Preview the results
|
93 |
+
print("Preview of selected clinical features:")
|
94 |
+
print(preview_df(selected_clinical))
|
95 |
+
|
96 |
+
# Save to CSV
|
97 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
98 |
+
# Extract gene expression data from matrix file
|
99 |
+
gene_data = get_genetic_data(matrix_file)
|
100 |
+
|
101 |
+
# Print first 20 row IDs and shape of data to help debug
|
102 |
+
print("Shape of gene expression data:", gene_data.shape)
|
103 |
+
print("\nFirst few rows of data:")
|
104 |
+
print(gene_data.head())
|
105 |
+
print("\nFirst 20 gene/probe identifiers:")
|
106 |
+
print(gene_data.index[:20])
|
107 |
+
|
108 |
+
# Inspect a snippet of raw file to verify identifier format
|
109 |
+
import gzip
|
110 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
111 |
+
lines = []
|
112 |
+
for i, line in enumerate(f):
|
113 |
+
if "!series_matrix_table_begin" in line:
|
114 |
+
# Get the next 5 lines after the marker
|
115 |
+
for _ in range(5):
|
116 |
+
lines.append(next(f).strip())
|
117 |
+
break
|
118 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
119 |
+
for line in lines:
|
120 |
+
print(line)
|
121 |
+
# Looking at the identifiers, we see they are simple numeric IDs (12, 13, 14, etc)
|
122 |
+
# These are not standard human gene symbols, which would be alphabetic codes like BRCA1, TP53, etc.
|
123 |
+
# Therefore, these identifiers will need to be mapped to proper gene symbols
|
124 |
+
|
125 |
+
requires_gene_mapping = True
|
126 |
+
# Get file paths using library function
|
127 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
128 |
+
|
129 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
130 |
+
gene_annotation = get_gene_annotation(soft_file)
|
131 |
+
|
132 |
+
# Preview gene annotation data
|
133 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
134 |
+
print("\nGene annotation preview:")
|
135 |
+
print(preview_df(gene_annotation))
|
136 |
+
|
137 |
+
print("\nNumber of non-null values in each column:")
|
138 |
+
print(gene_annotation.count())
|
139 |
+
|
140 |
+
# Print example rows showing the mapping information columns
|
141 |
+
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
|
142 |
+
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
|
143 |
+
|
144 |
+
print("\nNote: Gene mapping will use:")
|
145 |
+
print("'ID' column: Probe identifiers")
|
146 |
+
print("'GENE_SYMBOL' column: Contains gene symbol information")
|
147 |
+
# 1. Get gene mapping between ID and GENE_SYMBOL columns
|
148 |
+
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')
|
149 |
+
|
150 |
+
# 2. Apply mapping to convert probe level measurements to gene expression data
|
151 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
152 |
+
|
153 |
+
# 3. Normalize gene symbols using NCBI synonym data
|
154 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
155 |
+
|
156 |
+
print("Shape of mapped gene expression data:", gene_data.shape)
|
157 |
+
print("\nFirst few rows of mapped data:")
|
158 |
+
print(gene_data.head())
|
159 |
+
print("\nFirst 20 gene symbols:")
|
160 |
+
print(gene_data.index[:20])
|
161 |
+
|
162 |
+
# Save gene expression data
|
163 |
+
gene_data.to_csv(out_gene_data_file)
|
164 |
+
# 1. Normalize gene symbols
|
165 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
166 |
+
|
167 |
+
# Save normalized gene data
|
168 |
+
gene_data.to_csv(out_gene_data_file)
|
169 |
+
|
170 |
+
# 2. Link clinical and genetic data
|
171 |
+
try:
|
172 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
173 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
174 |
+
|
175 |
+
# 3. Handle missing values
|
176 |
+
linked_data = handle_missing_values(linked_data, trait)
|
177 |
+
|
178 |
+
# 4. Determine if features are biased
|
179 |
+
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
180 |
+
|
181 |
+
# 5. Validate and save cohort info
|
182 |
+
is_usable = validate_and_save_cohort_info(
|
183 |
+
is_final=True,
|
184 |
+
cohort=cohort,
|
185 |
+
info_path=json_path,
|
186 |
+
is_gene_available=True,
|
187 |
+
is_trait_available=True,
|
188 |
+
is_biased=is_trait_biased,
|
189 |
+
df=linked_data,
|
190 |
+
note="Gene expression data successfully mapped and linked with clinical features"
|
191 |
+
)
|
192 |
+
|
193 |
+
# 6. Save linked data if usable
|
194 |
+
if is_usable:
|
195 |
+
linked_data.to_csv(out_data_file)
|
196 |
+
|
197 |
+
except Exception as e:
|
198 |
+
print(f"Error in data linking and processing: {str(e)}")
|
199 |
+
is_usable = validate_and_save_cohort_info(
|
200 |
+
is_final=True,
|
201 |
+
cohort=cohort,
|
202 |
+
info_path=json_path,
|
203 |
+
is_gene_available=True,
|
204 |
+
is_trait_available=True,
|
205 |
+
is_biased=True,
|
206 |
+
df=pd.DataFrame(),
|
207 |
+
note=f"Data processing failed: {str(e)}"
|
208 |
+
)
|
p3/preprocess/Age-Related_Macular_Degeneration/code/GSE67899.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Age-Related_Macular_Degeneration"
|
6 |
+
cohort = "GSE67899"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE67899"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/GSE67899.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/gene_data/GSE67899.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/clinical_data/GSE67899.csv"
|
16 |
+
json_path = "./output/preprocess/3/Age-Related_Macular_Degeneration/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # The series title suggests the study involves RPE cell changes, which implies gene expression data
|
38 |
+
|
39 |
+
# 2. Data Availability and Type Conversion
|
40 |
+
# 2.1 Trait row identification
|
41 |
+
# Looking at treatment values - some samples have pathway inhibitors (A83-01, Thiazovivin etc) vs control (None/DMSO)
|
42 |
+
trait_row = 5 # Treatment info in Feature 5
|
43 |
+
|
44 |
+
# Age and gender data not available in sample characteristics
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(x):
|
50 |
+
"""Convert treatment status to binary:
|
51 |
+
0 for control (None/DMSO)
|
52 |
+
1 for any treatment"""
|
53 |
+
if not isinstance(x, str):
|
54 |
+
return None
|
55 |
+
value = x.split(': ')[-1].strip()
|
56 |
+
if value in ['None', 'DMSO']:
|
57 |
+
return 0
|
58 |
+
elif 'treatment' in x.lower(): # Any other treatment
|
59 |
+
return 1
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(x):
|
63 |
+
return None # Not available
|
64 |
+
|
65 |
+
def convert_gender(x):
|
66 |
+
return None # Not available
|
67 |
+
|
68 |
+
# 3. Save Metadata
|
69 |
+
is_trait_available = trait_row is not None
|
70 |
+
validate_and_save_cohort_info(is_final=False,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=is_gene_available,
|
74 |
+
is_trait_available=is_trait_available)
|
75 |
+
|
76 |
+
# 4. Clinical Feature Extraction
|
77 |
+
if trait_row is not None:
|
78 |
+
clinical_features = geo_select_clinical_features(
|
79 |
+
clinical_df=clinical_data,
|
80 |
+
trait=trait,
|
81 |
+
trait_row=trait_row,
|
82 |
+
convert_trait=convert_trait,
|
83 |
+
age_row=age_row,
|
84 |
+
convert_age=convert_age,
|
85 |
+
gender_row=gender_row,
|
86 |
+
convert_gender=convert_gender
|
87 |
+
)
|
88 |
+
|
89 |
+
# Preview the processed clinical data
|
90 |
+
print("Preview of clinical features:")
|
91 |
+
print(preview_df(clinical_features))
|
92 |
+
|
93 |
+
# Save clinical features to CSV
|
94 |
+
clinical_features.to_csv(out_clinical_data_file)
|
95 |
+
# Extract gene expression data from matrix file
|
96 |
+
gene_data = get_genetic_data(matrix_file)
|
97 |
+
|
98 |
+
# Print first 20 row IDs and shape of data to help debug
|
99 |
+
print("Shape of gene expression data:", gene_data.shape)
|
100 |
+
print("\nFirst few rows of data:")
|
101 |
+
print(gene_data.head())
|
102 |
+
print("\nFirst 20 gene/probe identifiers:")
|
103 |
+
print(gene_data.index[:20])
|
104 |
+
|
105 |
+
# Inspect a snippet of raw file to verify identifier format
|
106 |
+
import gzip
|
107 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
108 |
+
lines = []
|
109 |
+
for i, line in enumerate(f):
|
110 |
+
if "!series_matrix_table_begin" in line:
|
111 |
+
# Get the next 5 lines after the marker
|
112 |
+
for _ in range(5):
|
113 |
+
lines.append(next(f).strip())
|
114 |
+
break
|
115 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
116 |
+
for line in lines:
|
117 |
+
print(line)
|
118 |
+
# Looking at the identifiers (numbered 12, 13, 14...), these are clearly probe IDs
|
119 |
+
# rather than human gene symbols. We will need to map them to gene symbols.
|
120 |
+
requires_gene_mapping = True
|
121 |
+
# Get file paths using library function
|
122 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
123 |
+
|
124 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
125 |
+
gene_annotation = get_gene_annotation(soft_file)
|
126 |
+
|
127 |
+
# Preview gene annotation data
|
128 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
129 |
+
print("\nGene annotation preview:")
|
130 |
+
print(preview_df(gene_annotation))
|
131 |
+
|
132 |
+
print("\nNumber of non-null values in each column:")
|
133 |
+
print(gene_annotation.count())
|
134 |
+
|
135 |
+
# Print example rows showing the mapping information columns
|
136 |
+
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
|
137 |
+
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
|
138 |
+
|
139 |
+
print("\nNote: Gene mapping will use:")
|
140 |
+
print("'ID' column: Probe identifiers")
|
141 |
+
print("'GENE_SYMBOL' column: Contains gene symbol information")
|
142 |
+
# Extract probe-to-gene mapping using the 'ID' and 'GENE_SYMBOL' columns
|
143 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
144 |
+
|
145 |
+
# Convert probe-level expression to gene-level expression
|
146 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
147 |
+
|
148 |
+
# Print some stats about the conversion
|
149 |
+
print("Shape after mapping:", gene_data.shape)
|
150 |
+
print("\nFirst few rows:")
|
151 |
+
print(gene_data.head())
|
152 |
+
print("\nFirst 20 gene symbols:")
|
153 |
+
print(gene_data.index[:20])
|
154 |
+
# 1. Normalize gene symbols
|
155 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
156 |
+
|
157 |
+
# Save normalized gene data
|
158 |
+
gene_data.to_csv(out_gene_data_file)
|
159 |
+
|
160 |
+
# 2. Link clinical and genetic data
|
161 |
+
try:
|
162 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
163 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
164 |
+
|
165 |
+
# 3. Handle missing values
|
166 |
+
linked_data = handle_missing_values(linked_data, trait)
|
167 |
+
|
168 |
+
# 4. Determine if features are biased
|
169 |
+
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
170 |
+
|
171 |
+
# 5. Validate and save cohort info
|
172 |
+
is_usable = validate_and_save_cohort_info(
|
173 |
+
is_final=True,
|
174 |
+
cohort=cohort,
|
175 |
+
info_path=json_path,
|
176 |
+
is_gene_available=True,
|
177 |
+
is_trait_available=True,
|
178 |
+
is_biased=is_trait_biased,
|
179 |
+
df=linked_data,
|
180 |
+
note="Gene expression data successfully mapped and linked with clinical features"
|
181 |
+
)
|
182 |
+
|
183 |
+
# 6. Save linked data if usable
|
184 |
+
if is_usable:
|
185 |
+
linked_data.to_csv(out_data_file)
|
186 |
+
|
187 |
+
except Exception as e:
|
188 |
+
print(f"Error in data linking and processing: {str(e)}")
|
189 |
+
is_usable = validate_and_save_cohort_info(
|
190 |
+
is_final=True,
|
191 |
+
cohort=cohort,
|
192 |
+
info_path=json_path,
|
193 |
+
is_gene_available=True,
|
194 |
+
is_trait_available=True,
|
195 |
+
is_biased=True,
|
196 |
+
df=pd.DataFrame(),
|
197 |
+
note=f"Data processing failed: {str(e)}"
|
198 |
+
)
|
p3/preprocess/Age-Related_Macular_Degeneration/code/TCGA.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Age-Related_Macular_Degeneration"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Age-Related_Macular_Degeneration/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Age-Related_Macular_Degeneration/cohort_info.json"
|
15 |
+
|
16 |
+
# 1. Review subdirectories for matching trait data
|
17 |
+
subdirs = [d for d in os.listdir(tcga_root_dir) if os.path.isdir(os.path.join(tcga_root_dir, d))]
|
18 |
+
|
19 |
+
# No suitable directory exists for age-related macular degeneration
|
20 |
+
# Mark data as unavailable
|
21 |
+
cohort = "TCGA_no_suitable_cohort"
|
22 |
+
|
23 |
+
# Record unavailability and end preprocessing
|
24 |
+
validate_and_save_cohort_info(
|
25 |
+
is_final=False,
|
26 |
+
cohort=cohort,
|
27 |
+
info_path=json_path,
|
28 |
+
is_gene_available=False,
|
29 |
+
is_trait_available=False
|
30 |
+
)
|
p3/preprocess/Age-Related_Macular_Degeneration/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE67899": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 44, "note": "Gene expression data successfully mapped and linked with clinical features"}, "GSE62224": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 44, "note": "Gene expression data successfully mapped and linked with clinical features"}, "GSE45485": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 83, "note": "Gene expression data successfully mapped and linked with clinical features"}, "GSE43176": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": false, "sample_size": 108, "note": "Gene expression data successfully mapped and linked with clinical features"}, "GSE38662": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Dataset contains hESC cell line data, not AMD patient data. No trait information available."}, "GSE29801": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 260, "note": "Gene expression data successfully mapped and linked with clinical features"}, "TCGA_no_suitable_cohort": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
|
p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE38662.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6147f738acbd48f34cbe802c44c18958ba214292efc67f7bf703d30f26f1ccc5
|
3 |
+
size 13209116
|
p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE43176.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:027ea925d47b7a2258a7223d85776848df79e4ec3ff133f9b82175915ac6dba7
|
3 |
+
size 10613167
|
p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE45485.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE62224.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE67899.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Alcohol_Flush_Reaction/code/GSE133228.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Alcohol_Flush_Reaction"
|
6 |
+
cohort = "GSE133228"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Alcohol_Flush_Reaction"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Alcohol_Flush_Reaction/GSE133228"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Alcohol_Flush_Reaction/GSE133228.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Alcohol_Flush_Reaction/gene_data/GSE133228.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Alcohol_Flush_Reaction/clinical_data/GSE133228.csv"
|
16 |
+
json_path = "./output/preprocess/3/Alcohol_Flush_Reaction/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on background info mentioning STAG2, CTCF and gene regulation/expression
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Trait data not available in sample characteristics
|
42 |
+
trait_row = None
|
43 |
+
|
44 |
+
# Age is in Feature 1
|
45 |
+
age_row = 1
|
46 |
+
|
47 |
+
# Gender is in Feature 0
|
48 |
+
gender_row = 0
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(x):
|
52 |
+
# No trait data
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(x):
|
56 |
+
# Extract age value after colon and convert to float
|
57 |
+
try:
|
58 |
+
age = float(x.split(': ')[1])
|
59 |
+
return age
|
60 |
+
except:
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_gender(x):
|
64 |
+
# Extract gender and convert to binary (female=0, male=1)
|
65 |
+
try:
|
66 |
+
gender = x.split(': ')[1].lower()
|
67 |
+
if gender == 'female':
|
68 |
+
return 0
|
69 |
+
elif gender == 'male':
|
70 |
+
return 1
|
71 |
+
else:
|
72 |
+
return None
|
73 |
+
except:
|
74 |
+
return None
|
75 |
+
|
76 |
+
# 3. Save metadata
|
77 |
+
validate_and_save_cohort_info(
|
78 |
+
is_final=False,
|
79 |
+
cohort=cohort,
|
80 |
+
info_path=json_path,
|
81 |
+
is_gene_available=is_gene_available,
|
82 |
+
is_trait_available=(trait_row is not None)
|
83 |
+
)
|
84 |
+
|
85 |
+
# 4. Skip clinical feature extraction since trait_row is None
|
86 |
+
# Extract gene expression data from matrix file
|
87 |
+
gene_data = get_genetic_data(matrix_file)
|
88 |
+
|
89 |
+
# Print first 20 row IDs and shape of data to help debug
|
90 |
+
print("Shape of gene expression data:", gene_data.shape)
|
91 |
+
print("\nFirst few rows of data:")
|
92 |
+
print(gene_data.head())
|
93 |
+
print("\nFirst 20 gene/probe identifiers:")
|
94 |
+
print(gene_data.index[:20])
|
95 |
+
|
96 |
+
# Inspect a snippet of raw file to verify identifier format
|
97 |
+
import gzip
|
98 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
99 |
+
lines = []
|
100 |
+
for i, line in enumerate(f):
|
101 |
+
if "!series_matrix_table_begin" in line:
|
102 |
+
# Get the next 5 lines after the marker
|
103 |
+
for _ in range(5):
|
104 |
+
lines.append(next(f).strip())
|
105 |
+
break
|
106 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
107 |
+
for line in lines:
|
108 |
+
print(line)
|
109 |
+
# The gene identifiers appear to be probe IDs from a microarray platform (ending in "_at")
|
110 |
+
# rather than standard human gene symbols. These need to be mapped to gene symbols.
|
111 |
+
requires_gene_mapping = True
|
112 |
+
# Get file paths using library function
|
113 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
114 |
+
|
115 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
116 |
+
gene_annotation = get_gene_annotation(soft_file)
|
117 |
+
|
118 |
+
# Preview gene annotation data
|
119 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
120 |
+
print("\nGene annotation preview:")
|
121 |
+
print(preview_df(gene_annotation))
|
122 |
+
|
123 |
+
print("\nNumber of non-null values in each column:")
|
124 |
+
print(gene_annotation.count())
|
125 |
+
|
126 |
+
# Print example rows showing the mapping information columns
|
127 |
+
print("\nSample mapping columns ('ID' and 'Description'):")
|
128 |
+
print(gene_annotation[['ID', 'Description']].head().to_string())
|
129 |
+
|
130 |
+
print("\nNote: Gene mapping will use:")
|
131 |
+
print("'ID' column: Probe identifiers")
|
132 |
+
print("'Description' column: Contains gene information from which symbols can be extracted")
|
133 |
+
# Get gene mapping dataframe from annotation data
|
134 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description')
|
135 |
+
|
136 |
+
# Apply gene mapping to convert probe-level data to gene expression data
|
137 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
138 |
+
# 1. Normalize gene symbols
|
139 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
140 |
+
|
141 |
+
# Save normalized gene data
|
142 |
+
gene_data.to_csv(out_gene_data_file)
|
143 |
+
|
144 |
+
# 2-6. Handle case where clinical data is not available
|
145 |
+
# Create empty dataframe with same columns as gene_data for validation
|
146 |
+
df_for_validation = pd.DataFrame(columns=gene_data.columns)
|
147 |
+
|
148 |
+
is_usable = validate_and_save_cohort_info(
|
149 |
+
is_final=True,
|
150 |
+
cohort=cohort,
|
151 |
+
info_path=json_path,
|
152 |
+
is_gene_available=True,
|
153 |
+
is_trait_available=False,
|
154 |
+
is_biased=True, # Dataset is biased since it lacks trait data
|
155 |
+
df=df_for_validation, # Empty dataframe with correct structure
|
156 |
+
note="Dataset contains gene expression data but lacks clinical trait information needed for analysis"
|
157 |
+
)
|
p3/preprocess/Alcohol_Flush_Reaction/code/TCGA.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Alcohol_Flush_Reaction"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Alcohol_Flush_Reaction/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Alcohol_Flush_Reaction/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Alcohol_Flush_Reaction/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Alcohol_Flush_Reaction/cohort_info.json"
|
15 |
+
|
16 |
+
# 1. Review subdirectories for matching trait data
|
17 |
+
subdirs = [d for d in os.listdir(tcga_root_dir) if os.path.isdir(os.path.join(tcga_root_dir, d))]
|
18 |
+
|
19 |
+
# No suitable directory exists for age-related macular degeneration
|
20 |
+
# Mark data as unavailable
|
21 |
+
cohort = "TCGA_no_suitable_cohort"
|
22 |
+
|
23 |
+
# Record unavailability and end preprocessing
|
24 |
+
validate_and_save_cohort_info(
|
25 |
+
is_final=False,
|
26 |
+
cohort=cohort,
|
27 |
+
info_path=json_path,
|
28 |
+
is_gene_available=False,
|
29 |
+
is_trait_available=False
|
30 |
+
)
|
p3/preprocess/Alcohol_Flush_Reaction/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE133228": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Dataset contains gene expression data but lacks clinical trait information needed for analysis"}, "TCGA_no_suitable_cohort": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
|
p3/preprocess/Alcohol_Flush_Reaction/gene_data/GSE133228.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|