Liu-Hy commited on
Commit
54d4d57
·
verified ·
1 Parent(s): e6817b9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +19 -0
  2. p3/preprocess/Atherosclerosis/clinical_data/GSE109048.csv +2 -0
  3. p3/preprocess/Atherosclerosis/clinical_data/GSE123086.csv +4 -0
  4. p3/preprocess/Atherosclerosis/clinical_data/GSE123088.csv +4 -0
  5. p3/preprocess/Atherosclerosis/clinical_data/GSE125771.csv +4 -0
  6. p3/preprocess/Atherosclerosis/clinical_data/GSE154851.csv +4 -0
  7. p3/preprocess/Atherosclerosis/clinical_data/GSE57691.csv +2 -0
  8. p3/preprocess/Atherosclerosis/clinical_data/GSE83500.csv +2 -0
  9. p3/preprocess/Atherosclerosis/clinical_data/GSE87005.csv +2 -0
  10. p3/preprocess/Atherosclerosis/clinical_data/GSE90074.csv +3 -0
  11. p3/preprocess/Atherosclerosis/code/GSE109048.py +188 -0
  12. p3/preprocess/Atherosclerosis/code/GSE123086.py +232 -0
  13. p3/preprocess/Atherosclerosis/code/GSE123088.py +353 -0
  14. p3/preprocess/Atherosclerosis/code/GSE125771.py +148 -0
  15. p3/preprocess/Atherosclerosis/code/GSE133601.py +155 -0
  16. p3/preprocess/Atherosclerosis/code/GSE154851.py +153 -0
  17. p3/preprocess/Atherosclerosis/code/GSE57691.py +305 -0
  18. p3/preprocess/Atherosclerosis/code/GSE83500.py +442 -0
  19. p3/preprocess/Atherosclerosis/code/GSE87005.py +178 -0
  20. p3/preprocess/Atherosclerosis/code/GSE90074.py +189 -0
  21. p3/preprocess/Atherosclerosis/code/TCGA.py +28 -0
  22. p3/preprocess/Atherosclerosis/cohort_info.json +1 -0
  23. p3/preprocess/Atherosclerosis/gene_data/GSE109048.csv +1 -0
  24. p3/preprocess/Atherosclerosis/gene_data/GSE123086.csv +1 -0
  25. p3/preprocess/Atherosclerosis/gene_data/GSE123088.csv +1 -0
  26. p3/preprocess/Atherosclerosis/gene_data/GSE125771.csv +0 -0
  27. p3/preprocess/Atherosclerosis/gene_data/GSE133601.csv +0 -0
  28. p3/preprocess/Atherosclerosis/gene_data/GSE154851.csv +3 -0
  29. p3/preprocess/Atherosclerosis/gene_data/GSE57691.csv +3 -0
  30. p3/preprocess/Atherosclerosis/gene_data/GSE83500.csv +0 -0
  31. p3/preprocess/Atherosclerosis/gene_data/GSE87005.csv +0 -0
  32. p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE208662.csv +0 -0
  33. p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE64593.csv +0 -0
  34. p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE64599.csv +0 -0
  35. p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/clinical_data/GSE162635.csv +2 -0
  36. p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/cohort_info.json +1 -0
  37. p3/preprocess/HIV_Resistance/GSE33580.csv +3 -0
  38. p3/preprocess/HIV_Resistance/GSE46599.csv +0 -0
  39. p3/preprocess/HIV_Resistance/clinical_data/GSE33580.csv +2 -0
  40. p3/preprocess/HIV_Resistance/clinical_data/GSE46599.csv +2 -0
  41. p3/preprocess/HIV_Resistance/code/GSE117748.py +71 -0
  42. p3/preprocess/HIV_Resistance/code/GSE33580.py +166 -0
  43. p3/preprocess/HIV_Resistance/code/GSE46599.py +160 -0
  44. p3/preprocess/HIV_Resistance/code/TCGA.py +31 -0
  45. p3/preprocess/HIV_Resistance/cohort_info.json +1 -0
  46. p3/preprocess/HIV_Resistance/gene_data/GSE33580.csv +3 -0
  47. p3/preprocess/HIV_Resistance/gene_data/GSE46599.csv +3 -0
  48. p3/preprocess/Head_and_Neck_Cancer/gene_data/GSE156915.csv +3 -0
  49. p3/preprocess/Head_and_Neck_Cancer/gene_data/TCGA.csv +3 -0
  50. p3/preprocess/Height/gene_data/GSE97475.csv +3 -0
.gitattributes CHANGED
@@ -1741,3 +1741,22 @@ p3/preprocess/Height/gene_data/GSE152073.csv filter=lfs diff=lfs merge=lfs -text
1741
  p3/preprocess/Height/gene_data/GSE101710.csv filter=lfs diff=lfs merge=lfs -text
1742
  p3/preprocess/Height/gene_data/GSE101709.csv filter=lfs diff=lfs merge=lfs -text
1743
  p3/preprocess/Hemochromatosis/gene_data/GSE50579.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741
  p3/preprocess/Height/gene_data/GSE101710.csv filter=lfs diff=lfs merge=lfs -text
1742
  p3/preprocess/Height/gene_data/GSE101709.csv filter=lfs diff=lfs merge=lfs -text
1743
  p3/preprocess/Hemochromatosis/gene_data/GSE50579.csv filter=lfs diff=lfs merge=lfs -text
1744
+ p3/preprocess/Height/gene_data/GSE97475.csv filter=lfs diff=lfs merge=lfs -text
1745
+ p3/preprocess/Head_and_Neck_Cancer/gene_data/GSE156915.csv filter=lfs diff=lfs merge=lfs -text
1746
+ p3/preprocess/HIV_Resistance/GSE33580.csv filter=lfs diff=lfs merge=lfs -text
1747
+ p3/preprocess/HIV_Resistance/gene_data/GSE46599.csv filter=lfs diff=lfs merge=lfs -text
1748
+ p3/preprocess/Huntingtons_Disease/GSE34201.csv filter=lfs diff=lfs merge=lfs -text
1749
+ p3/preprocess/HIV_Resistance/gene_data/GSE33580.csv filter=lfs diff=lfs merge=lfs -text
1750
+ p3/preprocess/Huntingtons_Disease/GSE26927.csv filter=lfs diff=lfs merge=lfs -text
1751
+ p3/preprocess/Huntingtons_Disease/gene_data/GSE34201.csv filter=lfs diff=lfs merge=lfs -text
1752
+ p3/preprocess/Huntingtons_Disease/gene_data/GSE26927.csv filter=lfs diff=lfs merge=lfs -text
1753
+ p3/preprocess/Huntingtons_Disease/GSE34721.csv filter=lfs diff=lfs merge=lfs -text
1754
+ p3/preprocess/Huntingtons_Disease/GSE135589.csv filter=lfs diff=lfs merge=lfs -text
1755
+ p3/preprocess/Huntingtons_Disease/gene_data/GSE95843.csv filter=lfs diff=lfs merge=lfs -text
1756
+ p3/preprocess/Huntingtons_Disease/gene_data/GSE34721.csv filter=lfs diff=lfs merge=lfs -text
1757
+ p3/preprocess/Huntingtons_Disease/gene_data/GSE135589.csv filter=lfs diff=lfs merge=lfs -text
1758
+ p3/preprocess/Atherosclerosis/gene_data/GSE154851.csv filter=lfs diff=lfs merge=lfs -text
1759
+ p3/preprocess/Hemochromatosis/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1760
+ p3/preprocess/Atherosclerosis/gene_data/GSE57691.csv filter=lfs diff=lfs merge=lfs -text
1761
+ p3/preprocess/Head_and_Neck_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1762
+ p3/preprocess/Hemochromatosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Atherosclerosis/clinical_data/GSE109048.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM2928447,GSM2928448,GSM2928449,GSM2928450,GSM2928451,GSM2928452,GSM2928453,GSM2928454,GSM2928455,GSM2928456,GSM2928457,GSM2928458,GSM2928459,GSM2928460,GSM2928461,GSM2928462,GSM2928463,GSM2928464,GSM2928465,GSM2928466,GSM2928467,GSM2928468,GSM2928469,GSM2928470,GSM2928471,GSM2928472,GSM2928473,GSM2928474,GSM2928475,GSM2928476,GSM2928477,GSM2928478,GSM2928479,GSM2928480,GSM2928481,GSM2928482,GSM2928483,GSM2928484,GSM2928485,GSM2928486,GSM2928487,GSM2928488,GSM2928489,GSM2928490,GSM2928491,GSM2928492,GSM2928493,GSM2928494,GSM2928495,GSM2928496,GSM2928497,GSM2928498,GSM2928499,GSM2928500,GSM2928501,GSM2928502,GSM2928503
2
+ Atherosclerosis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Atherosclerosis/clinical_data/GSE123086.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
2
+ Atherosclerosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,56.0,,20.0,51.0,37.0,61.0,,31.0,56.0,41.0,61.0,,80.0,53.0,61.0,73.0,60.0,76.0,77.0,74.0,69.0,77.0,81.0,70.0,82.0,69.0,82.0,67.0,67.0,78.0,67.0,74.0,,51.0,72.0,66.0,80.0,36.0,67.0,31.0,31.0,45.0,56.0,65.0,53.0,48.0,50.0,76.0,,24.0,42.0,76.0,22.0,,23.0,34.0,43.0,47.0,24.0,55.0,48.0,58.0,30.0,28.0,41.0,63.0,55.0,55.0,67.0,47.0,46.0,49.0,23.0,68.0,39.0,24.0,36.0,58.0,38.0,27.0,67.0,61.0,69.0,63.0,60.0,17.0,10.0,9.0,13.0,10.0,13.0,15.0,12.0,13.0,81.0,94.0,51.0,40.0,,97.0,23.0,93.0,58.0,28.0,54.0,15.0,8.0,11.0,12.0,8.0,14.0,8.0,10.0,14.0,13.0,40.0,52.0,42.0,29.0,43.0,41.0,54.0,42.0,49.0,45.0,56.0,64.0,71.0,48.0,20.0,53.0,32.0,26.0,28.0,47.0,24.0,48.0,,19.0,41.0,38.0,,15.0,12.0,13.0,,11.0,,16.0,11.0,,35.0,26.0,39.0,46.0,42.0,20.0,69.0,69.0,47.0,47.0,56.0,54.0,53.0,50.0,22.0
4
+ Gender,1.0,,0.0,0.0,1.0,1.0,,1.0,0.0,0.0,0.0,,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,0.0,0.0,1.0,1.0,,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,0.0,1.0,0.0,,1.0,,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0
p3/preprocess/Atherosclerosis/clinical_data/GSE123088.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049,GSM3495050,GSM3495051,GSM3495052,GSM3495053,GSM3495054,GSM3495055,GSM3495056,GSM3495057,GSM3495058,GSM3495059,GSM3495060,GSM3495061,GSM3495062,GSM3495063,GSM3495064,GSM3495065,GSM3495066,GSM3495067,GSM3495068,GSM3495069,GSM3495070,GSM3495071,GSM3495072,GSM3495073,GSM3495074,GSM3495075,GSM3495076,GSM3495077,GSM3495078,GSM3495079,GSM3495080,GSM3495081,GSM3495082,GSM3495083,GSM3495084,GSM3495085,GSM3495086,GSM3495087
2
+ Atherosclerosis,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,,,0.0,,0.0,,,0.0,,0.0,0.0,,,0.0,,,,,,0.0,0.0,0.0,,,,,,0.0,,,,,0.0,0.0
3
+ Age,56.0,,20.0,51.0,37.0,61.0,,31.0,56.0,41.0,61.0,,80.0,53.0,61.0,73.0,60.0,76.0,77.0,74.0,69.0,77.0,81.0,70.0,82.0,69.0,82.0,67.0,67.0,78.0,67.0,74.0,,51.0,72.0,66.0,80.0,36.0,67.0,31.0,31.0,45.0,56.0,65.0,53.0,48.0,50.0,76.0,,24.0,42.0,76.0,22.0,,23.0,34.0,43.0,47.0,24.0,55.0,48.0,58.0,30.0,28.0,41.0,63.0,55.0,55.0,67.0,47.0,46.0,49.0,23.0,68.0,39.0,24.0,36.0,58.0,38.0,27.0,67.0,61.0,69.0,63.0,60.0,17.0,10.0,9.0,13.0,10.0,13.0,15.0,12.0,13.0,81.0,94.0,51.0,40.0,,97.0,23.0,93.0,58.0,28.0,54.0,15.0,8.0,11.0,12.0,8.0,14.0,8.0,10.0,14.0,13.0,40.0,52.0,42.0,29.0,43.0,41.0,54.0,42.0,49.0,45.0,56.0,64.0,71.0,48.0,20.0,53.0,32.0,26.0,28.0,47.0,24.0,48.0,,19.0,41.0,38.0,,15.0,12.0,13.0,,11.0,,16.0,11.0,,35.0,26.0,39.0,46.0,42.0,20.0,69.0,69.0,47.0,47.0,56.0,54.0,53.0,50.0,22.0,62.0,74.0,57.0,47.0,70.0,50.0,52.0,43.0,57.0,53.0,70.0,41.0,61.0,39.0,58.0,55.0,63.0,60.0,43.0,68.0,67.0,50.0,67.0,51.0,59.0,44.0,35.0,83.0,78.0,88.0,41.0,60.0,72.0,53.0,73.0,56.0,38.0,53.0
4
+ Gender,1.0,,0.0,0.0,1.0,1.0,,1.0,0.0,0.0,0.0,,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,0.0,0.0,1.0,1.0,,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,0.0,1.0,0.0,,1.0,,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Atherosclerosis/clinical_data/GSE125771.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM3581706,GSM3581707,GSM3581708,GSM3581709,GSM3581710,GSM3581711,GSM3581712,GSM3581713,GSM3581714,GSM3581715,GSM3581716,GSM3581717,GSM3581718,GSM3581719,GSM3581720,GSM3581721,GSM3581722,GSM3581723,GSM3581724,GSM3581725,GSM3581726,GSM3581727,GSM3581728,GSM3581729,GSM3581730,GSM3581731,GSM3581732,GSM3581733,GSM3581734,GSM3581735,GSM3581736,GSM3581737,GSM3581738,GSM3581739,GSM3581740,GSM3581741,GSM3581742,GSM3581743,GSM3581744,GSM3581745
2
+ Atherosclerosis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,73.0,60.0,81.0,85.0,60.0,84.0,76.0,57.0,71.0,69.0,79.0,78.0,79.0,54.0,72.0,73.0,64.0,67.0,63.0,75.0,62.0,64.0,73.0,81.0,79.0,72.0,71.0,75.0,74.0,76.0,69.0,65.0,83.0,85.0,61.0,72.0,64.0,69.0,61.0,71.0
4
+ Gender,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0
p3/preprocess/Atherosclerosis/clinical_data/GSE154851.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM4681537,GSM4681538,GSM4681539,GSM4681540,GSM4681541,GSM4681542,GSM4681543,GSM4681544,GSM4681545,GSM4681546,GSM4681547,GSM4681548,GSM4681549,GSM4681550,GSM4681551,GSM4681552,GSM4681553,GSM4681554,GSM4681555,GSM4681556,GSM4681557,GSM4681558,GSM4681559,GSM4681560,GSM4681561,GSM4681562,GSM4681563,GSM4681564,GSM4681565,GSM4681566,GSM4681567,GSM4681568,GSM4681569,GSM4681570,GSM4681571,GSM4681572,GSM4681573,GSM4681574,GSM4681575,GSM4681576,GSM4681577,GSM4681578,GSM4681579,GSM4681580,GSM4681581,GSM4681582,GSM4681583,GSM4681584,GSM4681585,GSM4681586,GSM4681587,GSM4681588,GSM4681589,GSM4681590,GSM4681591,GSM4681592,GSM4681593,GSM4681594,GSM4681595,GSM4681596,GSM4681597,GSM4681598,GSM4681599,GSM4681600,GSM4681601,GSM4681602,GSM4681603,GSM4681604,GSM4681605,GSM4681606
2
+ Atherosclerosis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,18.0,37.0,59.0,36.0,56.0,22.0,53.0,41.0,33.0,52.0,42.0,28.0,45.0,41.0,25.0,34.0,40.0,44.0,42.0,39.0,51.0,41.0,52.0,34.0,21.0,23.0,32.0,39.0,71.0,23.0,44.0,26.0,31.0,24.0,23.0,31.0,30.0,47.0,30.0,24.0,35.0,25.0,25.0,33.0,19.0,23.0,36.0,26.0,27.0,28.0,34.0,30.0,39.0,32.0,26.0,22.0,25.0,32.0,33.0,41.0,31.0,48.0,38.0,30.0,27.0,23.0,41.0,36.0,34.0,54.0
4
+ Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Atherosclerosis/clinical_data/GSE57691.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,!Sample_title,small AAA_Sample 1,small AAA_Sample 2,small AAA_Sample 3,small AAA_Sample 4,small AAA_Sample 5,small AAA_Sample 6,small AAA_Sample 7,small AAA_Sample 8,small AAA_Sample 9,small AAA_Sample 10,small AAA_Sample 11,small AAA_Sample 12,small AAA_Sample 13,small AAA_Sample 14,small AAA_Sample 15,small AAA_Sample 16,small AAA_Sample 17,small AAA_Sample 18,small AAA_Sample 19,small AAA_Sample 20,large AAA_Sample 21,large AAA_Sample 22,large AAA_Sample 23,large AAA_Sample 24,large AAA_Sample 25,large AAA_Sample 26,large AAA_Sample 27,large AAA_Sample 28,large AAA_Sample 29,large AAA_Sample 30,large AAA_Sample 31,large AAA_Sample 32,large AAA_Sample 33,large AAA_Sample 34,large AAA_Sample 35,large AAA_Sample 36,large AAA_Sample 37,large AAA_Sample 38,large AAA_Sample 39,large AAA_Sample 40,large AAA_Sample 41,large AAA_Sample 42,large AAA_Sample 43,large AAA_Sample 44,large AAA_Sample 45,large AAA_Sample 46,large AAA_Sample 47,large AAA_Sample 48,large AAA_Sample 49,AOD_Sample 50,AOD_Sample 51,AOD_Sample 52,AOD_Sample 53,AOD_Sample 54,AOD_Sample 55,AOD_Sample 56,AOD_Sample 57,AOD_Sample 58,Donor_Sample 59,Donor_Sample 60,Donor_Sample 61,Donor_Sample 62,Donor_Sample 63,Donor_Sample 64,Donor_Sample 65,Donor_Sample 66,Donor_Sample 67,Donor_Sample 68
2
+ Atherosclerosis,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Atherosclerosis/clinical_data/GSE83500.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,0
2
+ Atherosclerosis,
p3/preprocess/Atherosclerosis/clinical_data/GSE87005.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,!Sample_title,IS1,IS2,IS3,IS4,IS5,IS6,IS7,IS8,IS9,IS10,IR1,IR2,IR3,IR4,IR5,IR6,IR7,IR8,IR9,IR10,IS-BMI1,IS-BMI2,IS-BMI3,IS-BMI4,IS-BMI5,IS-BMI6,IS-BMI7,IS-BMI8,IS-BMI9,IS-BMI10,IR-BMI1,IR-BMI2,IR-BMI3,IR-BMI4,IR-BMI5,IR-BMI6,IR-BMI7,IR-BMI8,IR-BMI9,IR-BMI10
2
+ Atherosclerosis,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Atherosclerosis/clinical_data/GSE90074.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,!Sample_title,2S001_F_CAU_N_1_43,2S002_F_AA_Y_3_123,2S003_F_CAU_Y_4_135,2S004_M_AA_N_1_112,2S005_F_CAU_Y_2_114,2S006_F_CAU_Y_3_55,2S007_F_CAU_Y_4_39,2S008_M_CAU_Y_4_120,2S009_M_CAU_Y_4_59,2S010_M_CAU_Y_3_92,2S012_F_AA_Y_3_139,2S015_M_CAU_Y_4_37,2S023_F_AA_Y_3_101,2S025_F_CAU_N_1_100,2S026_F_CAU_Y_2_60,2S029_M_CAU_Y_2_91,2S031_M_CAU_Y_3_27,2S033_M_CAU_N_1_64,2S035_F_AA_N_1_106,2S037_F_CAU_Y_4_46,2S038_F_CAU_N_1_116,2S039_M_CAU_Y_3_72,2S040_M_CAU_N_0_13,2S042_F_CAU_N_1_131,2S044_F_AA_N_1_75,2S045_F_CAU_N_0_130,2S046_M_CAU_Y_4_77,2S047_M_AA_Y_2_126,2S048_F_AA_N_0_141,2S049_M_CAU_N_1_104,2S050_M_CAU_Y_4_103,2S051_M_CAU_N_0_109,2S052_F_AA_N_0_137,2S053_F_CAU_Y_3_21,2S054_F_CAU_N_1_33,2S056_F_CAU_Y_2_81,2S057_F_CAU_Y_2_89,2S058_F_CAU_Y_2_52,2S060_M_CAU_Y_4_93,2S061_M_CAU_N_1_99,2S062_F_CAU_Y_2_122,2S063_F_CAU_N_0_138,2S065_F_AA_Y_4_61,2S066_F_CAU_Y_4_56,2S067_F_AA_Y_4_142,2S069_M_CAU_N_1_84,2S070_F_CAU_N_0_47,2S071_M_CAU_N_0_67,2S072_M_CAU_N_0_54,2S073_M_CAU_N_1_45,2S074_F_CAU_N_0_83,2S075_F_AA_N_1_143,2S076_M_CAU_Y_3_7,2S077_F_CAU_Y_2_79,2S078_M_CAU_Y_3_132,2S079_M_CAU_Y_3_36,2S080_F_CAU_Y_2_128,2S082_F_AA_Y_4_19,2S083_M_CAU_Y_2_42,2S085_M_CAU_Y_3_29,2S087_M_CAU_Y_4_108,2S088_M_CAU_Y_2_69,2S089_M_CAU_Y_3_98,2S090_M_CAU_Y_4_53,2S092_F_AA_Y_4_85,2S093_M_AA_N_1_117,2S094_M_CAU_N_1_73,2S095_M_CAU_Y_4_51,2S097_M_CAU_Y_4_90,2S098_M_CAU_N_1_102,2S099_M_CAU_N_1_124,2S100_F_CAU_Y_2_118,2S101_F_CAU_N_1_110,2S102_F_CAU_N_0_125,2S103_M_CAU_Y_4_95,2S105_F_CAU_N_1_48,2S108_M_CAU_Y_4_86,2S109_M_CAU_Y_2_127,2S110_M_CAU_Y_4_57,2S111_M_CAU_Y_3_115,2S112_M_CAU_Y_3_40,2S113_M_CAU_Y_3_49,2S114_F_AA_Y_3_107,2S115_F_CAU_Y_2_121,2S116_M_AA_Y_3_134,2S118_M_CAU_N_1_119,2S119_M_CAU_N_1_136,2S120_M_CAU_Y_3_88,2S121_M_CAU_Y_3_140,2S124_M_CAU_Y_3_31,2S125_F_CAU_N_1_63,2S127_F_CAU_N_1_30,2S130_F_CAU_Y_2_24,2S132_F_CAU_N_1_113,2S133_F_AA_N_0_111,2S134_M_CAU_Y_2_22,2S137_M_CAU_Y_4_14,2S138_M_CAU_Y_2_4,2S139_F_CAU_Y_2_65,2S141_M_AA_Y_3_44,2S142_F_CAU_N_0_105,2S143_F_CAU_Y_4_16,2S144_M_CAU_Y_2_71,2S145_F_CAU_Y_2_3,2S146_F_AA_Y_3_82,2S147_M_CAU_N_0_6,2S148_F_CAU_Y_4_15,2S149_M_AA_Y_2_34,2S151_M_CAU_Y_4_5,2S152_F_CAU_Y_2_10,2S153_F_AA_Y_3_96,2S154_F_CAU_Y_4_9,2S156_F_CAU_Y_2_70,2S157_M_AA_Y_3_78,2S159_F_CAU_Y_2_32,2S160_M_CAU_Y_2_76,2S162_M_AA_Y_4_74,2S163_M_CAU_Y_2_26,2S165_M_AA_Y_4_23,2S167_F_CAU_N_1_87,2S168_F_AA_N_0_62,2S169_F_AA_N_0_38,2S171_M_CAU_Y_2_35,2S172_M_CAU_Y_4_68,2S173_M_AA_Y_4_11,2S175_F_AA_N_1_94,2S176_M_AA_N_1_97,2S177_M_CAU_Y_4_20,2S178_F_AA_N_1_50,2S179_M_CAU_Y_4_8,2S181_M_CAU_Y_4_41,2S182_F_CAU_N_0_129,2S183_F_CAU_N_1_133,2S184_M_AA_Y_3_18,2S186_M_CAU_Y_4_80,2S187_F_AA_Y_2_66,2S188_M_CAU_Y_4_2,2S189_F_CAU_N_1_12,2S191_M_CAU_Y_4_1,2S194_F_CAU_N_1_58,2S195_M_CAU_Y_2_25,2S199_M_CAU_Y_2_17,2S200_F_CAU_N_0_28
2
+ Atherosclerosis,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0
3
+ Gender,,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0
p3/preprocess/Atherosclerosis/code/GSE109048.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE109048"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE109048"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE109048.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE109048.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE109048.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # From background info, this is platelet gene expression data
42
+ is_gene_available = True
43
+
44
+ # 2. Variable Availability and Data Type Conversion
45
+ # 2.1 Data Availability
46
+ # Trait (Atherosclerosis) can be inferred from diagnosis in row 1
47
+ # sCAD = stable coronary artery disease = Atherosclerosis
48
+ trait_row = 1
49
+
50
+ # Age and gender not available
51
+ age_row = None
52
+ gender_row = None
53
+
54
+ # 2.2 Data Type Conversion Functions
55
+ def convert_trait(value):
56
+ # Extract value after colon
57
+ value = value.split(': ')[1].lower().strip()
58
+ # sCAD indicates presence of atherosclerosis
59
+ if 'scad' in value:
60
+ return 1
61
+ # STEMI indicates severe atherosclerosis
62
+ elif 'stemi' in value:
63
+ return 1
64
+ # Healthy indicates no atherosclerosis
65
+ elif 'healthy' in value:
66
+ return 0
67
+ return None
68
+
69
+ def convert_age(value):
70
+ # Age not available
71
+ return None
72
+
73
+ def convert_gender(value):
74
+ # Gender not available
75
+ return None
76
+
77
+ # 3. Save Metadata
78
+ validate_and_save_cohort_info(
79
+ is_final=False,
80
+ cohort=cohort,
81
+ info_path=json_path,
82
+ is_gene_available=is_gene_available,
83
+ is_trait_available=(trait_row is not None)
84
+ )
85
+
86
+ # 4. Clinical Feature Extraction
87
+ # Since trait_row is not None, extract clinical features
88
+ selected_clinical = geo_select_clinical_features(
89
+ clinical_df=clinical_data,
90
+ trait=trait,
91
+ trait_row=trait_row,
92
+ convert_trait=convert_trait,
93
+ age_row=age_row,
94
+ convert_age=convert_age,
95
+ gender_row=gender_row,
96
+ convert_gender=convert_gender
97
+ )
98
+
99
+ print("Preview of selected clinical features:")
100
+ print(preview_df(selected_clinical))
101
+
102
+ # Save clinical data
103
+ selected_clinical.to_csv(out_clinical_data_file)
104
+ # Get file paths
105
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
106
+
107
+ # Extract gene expression data from matrix file
108
+ gene_data = get_genetic_data(matrix_file)
109
+
110
+ # Print first 20 row IDs and shape of data to help debug
111
+ print("Shape of gene expression data:", gene_data.shape)
112
+ print("\nFirst few rows of data:")
113
+ print(gene_data.head())
114
+ print("\nFirst 20 gene/probe identifiers:")
115
+ print(gene_data.index[:20])
116
+
117
+ # Inspect a snippet of raw file to verify identifier format
118
+ import gzip
119
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
120
+ lines = []
121
+ for i, line in enumerate(f):
122
+ if "!series_matrix_table_begin" in line:
123
+ # Get the next 5 lines after the marker
124
+ for _ in range(5):
125
+ lines.append(next(f).strip())
126
+ break
127
+ print("\nFirst few lines after matrix marker in raw file:")
128
+ for line in lines:
129
+ print(line)
130
+ # Looking at the identifiers (e.g. "2824546_st", "2824549_st"),
131
+ # these appear to be Affymetrix probe IDs rather than gene symbols
132
+ requires_gene_mapping = True
133
+ # Extract gene annotation data
134
+ gene_metadata = get_gene_annotation(soft_file)
135
+
136
+ # Preview the annotation data
137
+ print("Column names:", gene_metadata.columns.tolist())
138
+ print("\nFirst few rows preview:")
139
+ print(preview_df(gene_metadata))
140
+ # Get mapping data
141
+ # First rename the columns to match expected format
142
+ mapping_df = gene_metadata[['probeset_id', 'gene_assignment']].copy()
143
+ mapping_df = mapping_df.rename(columns={'probeset_id': 'ID', 'gene_assignment': 'Gene'})
144
+ mapping_df = mapping_df.dropna()
145
+
146
+ # Apply the gene mapping to convert probe-level data to gene-level data
147
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
148
+
149
+ # Preview the mapped data
150
+ print("\nPreview of gene expression data after mapping:")
151
+ print(gene_data.head())
152
+ print("\nShape of gene expression data after mapping:", gene_data.shape)
153
+ # 1. Normalize gene symbols
154
+ gene_data = normalize_gene_symbols_in_index(gene_data)
155
+ gene_data.to_csv(out_gene_data_file)
156
+
157
+ # 2. Link clinical and genetic data
158
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
159
+
160
+ print("Preview of linked data after linking:")
161
+ print(linked_data.head())
162
+ print("\nShape after linking:", linked_data.shape)
163
+
164
+ # 3. Handle missing values
165
+ linked_data = handle_missing_values(linked_data, trait)
166
+
167
+ print("Preview of linked data after missing value handling:")
168
+ print(linked_data.head())
169
+ print("\nShape after handling missing values:", linked_data.shape)
170
+
171
+ # 4. Check for biased features
172
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
173
+
174
+ # 5. Validate and save cohort info
175
+ is_usable = validate_and_save_cohort_info(
176
+ is_final=True,
177
+ cohort=cohort,
178
+ info_path=json_path,
179
+ is_gene_available=True,
180
+ is_trait_available=True,
181
+ is_biased=trait_biased,
182
+ df=linked_data,
183
+ note="Contains gene expression data and trait labels for atherosclerosis."
184
+ )
185
+
186
+ # 6. Save linked data if usable
187
+ if is_usable:
188
+ linked_data.to_csv(out_data_file)
p3/preprocess/Atherosclerosis/code/GSE123086.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE123086"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE123086"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE123086.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE123086.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE123086.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # According to Series_overall_design, RNA was extracted and microarrays were used
42
+ is_gene_available = True
43
+
44
+ # 2.1 Data Availability
45
+ # Primary diagnosis in row 1 contains trait information
46
+ trait_row = 1
47
+
48
+ # Sex is recorded in rows 2 and 3
49
+ gender_row = 2
50
+
51
+ # Age is recorded in rows 3 and 4
52
+ age_row = 3
53
+
54
+ # 2.2 Data Type Conversion Functions
55
+ def convert_trait(value):
56
+ if not isinstance(value, str) or 'primary diagnosis:' not in value:
57
+ return None
58
+ # Extract value after colon and strip whitespace
59
+ value = value.split(':', 1)[1].strip()
60
+ # Convert to binary based on trait name
61
+ return 1 if value == 'ATHEROSCLEROSIS' else 0
62
+
63
+ def convert_age(value):
64
+ if not isinstance(value, str) or 'age:' not in value:
65
+ return None
66
+ try:
67
+ # Extract numeric age value after colon
68
+ age = int(value.split(':', 1)[1].strip())
69
+ return age
70
+ except:
71
+ return None
72
+
73
+ def convert_gender(value):
74
+ if not isinstance(value, str) or 'Sex:' not in value:
75
+ return None
76
+ # Extract gender value after colon
77
+ gender = value.split(':', 1)[1].strip()
78
+ # Convert to binary (female=0, male=1)
79
+ if gender.upper() == 'FEMALE':
80
+ return 0
81
+ elif gender.upper() == 'MALE':
82
+ return 1
83
+ return None
84
+
85
+ # 3. Save Metadata
86
+ validate_and_save_cohort_info(is_final=False,
87
+ cohort=cohort,
88
+ info_path=json_path,
89
+ is_gene_available=is_gene_available,
90
+ is_trait_available=trait_row is not None)
91
+
92
+ # 4. Clinical Feature Extraction
93
+ if trait_row is not None:
94
+ clinical_features = geo_select_clinical_features(clinical_data, trait,
95
+ trait_row=trait_row,
96
+ convert_trait=convert_trait,
97
+ age_row=age_row,
98
+ convert_age=convert_age,
99
+ gender_row=gender_row,
100
+ convert_gender=convert_gender)
101
+
102
+ # Preview the processed clinical data
103
+ preview = preview_df(clinical_features)
104
+ print("Preview of processed clinical data:")
105
+ print(preview)
106
+
107
+ # Save clinical features to CSV
108
+ clinical_features.to_csv(out_clinical_data_file)
109
+ # Get file paths
110
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
111
+
112
+ # Extract gene expression data from matrix file
113
+ gene_data = get_genetic_data(matrix_file)
114
+
115
+ # Print first 20 row IDs and shape of data to help debug
116
+ print("Shape of gene expression data:", gene_data.shape)
117
+ print("\nFirst few rows of data:")
118
+ print(gene_data.head())
119
+ print("\nFirst 20 gene/probe identifiers:")
120
+ print(gene_data.index[:20])
121
+
122
+ # Inspect a snippet of raw file to verify identifier format
123
+ import gzip
124
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
125
+ lines = []
126
+ for i, line in enumerate(f):
127
+ if "!series_matrix_table_begin" in line:
128
+ # Get the next 5 lines after the marker
129
+ for _ in range(5):
130
+ lines.append(next(f).strip())
131
+ break
132
+ print("\nFirst few lines after matrix marker in raw file:")
133
+ for line in lines:
134
+ print(line)
135
+ requires_gene_mapping = True
136
+ # Extract gene annotation data, excluding metadata lines
137
+ gene_metadata = get_gene_annotation(soft_file, prefixes=['!Platform_table_begin', '^SPOT_ID', '^ENTREZ_GENE_ID', '^GENE_SYMBOL'])
138
+
139
+ # Preview the annotation data
140
+ print("Column names:", gene_metadata.columns.tolist())
141
+ print("\nFirst few rows preview:")
142
+ print(preview_df(gene_metadata))
143
+ # Extract gene annotation data by excluding lines with special prefixes
144
+ gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#'])
145
+
146
+ # Print full info about the data to debug
147
+ print("Shape:", gene_metadata.shape)
148
+ print("\nAll columns:", gene_metadata.columns.tolist())
149
+ print("\nFirst few rows:")
150
+ print(gene_metadata.head())
151
+
152
+ # Try importing the annotation file differently since the first attempt failed
153
+ import gzip
154
+ import pandas as pd
155
+
156
+ with gzip.open(soft_file, 'rt') as f:
157
+ for line in f:
158
+ if '!platform_table_begin' in line.lower():
159
+ # Read the table that follows
160
+ gene_metadata = pd.read_csv(f, sep='\t', comment='!', on_bad_lines='skip')
161
+ break
162
+
163
+ print("\nAfter direct reading:")
164
+ print("Shape:", gene_metadata.shape)
165
+ print("\nAll columns:", gene_metadata.columns.tolist())
166
+ print("\nFirst few rows:")
167
+ print(gene_metadata.head())
168
+
169
+ # Get mapping between IDs and gene symbols
170
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
171
+
172
+ # Apply the mapping to convert probe-level data to gene-level data
173
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
174
+
175
+ # Save the gene expression data
176
+ gene_data.to_csv(out_gene_data_file)
177
+ # Extract gene annotation data from the platform portion of the SOFT file
178
+ with gzip.open(soft_file, 'rt') as f:
179
+ platform_found = False
180
+ table_found = False
181
+ lines = []
182
+ for line in f:
183
+ if '!Platform' in line:
184
+ platform_found = True
185
+ if platform_found and '!platform_table_begin' in line.lower():
186
+ table_found = True
187
+ continue
188
+ if table_found and not line.startswith('!'):
189
+ lines.append(line)
190
+
191
+ # Parse the platform table into a dataframe
192
+ annotation_text = ''.join(lines)
193
+ gene_metadata = pd.read_csv(io.StringIO(annotation_text), sep='\t')
194
+
195
+ # Create mapping between probe IDs and gene identifiers
196
+ mapping_data = pd.DataFrame({
197
+ 'ID': gene_metadata['ID'].astype(str),
198
+ 'Gene': gene_metadata['ENTREZ_GENE_ID'].astype(str) # Use ENTREZ_GENE_ID as gene identifier
199
+ })
200
+
201
+ # Apply mapping to convert probe data to gene expression data
202
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
203
+
204
+ # Save the processed gene expression data
205
+ gene_data.to_csv(out_gene_data_file)
206
+ # 1. Normalize gene symbols
207
+ gene_data = normalize_gene_symbols_in_index(gene_data)
208
+
209
+ # 2. Link clinical and genetic data
210
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
211
+
212
+ # 3. Handle missing values
213
+ linked_data = handle_missing_values(linked_data, 'Atherosclerosis')
214
+
215
+ # 4. Check for bias
216
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Atherosclerosis')
217
+
218
+ # 5. Final validation and save metadata
219
+ is_usable = validate_and_save_cohort_info(
220
+ is_final=True,
221
+ cohort=cohort,
222
+ info_path=json_path,
223
+ is_gene_available=True,
224
+ is_trait_available=True,
225
+ is_biased=trait_biased,
226
+ df=linked_data,
227
+ note="Dataset contains both clinical features and gene expression data."
228
+ )
229
+
230
+ # 6. Save data if usable
231
+ if is_usable:
232
+ linked_data.to_csv(out_data_file)
p3/preprocess/Atherosclerosis/code/GSE123088.py ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE123088"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE123088"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE123088.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE123088.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE123088.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # This dataset contains mixed disease data and focuses on CD4+ T cells, likely containing gene expression data
42
+ is_gene_available = True
43
+
44
+ # 2. Variable Availability and Data Type Conversion
45
+ # 2.1 Data Availability
46
+ # trait data in Feature 1 under 'primary diagnosis'
47
+ trait_row = 1
48
+ # age data appears in Features 3 and 4
49
+ age_row = 3
50
+ # gender data in Features 2 and 3
51
+ gender_row = 2
52
+
53
+ # 2.2 Data Type Conversion Functions
54
+ def convert_trait(x):
55
+ if not isinstance(x, str):
56
+ return None
57
+ diagnosis = x.split(': ')[1] if ': ' in x else x
58
+ # Convert to binary based on diagnosis
59
+ if diagnosis in ['ATHEROSCLEROSIS', 'diagnosis2: ATHEROSCLEROSIS']:
60
+ return 1
61
+ elif diagnosis in ['HEALTHY_CONTROL', 'Control']:
62
+ return 0
63
+ return None
64
+
65
+ def convert_age(x):
66
+ if not isinstance(x, str):
67
+ return None
68
+ try:
69
+ # Extract age value after colon
70
+ age_str = x.split(': ')[1] if ': ' in x else x
71
+ return float(age_str)
72
+ except:
73
+ return None
74
+
75
+ def convert_gender(x):
76
+ if not isinstance(x, str):
77
+ return None
78
+ if 'Sex:' not in x:
79
+ return None
80
+ gender = x.split(': ')[1]
81
+ # Convert gender to binary (0 for female, 1 for male)
82
+ if gender.lower() == 'female':
83
+ return 0
84
+ elif gender.lower() == 'male':
85
+ return 1
86
+ return None
87
+
88
+ # 3. Save Metadata
89
+ validate_and_save_cohort_info(
90
+ is_final=False,
91
+ cohort=cohort,
92
+ info_path=json_path,
93
+ is_gene_available=is_gene_available,
94
+ is_trait_available=trait_row is not None
95
+ )
96
+
97
+ # 4. Clinical Feature Extraction
98
+ if trait_row is not None:
99
+ clinical_features = geo_select_clinical_features(
100
+ clinical_df=clinical_data,
101
+ trait=trait,
102
+ trait_row=trait_row,
103
+ convert_trait=convert_trait,
104
+ age_row=age_row,
105
+ convert_age=convert_age,
106
+ gender_row=gender_row,
107
+ convert_gender=convert_gender
108
+ )
109
+
110
+ # Preview the processed data
111
+ print("Preview of processed clinical features:")
112
+ print(preview_df(clinical_features))
113
+
114
+ # Save to CSV
115
+ clinical_features.to_csv(out_clinical_data_file)
116
+ # Get file paths
117
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
118
+
119
+ # Extract gene expression data from matrix file
120
+ gene_data = get_genetic_data(matrix_file)
121
+
122
+ # Print first 20 row IDs and shape of data to help debug
123
+ print("Shape of gene expression data:", gene_data.shape)
124
+ print("\nFirst few rows of data:")
125
+ print(gene_data.head())
126
+ print("\nFirst 20 gene/probe identifiers:")
127
+ print(gene_data.index[:20])
128
+
129
+ # Inspect a snippet of raw file to verify identifier format
130
+ import gzip
131
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
132
+ lines = []
133
+ for i, line in enumerate(f):
134
+ if "!series_matrix_table_begin" in line:
135
+ # Get the next 5 lines after the marker
136
+ for _ in range(5):
137
+ lines.append(next(f).strip())
138
+ break
139
+ print("\nFirst few lines after matrix marker in raw file:")
140
+ for line in lines:
141
+ print(line)
142
+ requires_gene_mapping = True
143
+ # First locate platform and annotation information
144
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
145
+ print("Searching for platform/annotation info:")
146
+ content = f.read(10000)
147
+ relevant = [line for line in content.split('\n')
148
+ if 'platform' in line.lower() or 'annotation' in line.lower()]
149
+ for line in relevant:
150
+ print(line)
151
+
152
+ print("\n" + "="*80 + "\n")
153
+
154
+ # Extract gene annotation, filtering platform/ID information
155
+ gene_metadata = filter_content_by_prefix(
156
+ soft_file,
157
+ prefixes_a=['!Platform_table_begin'],
158
+ unselect=True,
159
+ source_type='file',
160
+ return_df_a=True
161
+ )[0]
162
+
163
+ # Preview the annotation data
164
+ print("Column names:", gene_metadata.columns.tolist())
165
+ print("\nFirst few rows preview:")
166
+ print(preview_df(gene_metadata))
167
+ # Try to extract data from SOFT file with more focused extraction
168
+ from io import StringIO
169
+ import gzip
170
+
171
+ # First read a portion of the file to find where the platform table starts
172
+ platform_data = ""
173
+ in_table = False
174
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
175
+ for line in f:
176
+ if '!Platform_table_begin' in line:
177
+ in_table = True
178
+ # Skip the header row
179
+ next(f)
180
+ continue
181
+ if in_table and '!Platform_table_end' in line:
182
+ break
183
+ if in_table:
184
+ platform_data += line
185
+
186
+ # Create DataFrame from the extracted platform data
187
+ gene_metadata = pd.read_csv(StringIO(platform_data), sep='\t')
188
+
189
+ # Print column names to identify correct ones for mapping
190
+ print("Available columns in gene metadata:")
191
+ print(gene_metadata.columns.tolist())
192
+ print("\nFirst few rows:")
193
+ print(gene_metadata.head())
194
+
195
+ # Create mapping between probe IDs and gene symbols
196
+ # Adjust column names based on actual output
197
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ProbeName', gene_col='GeneName')
198
+
199
+ # Convert probe-level measurements to gene-level measurements
200
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
201
+
202
+ # Preview the mapped data
203
+ print("\nShape of gene expression data after mapping:", gene_data.shape)
204
+ print("\nFirst few rows of mapped data:")
205
+ print(gene_data.head())
206
+ # Extract gene annotation using the provided function
207
+ gene_metadata = get_gene_annotation(soft_file)
208
+
209
+ # Preview the annotation data
210
+ print("Column names:", gene_metadata.columns.tolist())
211
+ print("\nFirst few rows preview:")
212
+ print(preview_df(gene_metadata))
213
+ # 1. Extract gene mapping from platform table in SOFT file
214
+ platform_data = ""
215
+ in_table = False
216
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
217
+ for line in f:
218
+ if '!Platform_table_begin' in line:
219
+ in_table = True
220
+ continue
221
+ if in_table and '!Platform_table_end' in line:
222
+ break
223
+ if in_table:
224
+ platform_data += line
225
+
226
+ # Parse platform data into DataFrame
227
+ gene_metadata = pd.read_csv(StringIO(platform_data), sep='\t')
228
+
229
+ # Map probe IDs to gene symbols
230
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GeneName')
231
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
232
+
233
+ # Normalize gene symbols and save gene data
234
+ gene_data = normalize_gene_symbols_in_index(gene_data)
235
+ gene_data.to_csv(out_gene_data_file)
236
+
237
+ # Link clinical and genetic data
238
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
239
+
240
+ # Handle missing values
241
+ linked_data = handle_missing_values(linked_data, trait)
242
+
243
+ # Check for biased features
244
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
245
+
246
+ # Final validation and info saving
247
+ is_usable = validate_and_save_cohort_info(
248
+ is_final=True,
249
+ cohort=cohort,
250
+ info_path=json_path,
251
+ is_gene_available=True,
252
+ is_trait_available=True,
253
+ is_biased=is_biased,
254
+ df=linked_data,
255
+ note="Dataset contains gene expression data and clinical information, but some demographic features were removed due to bias."
256
+ )
257
+
258
+ # Save linked data if usable
259
+ if is_usable:
260
+ linked_data.to_csv(out_data_file)
261
+ # Print the first few lines of platform data to check format
262
+ platform_data = []
263
+ in_table = False
264
+ header_found = False
265
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
266
+ for line in f:
267
+ if '!Platform_table_begin' in line:
268
+ in_table = True
269
+ continue
270
+ if in_table and not header_found:
271
+ header = line.strip().split('\t')
272
+ header_found = True
273
+ continue
274
+ if in_table and '!Platform_table_end' in line:
275
+ break
276
+ if in_table and header_found:
277
+ platform_data.append(line.strip().split('\t'))
278
+
279
+ # Create DataFrame with proper columns
280
+ gene_metadata = pd.DataFrame(platform_data, columns=header)
281
+ print("Available columns:", gene_metadata.columns.tolist())
282
+ print("\nFirst few rows:")
283
+ print(gene_metadata.head())
284
+
285
+ # Create mapping using ENTREZ_GENE_ID as these match the numeric IDs
286
+ mapping_data = pd.DataFrame({
287
+ 'ID': gene_metadata['ID'].astype(str),
288
+ 'Gene': gene_metadata['ENTREZ_GENE_ID'].astype(str)
289
+ })
290
+
291
+ # Convert probe-level measurements to gene-level measurements
292
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
293
+
294
+ print("\nShape after mapping:", gene_data.shape)
295
+ print("\nMapped data preview:")
296
+ print(gene_data.head())
297
+ # We can use the gene_metadata from previous step which has numeric IDs matching gene expression data
298
+ # We'll query NCBI's gene database to get gene symbols from Entrez IDs
299
+ import gzip
300
+ import requests
301
+ import time
302
+ from typing import Dict
303
+
304
+ def get_gene_symbols_from_entrez(entrez_ids: list) -> Dict[str, str]:
305
+ """Get gene symbols from Entrez Gene IDs using NCBI E-utilities"""
306
+ base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi"
307
+ symbols = {}
308
+
309
+ # Process in batches of 100 to avoid overloading the server
310
+ batch_size = 100
311
+ for i in range(0, len(entrez_ids), batch_size):
312
+ batch = entrez_ids[i:i + batch_size]
313
+ params = {
314
+ 'db': 'gene',
315
+ 'id': ','.join(batch),
316
+ 'retmode': 'json'
317
+ }
318
+
319
+ try:
320
+ response = requests.get(base_url, params=params)
321
+ data = response.json()
322
+
323
+ for gene_id in data['result']:
324
+ if gene_id != 'uids': # Skip the uids key
325
+ try:
326
+ symbol = data['result'][gene_id]['name']
327
+ symbols[gene_id] = symbol
328
+ except KeyError:
329
+ continue
330
+
331
+ except Exception as e:
332
+ print(f"Error fetching symbols for batch {i}: {e}")
333
+
334
+ # Be nice to NCBI's servers
335
+ time.sleep(0.1)
336
+
337
+ return symbols
338
+
339
+ # Create mapping DataFrame
340
+ mapping_data = pd.DataFrame({
341
+ 'ID': gene_metadata['ID'],
342
+ 'Gene': gene_metadata['ENTREZ_GENE_ID']
343
+ })
344
+
345
+ # Convert gene_data probe IDs to string type to match mapping_data
346
+ gene_data.index = gene_data.index.astype(str)
347
+
348
+ # Apply mapping to convert probe-level measurements to gene-level measurements
349
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
350
+
351
+ print("\nShape of gene expression data after mapping:", gene_data.shape)
352
+ print("\nFirst few rows of mapped data:")
353
+ print(gene_data.head())
p3/preprocess/Atherosclerosis/code/GSE125771.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE125771"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE125771"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE125771.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE125771.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE125771.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Determine gene expression data availability
41
+ # Based on the Series_title and Series_overall_design, this is RNA expression data
42
+ is_gene_available = True
43
+
44
+ # 2.1 Data availability
45
+ # Trait: everyone has atherosclerotic plaque (constant feature)
46
+ trait_row = None
47
+
48
+ # Age: available in Feature 3
49
+ age_row = 3
50
+
51
+ # Gender: available in Feature 2
52
+ gender_row = 2
53
+
54
+ # 2.2 Data type conversion functions
55
+ def convert_trait(x):
56
+ return None # Not used since trait_row is None
57
+
58
+ def convert_age(x):
59
+ try:
60
+ # Extract value after colon and convert to float
61
+ age = float(x.split(': ')[1])
62
+ return age
63
+ except:
64
+ return None
65
+
66
+ def convert_gender(x):
67
+ try:
68
+ # Extract value after colon and convert to binary (Female=0, Male=1)
69
+ gender = x.split(': ')[1]
70
+ if gender.lower() == 'female':
71
+ return 0
72
+ elif gender.lower() == 'male':
73
+ return 1
74
+ return None
75
+ except:
76
+ return None
77
+
78
+ # 3. Save metadata
79
+ validate_and_save_cohort_info(
80
+ is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=(trait_row is not None)
85
+ )
86
+
87
+ # 4. Skip clinical feature extraction since trait_row is None
88
+ # Get file paths
89
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
90
+
91
+ # Extract gene expression data from matrix file
92
+ gene_data = get_genetic_data(matrix_file)
93
+
94
+ # Print first 20 row IDs and shape of data to help debug
95
+ print("Shape of gene expression data:", gene_data.shape)
96
+ print("\nFirst few rows of data:")
97
+ print(gene_data.head())
98
+ print("\nFirst 20 gene/probe identifiers:")
99
+ print(gene_data.index[:20])
100
+
101
+ # Inspect a snippet of raw file to verify identifier format
102
+ import gzip
103
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
104
+ lines = []
105
+ for i, line in enumerate(f):
106
+ if "!series_matrix_table_begin" in line:
107
+ # Get the next 5 lines after the marker
108
+ for _ in range(5):
109
+ lines.append(next(f).strip())
110
+ break
111
+ print("\nFirst few lines after matrix marker in raw file:")
112
+ for line in lines:
113
+ print(line)
114
+ # The gene identifiers appear to be probe IDs from a custom Affymetrix array
115
+ # They have the format "TC########.hg.1" which indicates they are transcript cluster IDs
116
+ # These are not standard human gene symbols and will need to be mapped
117
+ requires_gene_mapping = True
118
+ # Extract gene annotation data
119
+ gene_metadata = get_gene_annotation(soft_file)
120
+
121
+ # Preview the annotation data
122
+ print("Column names:", gene_metadata.columns.tolist())
123
+ print("\nFirst few rows preview:")
124
+ print(preview_df(gene_metadata))
125
+ # Get probe-to-gene mapping
126
+ mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
127
+
128
+ # Apply mapping to convert probe measurements to gene expression data
129
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
130
+
131
+ # Save processed gene data to CSV
132
+ gene_data.to_csv(out_gene_data_file)
133
+ # 1. Normalize gene symbols
134
+ gene_data = normalize_gene_symbols_in_index(gene_data)
135
+ gene_data.to_csv(out_gene_data_file)
136
+
137
+ # Clinical data is not available (trait_row was None), so skip remaining steps
138
+ # Record that this dataset cannot be used for association studies
139
+ validate_and_save_cohort_info(
140
+ is_final=True,
141
+ cohort=cohort,
142
+ info_path=json_path,
143
+ is_gene_available=True,
144
+ is_trait_available=False,
145
+ is_biased=False,
146
+ df=gene_data,
147
+ note="Contains gene expression data but lacks clinical information needed for trait association studies."
148
+ )
p3/preprocess/Atherosclerosis/code/GSE133601.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE133601"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE133601"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE133601.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE133601.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE133601.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene expression data availability check
41
+ # Based on the background information, this dataset contains gene expression data from peripheral blood mononuclear cells
42
+ is_gene_available = True
43
+
44
+ # 2. Variable availability and data type conversion
45
+ # 2.1 Data rows
46
+ # trait (Atherosclerosis): Not directly available in the data
47
+ trait_row = None
48
+
49
+ # Age: Not available in sample characteristics
50
+ age_row = None
51
+
52
+ # Gender: Not available in sample characteristics
53
+ gender_row = None
54
+
55
+ # 2.2 Conversion functions
56
+ def convert_trait(x):
57
+ return None
58
+
59
+ def convert_age(x):
60
+ return None
61
+
62
+ def convert_gender(x):
63
+ return None
64
+
65
+ # 3. Save metadata
66
+ is_trait_available = trait_row is not None
67
+ validate_and_save_cohort_info(is_final=False,
68
+ cohort=cohort,
69
+ info_path=json_path,
70
+ is_gene_available=is_gene_available,
71
+ is_trait_available=is_trait_available)
72
+
73
+ # 4. Clinical feature extraction is skipped since trait_row is None
74
+ # Get file paths
75
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
76
+
77
+ # Extract gene expression data from matrix file
78
+ gene_data = get_genetic_data(matrix_file)
79
+
80
+ # Print first 20 row IDs and shape of data to help debug
81
+ print("Shape of gene expression data:", gene_data.shape)
82
+ print("\nFirst few rows of data:")
83
+ print(gene_data.head())
84
+ print("\nFirst 20 gene/probe identifiers:")
85
+ print(gene_data.index[:20])
86
+
87
+ # Inspect a snippet of raw file to verify identifier format
88
+ import gzip
89
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
90
+ lines = []
91
+ for i, line in enumerate(f):
92
+ if "!series_matrix_table_begin" in line:
93
+ # Get the next 5 lines after the marker
94
+ for _ in range(5):
95
+ lines.append(next(f).strip())
96
+ break
97
+ print("\nFirst few lines after matrix marker in raw file:")
98
+ for line in lines:
99
+ print(line)
100
+ # Looking at the gene identifiers, they appear to be Affymetrix probe IDs (ending in "_at")
101
+ # These are not standard human gene symbols and will need to be mapped
102
+ requires_gene_mapping = True
103
+ # Let's explore raw SOFT file content to find the correct section
104
+ import gzip
105
+ print("Preview of raw SOFT file content (searching for platform data):")
106
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
107
+ in_platform = False
108
+ for i, line in enumerate(f):
109
+ if '!Platform_table_begin' in line:
110
+ in_platform = True
111
+ print("\nFound platform table. Next 10 lines:")
112
+ if in_platform and i < 10:
113
+ print(line.strip())
114
+ elif i > 100: # Limit preview length
115
+ break
116
+
117
+ # Extract gene annotation data, skipping header lines and keeping table rows
118
+ gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#'])
119
+
120
+ # Preview the annotation data, showing more rows to better understand structure
121
+ print("\nColumn names:", gene_metadata.columns.tolist())
122
+ print("\nFirst 10 rows preview:")
123
+ preview_size = min(10, len(gene_metadata))
124
+ print(preview_df(gene_metadata, n=preview_size))
125
+
126
+ # Print shape to understand size of annotation data
127
+ print("\nShape of annotation data:", gene_metadata.shape)
128
+ # Extract gene mapping from annotation data
129
+ # 'ID' column in annotation matches probe IDs in expression data (ending in '_at')
130
+ # 'Description' column contains gene names/descriptions
131
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Description')
132
+
133
+ # Convert probe-level measurements to gene-level expression
134
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
135
+
136
+ # Print shape and preview mapped data
137
+ print("Shape after mapping to genes:", gene_data.shape)
138
+ print("\nFirst few rows of gene expression data:")
139
+ print(gene_data.head())
140
+ # 1. Normalize gene symbols
141
+ gene_data = normalize_gene_symbols_in_index(gene_data)
142
+ gene_data.to_csv(out_gene_data_file)
143
+
144
+ # Clinical data is not available (trait_row was None), so skip remaining steps
145
+ # Record that this dataset cannot be used for association studies
146
+ validate_and_save_cohort_info(
147
+ is_final=True,
148
+ cohort=cohort,
149
+ info_path=json_path,
150
+ is_gene_available=True,
151
+ is_trait_available=False,
152
+ is_biased=False,
153
+ df=gene_data,
154
+ note="Contains gene expression data but lacks clinical information needed for trait association studies."
155
+ )
p3/preprocess/Atherosclerosis/code/GSE154851.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE154851"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE154851"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE154851.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE154851.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE154851.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # Based on background info - using Sureprint G3 Human Gene Expression microarray
42
+ is_gene_available = True
43
+
44
+ # 2. Variable Availability and Data Type Conversion
45
+ # Trait: Cannot reliably determine from available characteristics data
46
+ trait_row = None
47
+
48
+ # Age is in row 2
49
+ age_row = 2
50
+
51
+ # Gender is in row 1
52
+ gender_row = 1
53
+
54
+ def convert_trait(x):
55
+ return None
56
+
57
+ def convert_age(x):
58
+ if not isinstance(x, str):
59
+ return None
60
+ try:
61
+ # Extract age value before 'y'
62
+ age = int(x.split(': ')[1].replace('y',''))
63
+ return age
64
+ except:
65
+ return None
66
+
67
+ def convert_gender(x):
68
+ if not isinstance(x, str):
69
+ return None
70
+ try:
71
+ gender = x.split(': ')[1].lower()
72
+ if gender == 'female':
73
+ return 0
74
+ elif gender == 'male':
75
+ return 1
76
+ return None
77
+ except:
78
+ return None
79
+
80
+ # 3. Save metadata
81
+ is_trait_available = False if trait_row is None else True
82
+ validate_and_save_cohort_info(
83
+ is_final=False,
84
+ cohort=cohort,
85
+ info_path=json_path,
86
+ is_gene_available=is_gene_available,
87
+ is_trait_available=is_trait_available
88
+ )
89
+
90
+ # 4. Skip clinical feature extraction since trait_row is None
91
+ # Get file paths
92
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
93
+
94
+ # Extract gene expression data from matrix file
95
+ gene_data = get_genetic_data(matrix_file)
96
+
97
+ # Print first 20 row IDs and shape of data to help debug
98
+ print("Shape of gene expression data:", gene_data.shape)
99
+ print("\nFirst few rows of data:")
100
+ print(gene_data.head())
101
+ print("\nFirst 20 gene/probe identifiers:")
102
+ print(gene_data.index[:20])
103
+
104
+ # Inspect a snippet of raw file to verify identifier format
105
+ import gzip
106
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
107
+ lines = []
108
+ for i, line in enumerate(f):
109
+ if "!series_matrix_table_begin" in line:
110
+ # Get the next 5 lines after the marker
111
+ for _ in range(5):
112
+ lines.append(next(f).strip())
113
+ break
114
+ print("\nFirst few lines after matrix marker in raw file:")
115
+ for line in lines:
116
+ print(line)
117
+ # Based on the data preview, I observe that:
118
+ # 1. The gene identifiers are numeric indices (1,2,3...)
119
+ # 2. These are not standard gene symbols which are typically alphanumeric (e.g. BRCA1, TP53)
120
+ # 3. These appear to be microarray probe IDs that need to be mapped to gene symbols
121
+
122
+ requires_gene_mapping = True
123
+ # Extract gene annotation data
124
+ gene_metadata = get_gene_annotation(soft_file)
125
+
126
+ # Preview the annotation data
127
+ print("Column names:", gene_metadata.columns.tolist())
128
+ print("\nFirst few rows preview:")
129
+ print(preview_df(gene_metadata))
130
+ # Extract mapping between probe IDs and gene symbols from annotation data
131
+ mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
132
+
133
+ # Apply the mapping to convert probe measurements to gene expression data
134
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
135
+
136
+ # Save the processed gene expression data
137
+ gene_data.to_csv(out_gene_data_file)
138
+ # 1. Normalize gene symbols
139
+ gene_data = normalize_gene_symbols_in_index(gene_data)
140
+ gene_data.to_csv(out_gene_data_file)
141
+
142
+ # Clinical data is not available (trait_row was None), so skip remaining steps
143
+ # Record that this dataset cannot be used for association studies
144
+ validate_and_save_cohort_info(
145
+ is_final=True,
146
+ cohort=cohort,
147
+ info_path=json_path,
148
+ is_gene_available=True,
149
+ is_trait_available=False,
150
+ is_biased=False,
151
+ df=gene_data,
152
+ note="Contains gene expression data but lacks clinical information needed for trait association studies."
153
+ )
p3/preprocess/Atherosclerosis/code/GSE57691.py ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE57691"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE57691"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE57691.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE57691.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE57691.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using broader sample prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_', '!Sample_disease_state', '!Sample_description']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # Based on background info mentioning "Genome-wide expression analysis" and platform GPL10558
42
+ is_gene_available = True
43
+
44
+ # 2.1 Data Availability
45
+ # Trait can be inferred from disease state in Feature 8
46
+ trait_row = 8
47
+
48
+ # Age and gender are not available in the characteristics
49
+ age_row = None
50
+ gender_row = None
51
+
52
+ # 2.2 Data Type Conversion Functions
53
+ def convert_trait(value: str) -> int:
54
+ """Convert trait value to binary: 1 for presence of atherosclerosis, 0 for control"""
55
+ if value is None or ':' not in value:
56
+ return None
57
+ value = value.split(':')[1].strip().lower()
58
+ if 'aod' in value: # AOD is atherosclerotic occlusive disease
59
+ return 1
60
+ elif 'control' in value:
61
+ return 0
62
+ else: # AAA samples are not relevant for atherosclerosis
63
+ return None
64
+
65
+ def convert_age(value: str) -> Optional[float]:
66
+ """Placeholder function as age data is not available"""
67
+ return None
68
+
69
+ def convert_gender(value: str) -> Optional[int]:
70
+ """Placeholder function as gender data is not available"""
71
+ return None
72
+
73
+ # 3. Save Metadata
74
+ # is_trait_available is True since trait_row is not None
75
+ validate_and_save_cohort_info(is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=True)
80
+
81
+ # 4. Clinical Feature Extraction
82
+ # Since trait_row is not None, we need to extract clinical features
83
+ selected_clinical_df = geo_select_clinical_features(
84
+ clinical_df=clinical_data,
85
+ trait=trait,
86
+ trait_row=trait_row,
87
+ convert_trait=convert_trait,
88
+ age_row=age_row,
89
+ convert_age=convert_age,
90
+ gender_row=gender_row,
91
+ convert_gender=convert_gender
92
+ )
93
+
94
+ # Preview the extracted features
95
+ preview_result = preview_df(selected_clinical_df)
96
+ print("Preview of clinical features:")
97
+ print(preview_result)
98
+
99
+ # Save clinical data
100
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
101
+ selected_clinical_df.to_csv(out_clinical_data_file)
102
+ # Get file paths
103
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
104
+
105
+ # Extract gene expression data from matrix file
106
+ gene_data = get_genetic_data(matrix_file)
107
+
108
+ # Print first 20 row IDs and shape of data to help debug
109
+ print("Shape of gene expression data:", gene_data.shape)
110
+ print("\nFirst few rows of data:")
111
+ print(gene_data.head())
112
+ print("\nFirst 20 gene/probe identifiers:")
113
+ print(gene_data.index[:20])
114
+
115
+ # Inspect a snippet of raw file to verify identifier format
116
+ import gzip
117
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
118
+ lines = []
119
+ for i, line in enumerate(f):
120
+ if "!series_matrix_table_begin" in line:
121
+ # Get the next 5 lines after the marker
122
+ for _ in range(5):
123
+ lines.append(next(f).strip())
124
+ break
125
+ print("\nFirst few lines after matrix marker in raw file:")
126
+ for line in lines:
127
+ print(line)
128
+ # Looking at the gene identifiers (e.g. ILMN_1343291), these are Illumina probe IDs
129
+ # that need to be mapped to standard human gene symbols
130
+ requires_gene_mapping = True
131
+ # Extract gene annotation data
132
+ gene_metadata = get_gene_annotation(soft_file)
133
+
134
+ # Preview the annotation data
135
+ print("Column names:", gene_metadata.columns.tolist())
136
+ print("\nFirst few rows preview:")
137
+ print(preview_df(gene_metadata))
138
+ # Create gene mapping dataframe from gene annotation data
139
+ # ID column in gene_metadata contains probe IDs (e.g. ILMN_1343291)
140
+ # Symbol column contains gene symbols
141
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
142
+
143
+ # Apply gene mapping to convert probe-level data to gene expression data
144
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
145
+
146
+ # Save gene expression data
147
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
148
+ gene_data.to_csv(out_gene_data_file)
149
+ # 1. Normalize gene symbols
150
+ gene_data = normalize_gene_symbols_in_index(gene_data)
151
+ gene_data.to_csv(out_gene_data_file)
152
+
153
+ # 2. Link clinical and genetic data
154
+ # Need to transpose selected_clinical_df to match sample orientation
155
+ selected_clinical_df = selected_clinical_df.T
156
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
157
+
158
+ # 3. Handle missing values
159
+ linked_data = handle_missing_values(linked_data, trait)
160
+
161
+ # 4. Check for bias
162
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
163
+
164
+ # 5. Validate and save cohort info
165
+ is_usable = validate_and_save_cohort_info(
166
+ is_final=True,
167
+ cohort=cohort,
168
+ info_path=json_path,
169
+ is_gene_available=True,
170
+ is_trait_available=True,
171
+ is_biased=trait_biased,
172
+ df=linked_data,
173
+ note="Gene expression study comparing AOD (atherosclerotic occlusive disease) vs normal control aortic tissue."
174
+ )
175
+
176
+ # 6. Save if usable
177
+ if is_usable:
178
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
179
+ linked_data.to_csv(out_data_file)
180
+ # Cannot perform analysis without output from previous step showing dataset information
181
+ # Request previous output showing:
182
+ # - Dataset background information
183
+ # - Sample characteristics dictionary
184
+ # - Matrix file information
185
+ print("Error: Missing required output from previous step showing dataset characteristics")
186
+ raise ValueError("Previous step output required to analyze dataset and determine data availability")
187
+ # Get file paths
188
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
189
+
190
+ # Extract background info and clinical data using broader sample prefixes
191
+ background_info, clinical_data = get_background_and_clinical_data(
192
+ matrix_file,
193
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
194
+ prefixes_b=['!Sample_', '!Sample_disease_state', '!Sample_description']
195
+ )
196
+
197
+ # Get unique values per clinical feature
198
+ sample_characteristics = get_unique_values_by_row(clinical_data)
199
+
200
+ # Print background info
201
+ print("Dataset Background Information:")
202
+ print(f"{background_info}\n")
203
+
204
+ # Print sample characteristics
205
+ print("Sample Characteristics:")
206
+ for feature, values in sample_characteristics.items():
207
+ print(f"Feature: {feature}")
208
+ print(f"Values: {values}\n")
209
+ # 1. Gene Expression Data Availability
210
+ # The dataset measures gene expression in aortic tissue using Illumina arrays
211
+ is_gene_available = True
212
+
213
+ # 2. Variable Availability and Data Type Conversion
214
+ # 2.1 Data Availability
215
+
216
+ # Trait (Atherosclerosis) - Feature 8 contains disease state info
217
+ # Both AAA and AOD represent atherosclerotic disease
218
+ trait_row = 8
219
+
220
+ # Age not available - no age info in characteristics
221
+ age_row = None
222
+
223
+ # Gender not available - no gender info in characteristics
224
+ gender_row = None
225
+
226
+ # 2.2 Data Type Conversion Functions
227
+ def convert_trait(value: str) -> Optional[int]:
228
+ """Convert disease state to binary trait value"""
229
+ if not isinstance(value, str):
230
+ return None
231
+ # Extract value after colon if present
232
+ if ':' in value:
233
+ value = value.split(':')[1].strip()
234
+ # Both AAA and AOD represent atherosclerotic disease
235
+ if 'AAA' in value or 'AOD' in value:
236
+ return 1
237
+ elif 'control' in value:
238
+ return 0
239
+ return None
240
+
241
+ def convert_age(value: str) -> Optional[float]:
242
+ """Convert age value to float"""
243
+ return None # Not used since age data not available
244
+
245
+ def convert_gender(value: str) -> Optional[int]:
246
+ """Convert gender to binary"""
247
+ return None # Not used since gender data not available
248
+
249
+ # 3. Save Metadata
250
+ validate_and_save_cohort_info(
251
+ is_final=False,
252
+ cohort=cohort,
253
+ info_path=json_path,
254
+ is_gene_available=is_gene_available,
255
+ is_trait_available=trait_row is not None
256
+ )
257
+
258
+ # 4. Clinical Feature Extraction
259
+ if trait_row is not None:
260
+ clinical_features = geo_select_clinical_features(
261
+ clinical_df=clinical_data,
262
+ trait=trait,
263
+ trait_row=trait_row,
264
+ convert_trait=convert_trait,
265
+ age_row=age_row,
266
+ convert_age=convert_age,
267
+ gender_row=gender_row,
268
+ convert_gender=convert_gender
269
+ )
270
+
271
+ # Preview the extracted features
272
+ preview = preview_df(clinical_features)
273
+ print("Preview of clinical features:")
274
+ print(preview)
275
+
276
+ # Save to CSV
277
+ clinical_features.to_csv(out_clinical_data_file)
278
+ # 1. Normalize gene symbols
279
+ gene_data = normalize_gene_symbols_in_index(gene_data)
280
+ gene_data.to_csv(out_gene_data_file)
281
+
282
+ # 2. Link clinical and genetic data
283
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
284
+
285
+ # 3. Handle missing values
286
+ linked_data = handle_missing_values(linked_data, trait)
287
+
288
+ # 4. Check for bias
289
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
290
+
291
+ # 5. Validate and save cohort info
292
+ is_usable = validate_and_save_cohort_info(
293
+ is_final=True,
294
+ cohort=cohort,
295
+ info_path=json_path,
296
+ is_gene_available=True,
297
+ is_trait_available=True,
298
+ is_biased=trait_biased,
299
+ df=linked_data,
300
+ note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells."
301
+ )
302
+
303
+ # 6. Save if usable
304
+ if is_usable:
305
+ linked_data.to_csv(out_data_file)
p3/preprocess/Atherosclerosis/code/GSE83500.py ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE83500"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE83500"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE83500.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE83500.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE83500.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using broader sample prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_', '!Sample_disease_state', '!Sample_description']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # Based on platform (GPL13667 - Affymetrix Human Genome U219) and series title/design,
42
+ # this is a gene expression microarray dataset
43
+ is_gene_available = True
44
+
45
+ # 2.1 Data Availability
46
+ # Feature 8 indicates MI vs non-MI status (atherosclerosis trait)
47
+ trait_row = 8
48
+
49
+ # Feature 9 has age information
50
+ age_row = 9
51
+
52
+ # Feature 10 has gender information
53
+ gender_row = 10
54
+
55
+ # 2.2 Data Type Conversion Functions
56
+ def convert_trait(value):
57
+ # Convert MI status to binary (1=MI, 0=non-MI)
58
+ if not value or ':' not in value:
59
+ return None
60
+ value = value.split(': ')[1].lower()
61
+ if 'mi patient' in value:
62
+ return 1
63
+ elif 'non-mi patient' in value:
64
+ return 0
65
+ return None
66
+
67
+ def convert_age(value):
68
+ # Convert age to continuous numeric value
69
+ if not value or ':' not in value:
70
+ return None
71
+ try:
72
+ return int(value.split(': ')[1])
73
+ except:
74
+ return None
75
+
76
+ def convert_gender(value):
77
+ # Convert gender to binary (0=Female, 1=Male)
78
+ if not value or ':' not in value:
79
+ return None
80
+ value = value.split(': ')[1].lower()
81
+ if value == 'female':
82
+ return 0
83
+ elif value == 'male':
84
+ return 1
85
+ return None
86
+
87
+ # 3. Save Metadata
88
+ is_trait_available = trait_row is not None
89
+ validate_and_save_cohort_info(is_final=False,
90
+ cohort=cohort,
91
+ info_path=json_path,
92
+ is_gene_available=is_gene_available,
93
+ is_trait_available=is_trait_available)
94
+
95
+ # 4. Clinical Feature Extraction
96
+ if trait_row is not None:
97
+ clinical_features = geo_select_clinical_features(
98
+ clinical_df=clinical_data,
99
+ trait=trait,
100
+ trait_row=trait_row,
101
+ convert_trait=convert_trait,
102
+ age_row=age_row,
103
+ convert_age=convert_age,
104
+ gender_row=gender_row,
105
+ convert_gender=convert_gender
106
+ )
107
+
108
+ # Preview the extracted features
109
+ print("Preview of clinical features:")
110
+ print(preview_df(clinical_features))
111
+
112
+ # Save to CSV
113
+ clinical_features.to_csv(out_clinical_data_file)
114
+ # Get file paths
115
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
116
+
117
+ # Extract gene expression data from matrix file
118
+ gene_data = get_genetic_data(matrix_file)
119
+
120
+ # Print first 20 row IDs and shape of data to help debug
121
+ print("Shape of gene expression data:", gene_data.shape)
122
+ print("\nFirst few rows of data:")
123
+ print(gene_data.head())
124
+ print("\nFirst 20 gene/probe identifiers:")
125
+ print(gene_data.index[:20])
126
+
127
+ # Inspect a snippet of raw file to verify identifier format
128
+ import gzip
129
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
130
+ lines = []
131
+ for i, line in enumerate(f):
132
+ if "!series_matrix_table_begin" in line:
133
+ # Get the next 5 lines after the marker
134
+ for _ in range(5):
135
+ lines.append(next(f).strip())
136
+ break
137
+ print("\nFirst few lines after matrix marker in raw file:")
138
+ for line in lines:
139
+ print(line)
140
+ # Based on the identifier format (e.g., "11715100_at"), these appear to be Affymetrix probe IDs
141
+ # rather than gene symbols. They need to be mapped to official gene symbols.
142
+ requires_gene_mapping = True
143
+ # Extract gene annotation data
144
+ gene_metadata = get_gene_annotation(soft_file)
145
+
146
+ # Preview the annotation data
147
+ print("Column names:", gene_metadata.columns.tolist())
148
+ print("\nFirst few rows preview:")
149
+ print(preview_df(gene_metadata))
150
+ # Get gene mapping from annotation data
151
+ # The 'ID' column contains probe IDs that match gene expression data identifiers
152
+ # The 'Gene Symbol' column contains the human gene symbols
153
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
154
+
155
+ # Apply gene mapping to convert probe-level data to gene-level data
156
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
157
+
158
+ # Save genetic data to CSV
159
+ gene_data.to_csv(out_gene_data_file)
160
+
161
+ # Print preview to verify correct mapping
162
+ print("Shape of mapped gene expression data:", gene_data.shape)
163
+ print("\nFirst few rows of mapped data:")
164
+ print(gene_data.head())
165
+ # 1. Normalize gene symbols
166
+ gene_data = normalize_gene_symbols_in_index(gene_data)
167
+ gene_data.to_csv(out_gene_data_file)
168
+
169
+ # 2. Link clinical and genetic data
170
+ # Transpose and extract feature data rows from clinical features
171
+ trait_data = clinical_features.loc[trait, :]
172
+ age_data = clinical_features.loc['Age', :]
173
+ gender_data = clinical_features.loc['Gender', :]
174
+
175
+ clinical_data = pd.concat([trait_data, age_data, gender_data], axis=0).T
176
+ clinical_data = clinical_data.rename({trait: 'Atherosclerosis'}, axis=1)
177
+
178
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
179
+
180
+ # 3. Handle missing values
181
+ linked_data = handle_missing_values(linked_data, 'Atherosclerosis')
182
+
183
+ # 4. Check for bias
184
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Atherosclerosis')
185
+
186
+ # 5. Validate and save cohort info
187
+ is_usable = validate_and_save_cohort_info(
188
+ is_final=True,
189
+ cohort=cohort,
190
+ info_path=json_path,
191
+ is_gene_available=True,
192
+ is_trait_available=True,
193
+ is_biased=trait_biased,
194
+ df=linked_data,
195
+ note="Study examining gene expression in aortic wall samples between MI and non-MI patients, relevant to atherosclerosis."
196
+ )
197
+
198
+ # 6. Save if usable
199
+ if is_usable:
200
+ linked_data.to_csv(out_data_file)
201
+ # 1. Normalize gene symbols
202
+ gene_data = normalize_gene_symbols_in_index(gene_data)
203
+ gene_data.to_csv(out_gene_data_file)
204
+
205
+ # 2. Link clinical and genetic data
206
+ # Restructure clinical features first
207
+ clinical_data = clinical_features.T # Transpose to get features as columns
208
+
209
+ # Link the data
210
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
211
+
212
+ # 3. Handle missing values
213
+ linked_data = handle_missing_values(linked_data, trait)
214
+
215
+ # 4. Check for bias
216
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
217
+
218
+ # 5. Validate and save cohort info
219
+ is_usable = validate_and_save_cohort_info(
220
+ is_final=True,
221
+ cohort=cohort,
222
+ info_path=json_path,
223
+ is_gene_available=True,
224
+ is_trait_available=True,
225
+ is_biased=trait_biased,
226
+ df=linked_data,
227
+ note="Study examining gene expression in aortic wall samples between MI and non-MI patients, relevant to atherosclerosis."
228
+ )
229
+
230
+ # 6. Save if usable
231
+ if is_usable:
232
+ linked_data.to_csv(out_data_file)
233
+ # 1. Gene Expression Data Availability
234
+ is_gene_available = True # Dataset has gene expression data
235
+
236
+ # 2.1 Data Availability
237
+ trait_row = 0 # Group/Status contains disease/control info
238
+ age_row = 1 # Age
239
+ gender_row = None # Gender not available
240
+
241
+ # 2.2 Data Type Conversion Functions
242
+ def convert_trait(value: str) -> int:
243
+ """Convert disease/control status to binary (0=control, 1=disease)"""
244
+ if value is None:
245
+ return None
246
+ value = str(value).lower()
247
+ if ':' in value:
248
+ value = value.split(':')[1].strip()
249
+ if value in ['control']:
250
+ return 0
251
+ elif value in ['carotid atherosclerosis']:
252
+ return 1
253
+ return None
254
+
255
+ def convert_age(value: str) -> float:
256
+ """Convert age to float"""
257
+ if value is None:
258
+ return None
259
+ value = str(value)
260
+ if ':' in value:
261
+ value = value.split(':')[1].strip()
262
+ try:
263
+ return float(value)
264
+ except:
265
+ return None
266
+
267
+ def convert_gender(value: str) -> int:
268
+ """Convert gender to binary (female=0, male=1)"""
269
+ if value is None:
270
+ return None
271
+ value = str(value).lower()
272
+ if ':' in value:
273
+ value = value.split(':')[1].strip()
274
+ if value in ['f', 'female']:
275
+ return 0
276
+ elif value in ['m', 'male']:
277
+ return 1
278
+ return None
279
+
280
+ # 3. Save metadata
281
+ validate_and_save_cohort_info(is_final=False,
282
+ cohort=cohort,
283
+ info_path=json_path,
284
+ is_gene_available=is_gene_available,
285
+ is_trait_available=(trait_row is not None))
286
+
287
+ # 4. Extract clinical features
288
+ selected_clinical = geo_select_clinical_features(
289
+ clinical_df=clinical_data,
290
+ trait=trait,
291
+ trait_row=trait_row,
292
+ convert_trait=convert_trait,
293
+ age_row=age_row,
294
+ convert_age=convert_age,
295
+ gender_row=gender_row,
296
+ convert_gender=convert_gender
297
+ )
298
+
299
+ # Handle potential Series output
300
+ if isinstance(selected_clinical, pd.Series):
301
+ selected_clinical = selected_clinical.to_frame()
302
+
303
+ # Preview the data
304
+ preview = preview_df(selected_clinical)
305
+ print("Preview of selected clinical features:")
306
+ print(preview)
307
+
308
+ # Save to CSV
309
+ selected_clinical.to_csv(out_clinical_data_file)
310
+ # 1. Check gene expression data availability
311
+ is_gene_available = True # Given that GEO series data typically contains gene expression data, default to True unless proven otherwise
312
+
313
+ # 2.1 & 2.2 Data row identification and conversion functions
314
+ trait_row = 0 # Preview shows row 0 has binary data pattern typical for case-control status in atherosclerosis studies
315
+
316
+ def convert_trait(x):
317
+ """Convert trait values to binary (0: control, 1: atherosclerosis)"""
318
+ if pd.isna(x):
319
+ return 0 # Assume NaN represents control group
320
+ value = str(x).split(":")[-1].strip()
321
+ if value == "1" or value == "1.0":
322
+ return 1
323
+ return 0
324
+
325
+ def convert_age(x):
326
+ """Convert age values to continuous numbers"""
327
+ if pd.isna(x):
328
+ return None
329
+ value = str(x).split(":")[-1].strip()
330
+ try:
331
+ return float(value)
332
+ except:
333
+ return None
334
+
335
+ def convert_gender(x):
336
+ """Convert gender values to binary (0: female, 1: male)"""
337
+ if pd.isna(x):
338
+ return None
339
+ value = str(x).split(":")[-1].strip().lower()
340
+ if "female" in value or "f" in value:
341
+ return 0
342
+ elif "male" in value or "m" in value:
343
+ return 1
344
+ return None
345
+
346
+ age_row = None # Age data not available in preview
347
+ gender_row = None # Gender data not available in preview
348
+
349
+ # 3. Save metadata using initial filtering
350
+ validate_and_save_cohort_info(
351
+ is_final=False,
352
+ cohort=cohort,
353
+ info_path=json_path,
354
+ is_gene_available=is_gene_available,
355
+ is_trait_available=(trait_row is not None)
356
+ )
357
+
358
+ # 4. Clinical feature extraction
359
+ selected_clinical_df = geo_select_clinical_features(
360
+ clinical_df=clinical_data,
361
+ trait=trait,
362
+ trait_row=trait_row,
363
+ convert_trait=convert_trait,
364
+ age_row=age_row,
365
+ convert_age=convert_age,
366
+ gender_row=gender_row,
367
+ convert_gender=convert_gender
368
+ )
369
+
370
+ # Preview and save the clinical features
371
+ print("\nPreview of selected clinical features:")
372
+ print(preview_df(selected_clinical_df.to_frame() if isinstance(selected_clinical_df, pd.Series) else selected_clinical_df))
373
+
374
+ # Save clinical data
375
+ if isinstance(selected_clinical_df, pd.Series):
376
+ selected_clinical_df = selected_clinical_df.to_frame()
377
+ selected_clinical_df.to_csv(out_clinical_data_file)
378
+ # 1. Gene Expression Data Availability
379
+ # Based on the output, there appears to be gene expression data since the file contains
380
+ # numeric values that can be used for analysis
381
+ is_gene_available = True
382
+
383
+ # 2. Variable Assignment and Conversion Functions
384
+
385
+ # 2.1 Variable Availability
386
+ # Trait is already encoded as binary (0.0), so it's available
387
+ trait_row = 0
388
+
389
+ # Age and gender not shown in preview, setting to None
390
+ age_row = None
391
+ gender_row = None
392
+
393
+ # 2.2 Conversion Functions
394
+ def convert_trait(x):
395
+ # Convert to binary: presence of atherosclerosis is 1, absence is 0
396
+ if pd.isna(x) or x is None:
397
+ return None
398
+ x = str(x).lower()
399
+ if ':' in x:
400
+ x = x.split(':')[1].strip()
401
+ if x in ['0', '0.0', 'no', 'non-' + trait.lower(), 'control', 'negative']:
402
+ return 0
403
+ elif x in ['1', '1.0', 'yes', trait.lower(), 'positive']:
404
+ return 1
405
+ return None
406
+
407
+ def convert_age(x):
408
+ # Not used since age data not available
409
+ return None
410
+
411
+ def convert_gender(x):
412
+ # Not used since gender data not available
413
+ return None
414
+
415
+ # 3. Save Metadata
416
+ is_trait_available = trait_row is not None
417
+ validate_and_save_cohort_info(is_final=False,
418
+ cohort=cohort,
419
+ info_path=json_path,
420
+ is_gene_available=is_gene_available,
421
+ is_trait_available=is_trait_available)
422
+
423
+ # 4. Extract Clinical Features
424
+ if trait_row is not None:
425
+ clinical_df = geo_select_clinical_features(
426
+ clinical_df=clinical_data,
427
+ trait=trait,
428
+ trait_row=trait_row,
429
+ convert_trait=convert_trait,
430
+ age_row=age_row,
431
+ convert_age=convert_age,
432
+ gender_row=gender_row,
433
+ convert_gender=convert_gender
434
+ )
435
+
436
+ # Preview clinical features
437
+ preview = preview_df(clinical_df)
438
+ print("\nPreview of selected clinical features:")
439
+ print(preview)
440
+
441
+ # Save clinical data
442
+ clinical_df.to_csv(out_clinical_data_file)
p3/preprocess/Atherosclerosis/code/GSE87005.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE87005"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE87005"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE87005.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE87005.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE87005.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using broader sample prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_', '!Sample_disease_state', '!Sample_description']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ is_gene_available = True # Based on GPL6480 platform and "RNA" sample type
42
+
43
+ # 2.1 Data Availability and 2.2 Data Type Conversion
44
+ trait_row = 8 # Available in "!Sample_characteristics_ch1" which shows HOMA groups
45
+
46
+ def convert_trait(x):
47
+ if not isinstance(x, str):
48
+ return None
49
+ if 'Low HOMA' in x:
50
+ return 0
51
+ elif 'High HOMA' in x:
52
+ return 1
53
+ return None
54
+
55
+ # Age and gender are not available
56
+ age_row = None
57
+ gender_row = None
58
+ convert_age = None
59
+ convert_gender = None
60
+
61
+ # 3. Save metadata
62
+ is_clinical_usable = validate_and_save_cohort_info(
63
+ is_final=False,
64
+ cohort=cohort,
65
+ info_path=json_path,
66
+ is_gene_available=is_gene_available,
67
+ is_trait_available=trait_row is not None
68
+ )
69
+
70
+ # 4. Clinical Feature Extraction
71
+ if trait_row is not None:
72
+ clinical_features = geo_select_clinical_features(
73
+ clinical_df=clinical_data,
74
+ trait=trait,
75
+ trait_row=trait_row,
76
+ convert_trait=convert_trait,
77
+ age_row=age_row,
78
+ convert_age=convert_age,
79
+ gender_row=gender_row,
80
+ convert_gender=convert_gender
81
+ )
82
+
83
+ # Preview the extracted features
84
+ preview = preview_df(clinical_features)
85
+ print("Preview of clinical features:", preview)
86
+
87
+ # Save clinical data
88
+ clinical_features.to_csv(out_clinical_data_file)
89
+ # Get file paths
90
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
91
+
92
+ # Extract gene expression data from matrix file
93
+ gene_data = get_genetic_data(matrix_file)
94
+
95
+ # Print first 20 row IDs and shape of data to help debug
96
+ print("Shape of gene expression data:", gene_data.shape)
97
+ print("\nFirst few rows of data:")
98
+ print(gene_data.head())
99
+ print("\nFirst 20 gene/probe identifiers:")
100
+ print(gene_data.index[:20])
101
+
102
+ # Inspect a snippet of raw file to verify identifier format
103
+ import gzip
104
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
105
+ lines = []
106
+ for i, line in enumerate(f):
107
+ if "!series_matrix_table_begin" in line:
108
+ # Get the next 5 lines after the marker
109
+ for _ in range(5):
110
+ lines.append(next(f).strip())
111
+ break
112
+ print("\nFirst few lines after matrix marker in raw file:")
113
+ for line in lines:
114
+ print(line)
115
+ # The identifiers starting with "A_23_P" appear to be Agilent probe IDs, not gene symbols
116
+ # These need to be mapped to standard gene symbols for consistent analysis
117
+ requires_gene_mapping = True
118
+ # Extract gene annotation data
119
+ gene_metadata = get_gene_annotation(soft_file)
120
+
121
+ # Preview the annotation data
122
+ print("Column names:", gene_metadata.columns.tolist())
123
+ print("\nFirst few rows preview:")
124
+ print(preview_df(gene_metadata))
125
+ # Map identifiers to gene symbols
126
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
127
+
128
+ # Apply the mapping to convert probe-level data to gene-level data
129
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
130
+
131
+ # Save the processed gene data
132
+ gene_data.to_csv(out_gene_data_file)
133
+
134
+ # Preview the result
135
+ print("Shape of mapped gene expression data:", gene_data.shape)
136
+ print("\nFirst few rows of mapped data:")
137
+ print(gene_data.head())
138
+ # 1. Normalize gene symbols
139
+ gene_data = normalize_gene_symbols_in_index(gene_data)
140
+ gene_data.to_csv(out_gene_data_file)
141
+
142
+ # 2. Link clinical and genetic data
143
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
144
+
145
+ # Check if clinical data linking produced valid results
146
+ if linked_data.shape[0] == 0 or linked_data.shape[1] <= 4:
147
+ is_usable = validate_and_save_cohort_info(
148
+ is_final=True,
149
+ cohort=cohort,
150
+ info_path=json_path,
151
+ is_gene_available=False, # Clinical data extraction failed
152
+ is_trait_available=False,
153
+ is_biased=None,
154
+ df=linked_data,
155
+ note="Clinical data extraction failed - produced invalid linked data."
156
+ )
157
+ else:
158
+ # 3. Handle missing values
159
+ linked_data = handle_missing_values(linked_data, trait)
160
+
161
+ # 4. Check for bias
162
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
163
+
164
+ # 5. Validate and save cohort info
165
+ is_usable = validate_and_save_cohort_info(
166
+ is_final=True,
167
+ cohort=cohort,
168
+ info_path=json_path,
169
+ is_gene_available=True,
170
+ is_trait_available=True,
171
+ is_biased=trait_biased,
172
+ df=linked_data,
173
+ note="Study examining gene expression in peripheral blood mononuclear cells from subjects with high vs low insulin resistance (HOMA groups)."
174
+ )
175
+
176
+ # 6. Save if usable
177
+ if is_usable:
178
+ linked_data.to_csv(out_data_file)
p3/preprocess/Atherosclerosis/code/GSE90074.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+ cohort = "GSE90074"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Atherosclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE90074"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Atherosclerosis/GSE90074.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/GSE90074.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/GSE90074.csv"
16
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using broader sample prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_', '!Sample_disease_state', '!Sample_description']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # Yes - this is gene expression data from Agilent G4112F Whole Human Genome microarray
42
+ is_gene_available = True
43
+
44
+ # 2. Variable Availability and Data Type
45
+
46
+ # 2.1 Data Availability
47
+ # Trait (Atherosclerosis) can be inferred from CAD class in row 22
48
+ trait_row = 22
49
+ # No age data available
50
+ age_row = None
51
+ # Gender in row 19
52
+ gender_row = 19
53
+
54
+ # 2.2 Data Type Conversion Functions
55
+ def convert_trait(x):
56
+ if x is None:
57
+ return None
58
+ # Extract value after colon and strip whitespace
59
+ val = x.split(':')[-1].strip()
60
+ # Convert CAD class to binary - 0 for no/minimal disease (class 0), 1 for others (class 1-4)
61
+ if val == '0':
62
+ return 0
63
+ elif val in ['1', '2', '3', '4']:
64
+ return 1
65
+ return None
66
+
67
+ def convert_gender(x):
68
+ if x is None:
69
+ return None
70
+ val = x.split(':')[-1].strip()
71
+ if val.upper() == 'F':
72
+ return 0
73
+ elif val.upper() == 'M':
74
+ return 1
75
+ return None
76
+
77
+ def convert_age(x):
78
+ # Not used since age is not available
79
+ return None
80
+
81
+ # 3. Save metadata
82
+ validate_and_save_cohort_info(
83
+ is_final=False,
84
+ cohort=cohort,
85
+ info_path=json_path,
86
+ is_gene_available=is_gene_available,
87
+ is_trait_available=trait_row is not None
88
+ )
89
+
90
+ # 4. Clinical Feature Extraction
91
+ if trait_row is not None:
92
+ clinical_features = geo_select_clinical_features(
93
+ clinical_data,
94
+ trait="Atherosclerosis",
95
+ trait_row=trait_row,
96
+ convert_trait=convert_trait,
97
+ gender_row=gender_row,
98
+ convert_gender=convert_gender
99
+ )
100
+ print("Preview of extracted clinical features:")
101
+ print(preview_df(clinical_features))
102
+ clinical_features.to_csv(out_clinical_data_file)
103
+ # Get file paths
104
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
105
+
106
+ # Extract gene expression data from matrix file
107
+ gene_data = get_genetic_data(matrix_file)
108
+
109
+ # Print first 20 row IDs and shape of data to help debug
110
+ print("Shape of gene expression data:", gene_data.shape)
111
+ print("\nFirst few rows of data:")
112
+ print(gene_data.head())
113
+ print("\nFirst 20 gene/probe identifiers:")
114
+ print(gene_data.index[:20])
115
+
116
+ # Inspect a snippet of raw file to verify identifier format
117
+ import gzip
118
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
119
+ lines = []
120
+ for i, line in enumerate(f):
121
+ if "!series_matrix_table_begin" in line:
122
+ # Get the next 5 lines after the marker
123
+ for _ in range(5):
124
+ lines.append(next(f).strip())
125
+ break
126
+ print("\nFirst few lines after matrix marker in raw file:")
127
+ for line in lines:
128
+ print(line)
129
+ requires_gene_mapping = True
130
+ # Extract gene annotation data
131
+ gene_metadata = get_gene_annotation(soft_file)
132
+
133
+ # Preview the annotation data
134
+ print("Column names:", gene_metadata.columns.tolist())
135
+ print("\nFirst few rows preview:")
136
+ print(preview_df(gene_metadata))
137
+ # 1. ID and GENE_SYMBOL in annotation data correspond to gene identifiers and symbols
138
+ prob_col = 'ID'
139
+ gene_col = 'GENE_SYMBOL'
140
+
141
+ # 2. Extract ID-to-gene mapping columns from annotation data
142
+ mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)
143
+
144
+ # 3. Convert probe-level measurements to gene expression
145
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
146
+
147
+ # Print shapes to verify transformation
148
+ print("\nShape after probe-to-gene mapping:", gene_data.shape)
149
+ print("\nFirst few gene symbols:", gene_data.index[:5].tolist())
150
+ # 1. Normalize gene symbols
151
+ gene_data = normalize_gene_symbols_in_index(gene_data)
152
+ gene_data.to_csv(out_gene_data_file)
153
+
154
+ # Create ID mapping dictionary
155
+ gsm_to_2s = {}
156
+ for col in clinical_features.columns:
157
+ if col.startswith('2S'):
158
+ sample_num = col.split('_')[0] # Get '2S001'
159
+ gsm_num = int(sample_num[2:]) # Get 1
160
+ gsm_id = f'GSM2397{157+gsm_num}' # GSM2397158 for 2S001
161
+ gsm_to_2s[gsm_id] = col
162
+
163
+ # Rename gene data columns using mapping
164
+ gene_data = gene_data.rename(columns=gsm_to_2s)
165
+
166
+ # 2. Link clinical and genetic data
167
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
168
+
169
+ # 3. Handle missing values
170
+ linked_data = handle_missing_values(linked_data, trait)
171
+
172
+ # 4. Check for bias
173
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
174
+
175
+ # 5. Validate and save cohort info
176
+ is_usable = validate_and_save_cohort_info(
177
+ is_final=True,
178
+ cohort=cohort,
179
+ info_path=json_path,
180
+ is_gene_available=True,
181
+ is_trait_available=True,
182
+ is_biased=trait_biased,
183
+ df=linked_data,
184
+ note="Study examining gene expression profiles in blood samples of patients with different levels of atherosclerosis severity."
185
+ )
186
+
187
+ # 6. Save if usable
188
+ if is_usable:
189
+ linked_data.to_csv(out_data_file)
p3/preprocess/Atherosclerosis/code/TCGA.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Atherosclerosis"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Atherosclerosis/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Atherosclerosis/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Atherosclerosis/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Atherosclerosis/cohort_info.json"
15
+
16
+ # Review directories to find relevant cohort for Atherosclerosis
17
+ cohorts = os.listdir(tcga_root_dir)
18
+ cohorts = [d for d in cohorts if os.path.isdir(os.path.join(tcga_root_dir, d)) and d[0] != '.']
19
+
20
+ # No suitable cohort found for Atherosclerosis
21
+ # Mark task as completed by recording cohort info
22
+ validate_and_save_cohort_info(
23
+ is_final=False,
24
+ cohort="TCGA",
25
+ info_path=json_path,
26
+ is_gene_available=False,
27
+ is_trait_available=False
28
+ )
p3/preprocess/Atherosclerosis/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE90074": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Study examining gene expression profiles in blood samples of patients with different levels of atherosclerosis severity."}, "GSE87005": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Study examining gene expression in peripheral blood mononuclear cells from subjects with high vs low insulin resistance (HOMA groups)."}, "GSE83500": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE57691": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells."}, "GSE154851": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains gene expression data but lacks clinical information needed for trait association studies."}, "GSE133601": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains gene expression data but lacks clinical information needed for trait association studies."}, "GSE125771": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains gene expression data but lacks clinical information needed for trait association studies."}, "GSE123088": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains gene expression data but lacks clinical information needed for trait association studies."}, "GSE123086": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Dataset contains both clinical features and gene expression data."}, "GSE109048": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains gene expression data and trait labels for atherosclerosis."}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
p3/preprocess/Atherosclerosis/gene_data/GSE109048.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM2928447,GSM2928448,GSM2928449,GSM2928450,GSM2928451,GSM2928452,GSM2928453,GSM2928454,GSM2928455,GSM2928456,GSM2928457,GSM2928458,GSM2928459,GSM2928460,GSM2928461,GSM2928462,GSM2928463,GSM2928464,GSM2928465,GSM2928466,GSM2928467,GSM2928468,GSM2928469,GSM2928470,GSM2928471,GSM2928472,GSM2928473,GSM2928474,GSM2928475,GSM2928476,GSM2928477,GSM2928478,GSM2928479,GSM2928480,GSM2928481,GSM2928482,GSM2928483,GSM2928484,GSM2928485,GSM2928486,GSM2928487,GSM2928488,GSM2928489,GSM2928490,GSM2928491,GSM2928492,GSM2928493,GSM2928494,GSM2928495,GSM2928496,GSM2928497,GSM2928498,GSM2928499,GSM2928500,GSM2928501,GSM2928502,GSM2928503
p3/preprocess/Atherosclerosis/gene_data/GSE123086.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
p3/preprocess/Atherosclerosis/gene_data/GSE123088.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049,GSM3495050,GSM3495051,GSM3495052,GSM3495053,GSM3495054,GSM3495055,GSM3495056,GSM3495057,GSM3495058,GSM3495059,GSM3495060,GSM3495061,GSM3495062,GSM3495063,GSM3495064,GSM3495065,GSM3495066,GSM3495067,GSM3495068,GSM3495069,GSM3495070,GSM3495071,GSM3495072,GSM3495073,GSM3495074,GSM3495075,GSM3495076,GSM3495077,GSM3495078,GSM3495079,GSM3495080,GSM3495081,GSM3495082,GSM3495083,GSM3495084,GSM3495085,GSM3495086,GSM3495087
p3/preprocess/Atherosclerosis/gene_data/GSE125771.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Atherosclerosis/gene_data/GSE133601.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Atherosclerosis/gene_data/GSE154851.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1215f5db12fa93de50490eb6ebf6c7cf161522558dfc5030485ed81f07b1728a
3
+ size 17675327
p3/preprocess/Atherosclerosis/gene_data/GSE57691.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27c2e1eabe66da0727d69144095696cb0eb2f9de8b4a92906f14e584f17b727e
3
+ size 15477956
p3/preprocess/Atherosclerosis/gene_data/GSE83500.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Atherosclerosis/gene_data/GSE87005.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE208662.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE64593.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE64599.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/clinical_data/GSE162635.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4955871,GSM4955872,GSM4955873,GSM4955874,GSM4955875,GSM4955876,GSM4955877,GSM4955878,GSM4955879,GSM4955880,GSM4955881,GSM4955882,GSM4955883,GSM4955884,GSM4955885,GSM4955886,GSM4955887,GSM4955888,GSM4955889,GSM4955890,GSM4955891,GSM4955892,GSM4955893,GSM4955894,GSM4955895,GSM4955896,GSM4955897,GSM4955898,GSM4955899,GSM4955900,GSM4955901,GSM4955902,GSM4955903,GSM4955904,GSM4955905,GSM4955906,GSM4955907,GSM4955908,GSM4955909,GSM4955910,GSM4955911,GSM4955912,GSM4955913,GSM4955914,GSM4955915,GSM4955916,GSM4955917,GSM4955918,GSM4955919,GSM4955920,GSM4955921,GSM4955922,GSM4955923,GSM4955924,GSM4955925,GSM4955926,GSM4955927,GSM4955928,GSM4955929,GSM4955930,GSM4955931,GSM4955932,GSM4955933,GSM4955934,GSM4955935,GSM4955936,GSM4955937,GSM4955938,GSM4955939,GSM4955940,GSM4955941,GSM4955942,GSM4955943,GSM4955944,GSM4955945,GSM4955946,GSM4955947,GSM4955948,GSM4955949,GSM4955950,GSM4955951,GSM4955952,GSM4955953,GSM4955954,GSM4955955,GSM4955956,GSM4955957,GSM4955958,GSM4955959,GSM4955960,GSM4955961,GSM4955962,GSM4955963,GSM4955964,GSM4955965,GSM4955966,GSM4955967,GSM4955968,GSM4955969,GSM4955970,GSM4955971,GSM4955972,GSM4955973,GSM4955974,GSM4955975,GSM4955976,GSM4955977,GSM4955978,GSM4955979,GSM4955980,GSM4955981,GSM4955982,GSM4955983,GSM4955984,GSM4955985,GSM4955986,GSM4955987,GSM4955988,GSM4955989,GSM4955990,GSM4955991,GSM4955992,GSM4955993,GSM4955994,GSM4955995,GSM4955996,GSM4955997,GSM4955998,GSM4955999,GSM4956000,GSM4956001,GSM4956002,GSM4956003,GSM4956004,GSM4956005,GSM4956006,GSM4956007,GSM4956008,GSM4956009,GSM4956010,GSM4956011,GSM4956012,GSM4956013,GSM4956014,GSM4956015,GSM4956016,GSM4956017,GSM4956018,GSM4956019,GSM4956020,GSM4956021,GSM4956022,GSM4956023,GSM4956024,GSM4956025,GSM4956026,GSM4956027,GSM4956028,GSM4956029,GSM4956030,GSM4956031,GSM4956032,GSM4956033,GSM4956034,GSM4956035,GSM4956036,GSM4956037,GSM4956038,GSM4956039,GSM4956040,GSM4956041,GSM4956042,GSM4956043,GSM4956044,GSM4956045,GSM4956046,GSM4956047,GSM4956048,GSM4956049,GSM4956050,GSM4956051,GSM4956052,GSM4956053,GSM4956054,GSM4956055,GSM4956056,GSM4956057,GSM4956058,GSM4956059,GSM4956060,GSM4956061,GSM4956062,GSM4956063,GSM4956064,GSM4956065,GSM4956066,GSM4956067,GSM4956068,GSM4956069,GSM4956070,GSM4956071,GSM4956072,GSM4956073,GSM4956074,GSM4956075
2
+ Chronic_obstructive_pulmonary_disease_(COPD),1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0
p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE84046": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Dataset contains normalized gene expression data but lacks COPD trait information, so cannot be used for trait association analysis"}, "GSE64599": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 34, "note": "Dataset contains gene expression data from PBMCs comparing healthy controls vs diabetic nephropathy vs ESRD"}, "GSE64593": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 34, "note": "Dataset contains gene expression data from alveolar macrophages comparing HIV- vs HIV+ smokers"}, "GSE32030": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 123, "note": "Dataset contains gene expression data comparing healthy nonsmokers, healthy smokers and smokers with COPD"}, "GSE21359": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 135, "note": "Dataset contains gene expression data comparing healthy nonsmokers, healthy smokers and smokers with COPD"}, "GSE212331": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 87, "note": "Dataset contains gene expression data comparing healthy nonsmokers, healthy smokers and smokers with COPD"}, "GSE210272": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Dataset contains gene expression data comparing healthy nonsmokers, healthy smokers and smokers with COPD. Using ENSEMBL gene IDs."}, "GSE208662": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 32, "note": "Dataset contains gene expression data comparing healthy nonsmokers, healthy smokers and smokers with COPD"}, "GSE175616": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": true, "sample_size": 123, "note": "Dataset contains gene expression data comparing healthy nonsmokers, healthy smokers and smokers with COPD"}, "GSE162635": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 205, "note": "Dataset contains gene expression data comparing healthy nonsmokers, healthy smokers and smokers with COPD"}}
p3/preprocess/HIV_Resistance/GSE33580.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0765943151958fb8392662fbd94e440f6061dc568837bbbed1d2c8f7f407cbe6
3
+ size 17574906
p3/preprocess/HIV_Resistance/GSE46599.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/HIV_Resistance/clinical_data/GSE33580.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM830155,GSM830156,GSM830157,GSM830158,GSM830159,GSM830160,GSM830161,GSM830162,GSM830163,GSM830164,GSM830165,GSM830166,GSM830167,GSM830168,GSM830169,GSM830170,GSM830171,GSM830172,GSM830173,GSM830174,GSM830175,GSM830176,GSM830177,GSM830178,GSM830179,GSM830180,GSM830181,GSM830182,GSM830183,GSM830184,GSM830185,GSM830186,GSM830187,GSM830188,GSM830189,GSM830190,GSM830191,GSM830192,GSM830193,GSM830194,GSM830195,GSM830196,GSM830197,GSM830198,GSM830199,GSM830200,GSM830201,GSM830202,GSM830203,GSM830204,GSM830205,GSM830206,GSM830207,GSM830208,GSM830209,GSM830210,GSM830211,GSM830212,GSM830213,GSM830214,GSM830215,GSM830216,GSM830217,GSM830218,GSM830219,GSM830220,GSM830221,GSM830222,GSM830223,GSM830224,GSM830225,GSM830226,GSM830227,GSM830228,GSM830229,GSM830230,GSM830231,GSM830232,GSM830233,GSM830234,GSM830235,GSM830236,GSM830237,GSM830238,GSM830239,GSM830240
2
+ HIV_Resistance,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/HIV_Resistance/clinical_data/GSE46599.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1133032,GSM1133033,GSM1133034,GSM1133035,GSM1133036,GSM1133037,GSM1133038,GSM1133039,GSM1133040,GSM1133041,GSM1133042,GSM1133043,GSM1133044,GSM1133045,GSM1133046,GSM1133047,GSM1133048,GSM1133049,GSM1133050,GSM1133051,GSM1133052,GSM1133053,GSM1133054,GSM1133055,GSM1133056,GSM1133057,GSM1133058,GSM1133059,GSM1133060,GSM1133061,GSM1133062,GSM1133063,GSM1133064,GSM1133065,GSM1133066,GSM1133067,GSM1133068,GSM1133069,GSM1133070,GSM1133071,GSM1133072,GSM1133073,GSM1133074,GSM1133075,GSM1133076,GSM1133077,GSM1133078,GSM1133079
2
+ HIV_Resistance,0.0,0.0,,,0.0,0.0,,,0.5,0.5,,,0.0,0.0,,,1.0,1.0,,,0.5,0.5,,,1.0,1.0,1.0,,,,1.0,1.0,1.0,,,,1.0,1.0,,,1.0,1.0,,,0.0,0.0,,
p3/preprocess/HIV_Resistance/code/GSE117748.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "HIV_Resistance"
6
+ cohort = "GSE117748"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/HIV_Resistance"
10
+ in_cohort_dir = "../DATA/GEO/HIV_Resistance/GSE117748"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/HIV_Resistance/GSE117748.csv"
14
+ out_gene_data_file = "./output/preprocess/3/HIV_Resistance/gene_data/GSE117748.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/HIV_Resistance/clinical_data/GSE117748.csv"
16
+ json_path = "./output/preprocess/3/HIV_Resistance/cohort_info.json"
17
+
18
+ # Get relevant file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Get dictionary of unique values per row in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Background Information:")
29
+ print("-" * 50)
30
+ print(background_info)
31
+ print("\n")
32
+
33
+ # Print clinical data unique values
34
+ print("Sample Characteristics:")
35
+ print("-" * 50)
36
+ for row, values in unique_values_dict.items():
37
+ print(f"{row}:")
38
+ print(f" {values}")
39
+ print()
40
+ # 1. Gene Expression Data Availability
41
+ # This is a miRNA study on cell lines (based on the title and sample characteristics)
42
+ is_gene_available = False
43
+
44
+ # 2.1 Data Availability
45
+ # From sample characteristics, no human trait, age or gender data available
46
+ trait_row = None
47
+ age_row = None
48
+ gender_row = None
49
+
50
+ # 2.2 Data Type Conversion functions (not used but defined for completeness)
51
+ def convert_trait(x):
52
+ return None
53
+
54
+ def convert_age(x):
55
+ return None
56
+
57
+ def convert_gender(x):
58
+ return None
59
+
60
+ # 3. Save Metadata
61
+ # Validate and save cohort info - initial filtering
62
+ validate_and_save_cohort_info(
63
+ is_final=False,
64
+ cohort=cohort,
65
+ info_path=json_path,
66
+ is_gene_available=is_gene_available,
67
+ is_trait_available=False # trait_row is None
68
+ )
69
+
70
+ # 4. Clinical Feature Extraction
71
+ # Skip since trait_row is None
p3/preprocess/HIV_Resistance/code/GSE33580.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "HIV_Resistance"
6
+ cohort = "GSE33580"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/HIV_Resistance"
10
+ in_cohort_dir = "../DATA/GEO/HIV_Resistance/GSE33580"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/HIV_Resistance/GSE33580.csv"
14
+ out_gene_data_file = "./output/preprocess/3/HIV_Resistance/gene_data/GSE33580.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/HIV_Resistance/clinical_data/GSE33580.csv"
16
+ json_path = "./output/preprocess/3/HIV_Resistance/cohort_info.json"
17
+
18
+ # Get relevant file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Get dictionary of unique values per row in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Background Information:")
29
+ print("-" * 50)
30
+ print(background_info)
31
+ print("\n")
32
+
33
+ # Print clinical data unique values
34
+ print("Sample Characteristics:")
35
+ print("-" * 50)
36
+ for row, values in unique_values_dict.items():
37
+ print(f"{row}:")
38
+ print(f" {values}")
39
+ print()
40
+ # 1. Gene Expression Data Availability
41
+ # Yes - the background info mentions "gene expression analysis" and "Affymetrix microarrays"
42
+ is_gene_available = True
43
+
44
+ # 2. Variable Availability and Data Type Conversion
45
+ # Trait (HIV Resistance) is in row 1
46
+ trait_row = 1
47
+ # Age data not available
48
+ age_row = None
49
+ # Gender data not available - appears to be all female from background info
50
+ gender_row = None
51
+
52
+ def convert_trait(x):
53
+ """Convert HIV status to binary (1=resistant, 0=negative)"""
54
+ if not isinstance(x, str):
55
+ return None
56
+ x = x.lower().split(': ')[-1]
57
+ if 'resistant' in x:
58
+ return 1
59
+ elif 'negative' in x:
60
+ return 0
61
+ return None
62
+
63
+ def convert_age(x):
64
+ """Placeholder since age not available"""
65
+ return None
66
+
67
+ def convert_gender(x):
68
+ """Placeholder since gender not available"""
69
+ return None
70
+
71
+ # 3. Save Metadata
72
+ validate_and_save_cohort_info(is_final=False,
73
+ cohort=cohort,
74
+ info_path=json_path,
75
+ is_gene_available=is_gene_available,
76
+ is_trait_available=trait_row is not None)
77
+
78
+ # 4. Clinical Feature Extraction
79
+ if trait_row is not None:
80
+ clinical_features = geo_select_clinical_features(
81
+ clinical_df=clinical_data,
82
+ trait=trait,
83
+ trait_row=trait_row,
84
+ convert_trait=convert_trait,
85
+ age_row=age_row,
86
+ convert_age=convert_age,
87
+ gender_row=gender_row,
88
+ convert_gender=convert_gender
89
+ )
90
+
91
+ # Preview the extracted features
92
+ preview = preview_df(clinical_features)
93
+ print("Preview of clinical features:")
94
+ print(preview)
95
+
96
+ # Save to CSV
97
+ clinical_features.to_csv(out_clinical_data_file)
98
+ # Extract gene expression data
99
+ genetic_data = get_genetic_data(matrix_file_path)
100
+
101
+ # Print first 20 probe IDs
102
+ print("First 20 probe IDs:")
103
+ print(genetic_data.index[:20])
104
+ # The identifiers shown are Affymetrix probe IDs (e.g. '1007_s_at', '1053_at')
105
+ # These need to be mapped to HGNC gene symbols for standardization
106
+ requires_gene_mapping = True
107
+ # Extract gene annotation from SOFT file
108
+ gene_annotation = get_gene_annotation(soft_file_path)
109
+
110
+ # Preview column names and first few values
111
+ preview_dict = preview_df(gene_annotation)
112
+ print("Column names and preview values:")
113
+ for col, values in preview_dict.items():
114
+ print(f"\n{col}:")
115
+ print(values)
116
+ # 1. Identify columns for mapping
117
+ # 'ID' in gene annotation matches probe IDs in gene expression data
118
+ # 'Gene Symbol' contains the gene symbols we want to map to
119
+ prob_col = 'ID'
120
+ gene_col = 'Gene Symbol'
121
+
122
+ # 2. Get mapping dataframe
123
+ mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
124
+
125
+ # 3. Apply mapping to convert probe-level data to gene expression data
126
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
127
+
128
+ # Preview result
129
+ print("\nFirst few rows and columns of gene expression data:")
130
+ print(gene_data.iloc[:5, :5])
131
+ # 1. Normalize gene symbols and save normalized gene data
132
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
133
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
134
+ normalized_gene_data.to_csv(out_gene_data_file)
135
+
136
+ # Read the processed clinical data file
137
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
138
+
139
+ # Link clinical and genetic data using the normalized gene data
140
+ linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
141
+
142
+ # Handle missing values systematically
143
+ linked_data = handle_missing_values(linked_data, trait)
144
+
145
+ # Detect bias in trait and demographic features, remove biased demographic features
146
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
147
+
148
+ # Validate data quality and save cohort info
149
+ note = "Gene expression data from glucocorticoid sensitivity study."
150
+ is_usable = validate_and_save_cohort_info(
151
+ is_final=True,
152
+ cohort=cohort,
153
+ info_path=json_path,
154
+ is_gene_available=True,
155
+ is_trait_available=True,
156
+ is_biased=is_biased,
157
+ df=linked_data,
158
+ note=note
159
+ )
160
+
161
+ # Save linked data if usable
162
+ if is_usable:
163
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
164
+ linked_data.to_csv(out_data_file)
165
+ else:
166
+ print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
p3/preprocess/HIV_Resistance/code/GSE46599.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "HIV_Resistance"
6
+ cohort = "GSE46599"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/HIV_Resistance"
10
+ in_cohort_dir = "../DATA/GEO/HIV_Resistance/GSE46599"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/HIV_Resistance/GSE46599.csv"
14
+ out_gene_data_file = "./output/preprocess/3/HIV_Resistance/gene_data/GSE46599.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/HIV_Resistance/clinical_data/GSE46599.csv"
16
+ json_path = "./output/preprocess/3/HIV_Resistance/cohort_info.json"
17
+
18
+ # Get relevant file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data from the matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+
24
+ # Get dictionary of unique values per row in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Background Information:")
29
+ print("-" * 50)
30
+ print(background_info)
31
+ print("\n")
32
+
33
+ # Print clinical data unique values
34
+ print("Sample Characteristics:")
35
+ print("-" * 50)
36
+ for row, values in unique_values_dict.items():
37
+ print(f"{row}:")
38
+ print(f" {values}")
39
+ print()
40
+ # 1. Gene Expression Data Availability
41
+ is_gene_available = True # Yes, this is gene expression data studying ISGs, not miRNA/methylation
42
+
43
+ # 2. Variable Availability and Data Type Conversion
44
+ # 2.1 Data Availability
45
+ trait_row = 4 # HIV resistance status in row 4
46
+ age_row = None # Age not available
47
+ gender_row = None # Gender not available
48
+
49
+ # 2.2 Data Type Conversion Functions
50
+ def convert_trait(x):
51
+ if not isinstance(x, str):
52
+ return None
53
+ val = x.split(': ')[-1].lower()
54
+ if 'resistant' == val:
55
+ return 1
56
+ elif 'partially resistant' == val:
57
+ return 0.5
58
+ elif 'permissive' == val:
59
+ return 0
60
+ elif 'untreated' == val:
61
+ return None
62
+ return None
63
+
64
+ def convert_age(x):
65
+ return None # Not used
66
+
67
+ def convert_gender(x):
68
+ return None # Not used
69
+
70
+ # 3. Save Metadata
71
+ validate_and_save_cohort_info(is_final=False,
72
+ cohort=cohort,
73
+ info_path=json_path,
74
+ is_gene_available=is_gene_available,
75
+ is_trait_available=trait_row is not None)
76
+
77
+ # 4. Clinical Feature Extraction
78
+ if trait_row is not None:
79
+ clinical_features = geo_select_clinical_features(
80
+ clinical_df=clinical_data,
81
+ trait=trait,
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age,
86
+ gender_row=gender_row,
87
+ convert_gender=convert_gender
88
+ )
89
+
90
+ # Preview extracted features
91
+ preview = preview_df(clinical_features)
92
+ print("Preview of clinical features:")
93
+ print(preview)
94
+
95
+ # Save to CSV
96
+ clinical_features.to_csv(out_clinical_data_file)
97
+ # Extract gene expression data
98
+ genetic_data = get_genetic_data(matrix_file_path)
99
+
100
+ # Print first 20 probe IDs
101
+ print("First 20 probe IDs:")
102
+ print(genetic_data.index[:20])
103
+ # These are Illumina BeadArray probe IDs (starting with ILMN_), not gene symbols
104
+ requires_gene_mapping = True
105
+ # Extract gene annotation from SOFT file
106
+ gene_annotation = get_gene_annotation(soft_file_path)
107
+
108
+ # Preview column names and first few values
109
+ preview_dict = preview_df(gene_annotation)
110
+ print("Column names and preview values:")
111
+ for col, values in preview_dict.items():
112
+ print(f"\n{col}:")
113
+ print(values)
114
+ # Get gene mapping from annotation data
115
+ # 'ID' column contains probe IDs (ILMN_*) matching gene expression data
116
+ # 'Symbol' column contains gene symbols
117
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
118
+
119
+ # Apply gene mapping to convert probe-level data to gene expression data
120
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
121
+
122
+ # Preview first few genes
123
+ print("\nFirst few genes after mapping:")
124
+ print(gene_data.head().index)
125
+ # 1. Normalize gene symbols and save normalized gene data
126
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
127
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
128
+ normalized_gene_data.to_csv(out_gene_data_file)
129
+
130
+ # Read the processed clinical data file
131
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
132
+
133
+ # Link clinical and genetic data using the normalized gene data
134
+ linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
135
+
136
+ # Handle missing values systematically
137
+ linked_data = handle_missing_values(linked_data, trait)
138
+
139
+ # Detect bias in trait and demographic features, remove biased demographic features
140
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
141
+
142
+ # Validate data quality and save cohort info
143
+ note = "Gene expression data from glucocorticoid sensitivity study."
144
+ is_usable = validate_and_save_cohort_info(
145
+ is_final=True,
146
+ cohort=cohort,
147
+ info_path=json_path,
148
+ is_gene_available=True,
149
+ is_trait_available=True,
150
+ is_biased=is_biased,
151
+ df=linked_data,
152
+ note=note
153
+ )
154
+
155
+ # Save linked data if usable
156
+ if is_usable:
157
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
158
+ linked_data.to_csv(out_data_file)
159
+ else:
160
+ print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
p3/preprocess/HIV_Resistance/code/TCGA.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "HIV_Resistance"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/HIV_Resistance/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/HIV_Resistance/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/HIV_Resistance/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/HIV_Resistance/cohort_info.json"
15
+
16
+ # Review available cohorts and check for HIV resistance relevance
17
+ available_cohorts = os.listdir(tcga_root_dir)
18
+ cohorts = [c for c in available_cohorts if not c.startswith('.') and not c.endswith('.ipynb')]
19
+
20
+ # No suitable cohort found for HIV resistance in TCGA cancer datasets
21
+ is_gene_available = False
22
+ is_trait_available = False
23
+
24
+ # Record that this trait cannot be studied with TCGA data
25
+ validate_and_save_cohort_info(
26
+ is_final=False,
27
+ cohort="TCGA",
28
+ info_path=json_path,
29
+ is_gene_available=is_gene_available,
30
+ is_trait_available=is_trait_available
31
+ )
p3/preprocess/HIV_Resistance/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE46599": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 24, "note": "Gene expression data from glucocorticoid sensitivity study."}, "GSE33580": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 86, "note": "Gene expression data from glucocorticoid sensitivity study."}, "GSE117748": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
p3/preprocess/HIV_Resistance/gene_data/GSE33580.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0511021b61ee52077846f8a26d1b4a3aba0da36e320fd0c6c78e33e164c1ec19
3
+ size 17574551
p3/preprocess/HIV_Resistance/gene_data/GSE46599.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f661e1f9ecddf85031728eb9eb0b8d5e16c1ec259db88715274af7b864f73f0
3
+ size 11404720
p3/preprocess/Head_and_Neck_Cancer/gene_data/GSE156915.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2879a4bafeabb89373f8e8048fc81105fb8bf2230ea6cf71844e326693130272
3
+ size 95359844
p3/preprocess/Head_and_Neck_Cancer/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebda0991a4c4e9b1b7e992e8c4f50e2908e2645936891de033875c79b30d9d3a
3
+ size 169983153
p3/preprocess/Height/gene_data/GSE97475.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f878f347055d43a45dabc516d5439c40520de0e4801d000f60d50442300ba19
3
+ size 26337377