Liu-Hy commited on
Commit
61e25af
·
verified ·
1 Parent(s): 9e2af38

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +12 -0
  2. p3/preprocess/Hepatitis/GSE159676.csv +3 -0
  3. p3/preprocess/Lactose_Intolerance/GSE138297.csv +3 -0
  4. p3/preprocess/Liver_Cancer/GSE228783.csv +3 -0
  5. p3/preprocess/Liver_Cancer/TCGA.csv +3 -0
  6. p3/preprocess/Liver_Cancer/gene_data/GSE148346.csv +3 -0
  7. p3/preprocess/Liver_Cancer/gene_data/GSE164760.csv +3 -0
  8. p3/preprocess/Liver_Cancer/gene_data/GSE178201.csv +3 -0
  9. p3/preprocess/Liver_Cancer/gene_data/GSE228782.csv +3 -0
  10. p3/preprocess/Liver_Cancer/gene_data/GSE228783.csv +3 -0
  11. p3/preprocess/Liver_Cancer/gene_data/TCGA.csv +3 -0
  12. p3/preprocess/Liver_cirrhosis/TCGA.csv +3 -0
  13. p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv +3 -0
  14. p3/preprocess/Obesity/clinical_data/GSE181339.csv +4 -0
  15. p3/preprocess/Obesity/clinical_data/GSE271700.csv +4 -0
  16. p3/preprocess/Obesity/clinical_data/GSE281144.csv +3 -0
  17. p3/preprocess/Obesity/clinical_data/GSE84046.csv +4 -0
  18. p3/preprocess/Obesity/clinical_data/GSE99725.csv +2 -0
  19. p3/preprocess/Obesity/clinical_data/TCGA.csv +1219 -0
  20. p3/preprocess/Obesity/code/GSE123086.py +346 -0
  21. p3/preprocess/Obesity/code/GSE123088.py +306 -0
  22. p3/preprocess/Obesity/code/GSE158237.py +284 -0
  23. p3/preprocess/Obesity/code/GSE158850.py +151 -0
  24. p3/preprocess/Obesity/code/GSE159809.py +194 -0
  25. p3/preprocess/Obesity/code/GSE181339.py +200 -0
  26. p3/preprocess/Obesity/code/GSE271700.py +162 -0
  27. p3/preprocess/Obesity/code/GSE281144.py +223 -0
  28. p3/preprocess/Obesity/code/GSE84046.py +203 -0
  29. p3/preprocess/Obesity/code/GSE99725.py +139 -0
  30. p3/preprocess/Obesity/code/TCGA.py +107 -0
  31. p3/preprocess/Obesity/gene_data/GSE123086.csv +1 -0
  32. p3/preprocess/Obesity/gene_data/GSE123088.csv +1 -0
  33. p3/preprocess/Obesity/gene_data/GSE158237.csv +1 -0
  34. p3/preprocess/Obesity/gene_data/GSE181339.csv +0 -0
  35. p3/preprocess/Obesity/gene_data/GSE271700.csv +0 -0
  36. p3/preprocess/Obesity/gene_data/GSE281144.csv +1 -0
  37. p3/preprocess/Obesity/gene_data/GSE99725.csv +0 -0
  38. p3/preprocess/Obsessive-Compulsive_Disorder/GSE78104.csv +0 -0
  39. p3/preprocess/Obsessive-Compulsive_Disorder/clinical_data/GSE60190.csv +4 -0
  40. p3/preprocess/Obsessive-Compulsive_Disorder/clinical_data/GSE78104.csv +4 -0
  41. p3/preprocess/Obsessive-Compulsive_Disorder/code/GSE60190.py +182 -0
  42. p3/preprocess/Obsessive-Compulsive_Disorder/code/GSE78104.py +180 -0
  43. p3/preprocess/Obsessive-Compulsive_Disorder/code/TCGA.py +28 -0
  44. p3/preprocess/Obsessive-Compulsive_Disorder/cohort_info.json +1 -0
  45. p3/preprocess/Obsessive-Compulsive_Disorder/gene_data/GSE78104.csv +0 -0
  46. p3/preprocess/Obstructive_sleep_apnea/GSE133601.csv +0 -0
  47. p3/preprocess/Obstructive_sleep_apnea/GSE75097.csv +0 -0
  48. p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE133601.csv +2 -0
  49. p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE49800.csv +2 -0
  50. p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE75097.csv +4 -0
.gitattributes CHANGED
@@ -1864,3 +1864,15 @@ p3/preprocess/Large_B-cell_Lymphoma/gene_data/TCGA.csv filter=lfs diff=lfs merge
1864
  p3/preprocess/LDL_Cholesterol_Levels/gene_data/GSE28893.csv filter=lfs diff=lfs merge=lfs -text
1865
  p3/preprocess/LDL_Cholesterol_Levels/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1866
  p3/preprocess/Liver_Cancer/GSE148346.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
1864
  p3/preprocess/LDL_Cholesterol_Levels/gene_data/GSE28893.csv filter=lfs diff=lfs merge=lfs -text
1865
  p3/preprocess/LDL_Cholesterol_Levels/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1866
  p3/preprocess/Liver_Cancer/GSE148346.csv filter=lfs diff=lfs merge=lfs -text
1867
+ p3/preprocess/Lactose_Intolerance/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
1868
+ p3/preprocess/Liver_Cancer/GSE228783.csv filter=lfs diff=lfs merge=lfs -text
1869
+ p3/preprocess/Liver_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1870
+ p3/preprocess/Liver_Cancer/gene_data/GSE148346.csv filter=lfs diff=lfs merge=lfs -text
1871
+ p3/preprocess/Liver_Cancer/gene_data/GSE164760.csv filter=lfs diff=lfs merge=lfs -text
1872
+ p3/preprocess/Liver_Cancer/gene_data/GSE178201.csv filter=lfs diff=lfs merge=lfs -text
1873
+ p3/preprocess/Liver_Cancer/gene_data/GSE228782.csv filter=lfs diff=lfs merge=lfs -text
1874
+ p3/preprocess/Liver_Cancer/gene_data/GSE228783.csv filter=lfs diff=lfs merge=lfs -text
1875
+ p3/preprocess/Hepatitis/GSE159676.csv filter=lfs diff=lfs merge=lfs -text
1876
+ p3/preprocess/Liver_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1877
+ p3/preprocess/Liver_cirrhosis/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1878
+ p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Hepatitis/GSE159676.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92b48760a588df973eddaa1ff344f4d66ce6aaec7e83c3db71cd904e7dbb7f5f
3
+ size 45741223
p3/preprocess/Lactose_Intolerance/GSE138297.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:189a8de21175fd3a142fbeefcace9b8f322c8273807aed80cdb3e24cfebd8830
3
+ size 15408914
p3/preprocess/Liver_Cancer/GSE228783.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:869104e0ebe8d067b9655070710eaf34cbd25fdfb3e8c33789cc6db7a21343eb
3
+ size 31578268
p3/preprocess/Liver_Cancer/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9a684d83efae816e03c0691e0ab29cc7c975b511bbc6275aa6ee8478d0c1c48
3
+ size 126898641
p3/preprocess/Liver_Cancer/gene_data/GSE148346.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:830556682e0675dd524d2e1f986ec941a14de052b109af704c73ffd79667a6b4
3
+ size 20446260
p3/preprocess/Liver_Cancer/gene_data/GSE164760.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d58b0de4f8a4a5d4b26baf5a61eedfe6bb95b30d2341be5fb0695a4cfcd3d38
3
+ size 44020082
p3/preprocess/Liver_Cancer/gene_data/GSE178201.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb1a59cea40550c8057a150e424e1a7e9b62eab505e3338394c091055230efe3
3
+ size 48101519
p3/preprocess/Liver_Cancer/gene_data/GSE228782.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:747966e5ef3147062b76e3d4640b5a5c6bf1fc9196be79454cff0d63ae9964ac
3
+ size 17307954
p3/preprocess/Liver_Cancer/gene_data/GSE228783.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2bf23a43d7dc835898cc3d3f388f1f187b5b187eb1df2048cd42229d690e1bd
3
+ size 31577651
p3/preprocess/Liver_Cancer/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda4b7e0eb1b7d3ae8ef43544fbcfc1289fc40b4c948499e0a55cde48b1cf574
3
+ size 126894803
p3/preprocess/Liver_cirrhosis/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8300dea21510062fb8f3f9d9d892babfc8897728cb48b3a0479c8ee77c2638a3
3
+ size 126898644
p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda4b7e0eb1b7d3ae8ef43544fbcfc1289fc40b4c948499e0a55cde48b1cf574
3
+ size 126894803
p3/preprocess/Obesity/clinical_data/GSE181339.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM5494930,GSM5494931,GSM5494932,GSM5494933,GSM5494934,GSM5494935,GSM5494936,GSM5494937,GSM5494938,GSM5494939,GSM5494940,GSM5494941,GSM5494942,GSM5494943,GSM5494944,GSM5494945,GSM5494946,GSM5494947,GSM5494948,GSM5494949,GSM5494950,GSM5494951,GSM5494952,GSM5494953,GSM5494954,GSM5494955,GSM5494956,GSM5494957,GSM5494958,GSM5494959,GSM5494960,GSM5494961,GSM5494962,GSM5494963,GSM5494964,GSM5494965,GSM5494966,GSM5494967,GSM5494968,GSM5494969,GSM5494970,GSM5494971,GSM5494972,GSM5494973,GSM5494974,GSM5494975,GSM5494976,GSM5494977,GSM5494978,GSM5494979,GSM5494980,GSM5494981,GSM5494982,GSM5494983,GSM5494984,GSM5494985,GSM5494986,GSM5494987,GSM5494988,GSM5494989,GSM5494990,GSM5494991,GSM5494992,GSM5494993,GSM5494994,GSM5494995,GSM5494996,GSM5494997,GSM5494998,GSM5494999,GSM5495000,GSM5495001,GSM5495002,GSM5495003,GSM5495004,GSM5495005,GSM5495006,GSM5495007
2
+ Obesity,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0
3
+ Age,21.0,23.0,10.0,17.0,11.0,1.0,18.0,10.0,12.0,23.0,23.0,8.0,11.0,17.0,11.0,1.0,14.0,12.0,21.0,8.0,26.0,8.0,21.0,26.0,14.0,8.0,1.0,10.0,4.0,8.0,10.0,2.0,26.0,2.0,11.0,1.0,3.0,7.0,23.0,13.0,17.0,11.0,4.0,15.0,9.0,4.0,18.0,2.0,21.0,17.0,21.0,1.0,10.0,18.0,13.0,2.0,11.0,10.0,18.0,26.0,15.0,30.0,8.0,17.0,21.0,7.0,8.0,10.0,2.0,2.0,30.0,17.0,30.0,19.0,30.0,2.0,4.0,19.0
4
+ Gender,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0
p3/preprocess/Obesity/clinical_data/GSE271700.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM8382768,GSM8382769,GSM8382770,GSM8382771,GSM8382772,GSM8382773,GSM8382774,GSM8382775,GSM8382776,GSM8382777,GSM8382778,GSM8382779,GSM8382780,GSM8382781,GSM8382782,GSM8382783,GSM8382784,GSM8382785,GSM8382786,GSM8382787,GSM8382788,GSM8382789,GSM8382790,GSM8382791,GSM8382792,GSM8382793,GSM8382794,GSM8382795,GSM8382796,GSM8382797,GSM8382798,GSM8382799,GSM8382800,GSM8382801,GSM8382802,GSM8382803,GSM8382804,GSM8382805,GSM8382806,GSM8382807,GSM8382808,GSM8382809,GSM8382810,GSM8382811,GSM8382812,GSM8382813,GSM8382814,GSM8382815,GSM8382816,GSM8382817,GSM8382818,GSM8382819,GSM8382820,GSM8382821,GSM8382822,GSM8382823,GSM8382824,GSM8382825,GSM8382826,GSM8382827,GSM8382828,GSM8382829,GSM8382830,GSM8382831,GSM8382832,GSM8382833,GSM8382834,GSM8382835,GSM8382836,GSM8382837,GSM8382838,GSM8382839,GSM8382840
2
+ Obesity,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0
3
+ Age,51.0,51.0,43.0,43.0,43.0,46.0,46.0,46.0,41.0,41.0,41.0,29.0,29.0,29.0,33.0,33.0,33.0,36.0,36.0,36.0,44.0,44.0,48.0,48.0,36.0,36.0,36.0,41.0,41.0,40.0,40.0,40.0,46.0,46.0,46.0,51.0,51.0,51.0,49.0,49.0,49.0,50.0,50.0,50.0,33.0,33.0,33.0,33.0,33.0,35.0,35.0,35.0,41.0,41.0,41.0,47.0,47.0,47.0,31.0,31.0,31.0,28.0,28.0,28.0,36.0,36.0,36.0,37.0,37.0,37.0,39.0,39.0,39.0
4
+ Gender,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0
p3/preprocess/Obesity/clinical_data/GSE281144.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM8611649,GSM8611650,GSM8611651,GSM8611652,GSM8611653,GSM8611654,GSM8611655,GSM8611656,GSM8611657,GSM8611658,GSM8611659,GSM8611660,GSM8611661,GSM8611662,GSM8611663,GSM8611664,GSM8611665,GSM8611666,GSM8611667,GSM8611668,GSM8611669,GSM8611670,GSM8611671,GSM8611672,GSM8611673,GSM8611674,GSM8611675,GSM8611676,GSM8611677,GSM8611678,GSM8611679,GSM8611680,GSM8611681,GSM8611682
2
+ Obesity,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Obesity/clinical_data/GSE84046.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2226420,GSM2226421,GSM2226422,GSM2226423,GSM2226424,GSM2226425,GSM2226426,GSM2226427,GSM2226428,GSM2226429,GSM2226430,GSM2226431,GSM2226432,GSM2226433,GSM2226434,GSM2226435,GSM2226436,GSM2226437,GSM2226438,GSM2226439,GSM2226440,GSM2226441,GSM2226442,GSM2226443,GSM2226444,GSM2226445,GSM2226446,GSM2226447,GSM2226448,GSM2226449,GSM2226450,GSM2226451,GSM2226452,GSM2226453,GSM2226454,GSM2226455,GSM2226456,GSM2226457,GSM2226458,GSM2226459,GSM2226460,GSM2226461,GSM2226462,GSM2226463
2
+ Obesity,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0
3
+ Age,60.0,68.0,60.0,68.0,57.0,65.0,68.0,57.0,65.0,68.0,69.0,60.0,58.0,69.0,60.0,58.0,68.0,61.0,68.0,61.0,59.0,60.0,68.0,59.0,60.0,68.0,57.0,66.0,58.0,57.0,66.0,58.0,58.0,66.0,65.0,58.0,66.0,65.0,60.0,66.0,59.0,60.0,66.0,59.0
4
+ Gender,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0
p3/preprocess/Obesity/clinical_data/GSE99725.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM2650879,GSM2650880,GSM2650881,GSM2650882,GSM2650883,GSM2650884,GSM2650885,GSM2650886,GSM2650887,GSM2650888,GSM2650889,GSM2650890,GSM2650891,GSM2650892,GSM2650893,GSM2650894,GSM2650895,GSM2650896,GSM2650897,GSM2650898,GSM2650899,GSM2650900,GSM2650901,GSM2650902,GSM2650903,GSM2650904,GSM2650905,GSM2650906,GSM2650907,GSM2650908,GSM2650909,GSM2650910,GSM2650911,GSM2650912,GSM2650913,GSM2650914,GSM2650915,GSM2650916,GSM2650917,GSM2650918,GSM2650919,GSM2650920,GSM2650921,GSM2650922,GSM2650923,GSM2650924,GSM2650925,GSM2650926,GSM2650927,GSM2650928,GSM2650929,GSM2650930,GSM2650931,GSM2650932,GSM2650933,GSM2650934,GSM2650935
2
+ Obesity,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Obesity/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,1219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Obesity
2
+ TCGA-AR-A5QQ-01,-1
3
+ TCGA-D8-A1JA-01,-1
4
+ TCGA-BH-A0BQ-01,-1
5
+ TCGA-BH-A0BT-01,-1
6
+ TCGA-A8-A06X-01,-1
7
+ TCGA-A8-A096-01,-1
8
+ TCGA-BH-A0C7-01,-1
9
+ TCGA-AC-A5XU-01,-1
10
+ TCGA-PE-A5DE-01,-1
11
+ TCGA-PE-A5DC-01,-1
12
+ TCGA-AR-A0TV-01,-1
13
+ TCGA-GM-A3XG-01,-1
14
+ TCGA-BH-A18J-01,-1
15
+ TCGA-BH-A0W7-01,-1
16
+ TCGA-E9-A3QA-01,-1
17
+ TCGA-A7-A4SD-01,-1
18
+ TCGA-BH-A0HA-01,-1
19
+ TCGA-AR-A5QN-01,-1
20
+ TCGA-A7-A0CH-11,-1
21
+ TCGA-A7-A0CE-01,-1
22
+ TCGA-AR-A0U1-01,-1
23
+ TCGA-EW-A1OZ-01,-1
24
+ TCGA-A2-A0EY-01,-1
25
+ TCGA-A8-A09R-01,-1
26
+ TCGA-LL-A440-01,-1
27
+ TCGA-BH-A8FY-01,-1
28
+ TCGA-E2-A1II-01,-1
29
+ TCGA-A7-A6VX-01,-1
30
+ TCGA-C8-A273-01,-1
31
+ TCGA-BH-A1EO-01,-1
32
+ TCGA-OL-A5RX-01,-1
33
+ TCGA-BH-A0B9-01,-1
34
+ TCGA-EW-A1P5-01,-1
35
+ TCGA-AO-A03P-01,-1
36
+ TCGA-AN-A0AS-01,-1
37
+ TCGA-A2-A1G0-01,-1
38
+ TCGA-B6-A0I8-01,-1
39
+ TCGA-A7-A4SA-01,-1
40
+ TCGA-E9-A1RC-11,-1
41
+ TCGA-A7-A0DB-11,-1
42
+ TCGA-AR-A24S-01,-1
43
+ TCGA-BH-A0H9-11,-1
44
+ TCGA-LD-A74U-01,-1
45
+ TCGA-D8-A1XA-01,-1
46
+ TCGA-D8-A1XR-01,-1
47
+ TCGA-A8-A07Z-01,-1
48
+ TCGA-E2-A1IJ-01,-1
49
+ TCGA-GM-A2DH-01,-1
50
+ TCGA-BH-A0AY-01,-1
51
+ TCGA-BH-A42V-01,-1
52
+ TCGA-B6-A0IH-01,-1
53
+ TCGA-A1-A0SH-01,-1
54
+ TCGA-AR-A1AQ-01,-1
55
+ TCGA-A7-A0DC-01,-1
56
+ TCGA-A8-A07P-01,-1
57
+ TCGA-A1-A0SN-01,-1
58
+ TCGA-BH-A18T-01,-1
59
+ TCGA-BH-A0E0-11,-1
60
+ TCGA-E9-A22B-01,-1
61
+ TCGA-BH-A0HA-11,-1
62
+ TCGA-BH-A18P-11,-1
63
+ TCGA-E9-A1N4-11,-1
64
+ TCGA-S3-AA10-01,-1
65
+ TCGA-AO-A0J9-01,-1
66
+ TCGA-A1-A0SE-01,-1
67
+ TCGA-OL-A5RV-01,-1
68
+ TCGA-BH-A18U-11,-1
69
+ TCGA-A2-A04U-01,-1
70
+ TCGA-A2-A3XV-01,-1
71
+ TCGA-A7-A3IZ-01,-1
72
+ TCGA-E2-A1LS-11,-1
73
+ TCGA-AC-A2FM-11,-1
74
+ TCGA-D8-A1Y2-01,-1
75
+ TCGA-E9-A229-01,-1
76
+ TCGA-A7-A4SB-01,-1
77
+ TCGA-BH-A0HK-01,-1
78
+ TCGA-3C-AAAU-01,-1
79
+ TCGA-BH-A18M-11,-1
80
+ TCGA-E2-A14Z-01,-1
81
+ TCGA-A2-A3XW-01,-1
82
+ TCGA-D8-A1Y1-01,-1
83
+ TCGA-AC-A7VB-01,-1
84
+ TCGA-B6-A0RO-01,-1
85
+ TCGA-A2-A04P-01,-1
86
+ TCGA-A7-A13E-01,-1
87
+ TCGA-A7-A0D9-01,-1
88
+ TCGA-E2-A14R-01,-1
89
+ TCGA-GM-A3XN-01,-1
90
+ TCGA-A8-A06Y-01,-1
91
+ TCGA-E2-A1IK-01,-1
92
+ TCGA-E2-A1IU-01,-1
93
+ TCGA-BH-A0E2-01,-1
94
+ TCGA-BH-A0B3-11,-1
95
+ TCGA-A2-A0CZ-01,-1
96
+ TCGA-AR-A2LE-01,-1
97
+ TCGA-A8-A0A1-01,-1
98
+ TCGA-E2-A1L7-01,-1
99
+ TCGA-E2-A14T-01,-1
100
+ TCGA-AC-A5EH-01,-1
101
+ TCGA-GM-A2DM-01,-1
102
+ TCGA-A2-A0D4-01,-1
103
+ TCGA-BH-A0B1-01,-1
104
+ TCGA-AO-A12F-01,-1
105
+ TCGA-AC-A3HN-01,-1
106
+ TCGA-C8-A1HN-01,-1
107
+ TCGA-A2-A25C-01,-1
108
+ TCGA-E9-A6HE-01,-1
109
+ TCGA-EW-A6SB-01,-1
110
+ TCGA-E9-A1N4-01,-1
111
+ TCGA-B6-A0RH-01,-1
112
+ TCGA-A8-A09N-01,-1
113
+ TCGA-AO-A0JE-01,-1
114
+ TCGA-E2-A106-01,-1
115
+ TCGA-E2-A14S-01,-1
116
+ TCGA-AC-A3TM-01,-1
117
+ TCGA-AQ-A1H3-01,-1
118
+ TCGA-E2-A15R-01,-1
119
+ TCGA-A8-A06R-01,-1
120
+ TCGA-E9-A295-01,-1
121
+ TCGA-AC-A62X-01,-1
122
+ TCGA-BH-A18N-01,-1
123
+ TCGA-BH-A1FL-01,-1
124
+ TCGA-D8-A1XD-01,-1
125
+ TCGA-AC-A2FB-01,-1
126
+ TCGA-BH-A0DQ-01,-1
127
+ TCGA-AC-A3W5-01,-1
128
+ TCGA-D8-A1JP-01,-1
129
+ TCGA-BH-A0HW-01,-1
130
+ TCGA-BH-A0BW-01,-1
131
+ TCGA-LL-A6FP-01,-1
132
+ TCGA-A8-A0A4-01,-1
133
+ TCGA-AC-A6IW-01,-1
134
+ TCGA-BH-A0C0-11,-1
135
+ TCGA-XX-A899-01,-1
136
+ TCGA-A2-A25A-01,-1
137
+ TCGA-E9-A1R5-01,-1
138
+ TCGA-5T-A9QA-01,-1
139
+ TCGA-GM-A3NW-01,-1
140
+ TCGA-D8-A1JS-01,-1
141
+ TCGA-AR-A1AJ-01,-1
142
+ TCGA-AN-A0AK-01,-1
143
+ TCGA-BH-A0H7-11,-1
144
+ TCGA-D8-A73W-01,-1
145
+ TCGA-BH-A0BM-11,-1
146
+ TCGA-BH-A0BZ-01,-1
147
+ TCGA-A2-A0EU-01,-1
148
+ TCGA-B6-A401-01,-1
149
+ TCGA-AC-A7VC-01,-1
150
+ TCGA-AR-A24P-01,-1
151
+ TCGA-S3-AA0Z-01,-1
152
+ TCGA-LL-A50Y-01,-1
153
+ TCGA-OL-A5D8-01,-1
154
+ TCGA-A8-A08S-01,-1
155
+ TCGA-A8-A09K-01,-1
156
+ TCGA-BH-A0DI-01,-1
157
+ TCGA-A2-A0T6-01,-1
158
+ TCGA-A2-A25B-01,-1
159
+ TCGA-E2-A1BC-11,-1
160
+ TCGA-A2-A0SV-01,-1
161
+ TCGA-BH-A18G-01,-1
162
+ TCGA-BH-A0DG-11,-1
163
+ TCGA-AN-A0XR-01,-1
164
+ TCGA-A8-A0AB-01,-1
165
+ TCGA-AO-A1KO-01,-1
166
+ TCGA-A2-A0CU-01,-1
167
+ TCGA-BH-A0B7-11,-1
168
+ TCGA-BH-A1ET-11,-1
169
+ TCGA-A2-A1FZ-01,-1
170
+ TCGA-BH-A0B8-11,-1
171
+ TCGA-BH-A1FC-01,-1
172
+ TCGA-E2-A14W-01,-1
173
+ TCGA-LL-A441-01,-1
174
+ TCGA-PL-A8LX-01,-1
175
+ TCGA-XX-A89A-01,-1
176
+ TCGA-BH-A8FZ-01,-1
177
+ TCGA-E9-A5UO-01,-1
178
+ TCGA-E2-A15I-11,-1
179
+ TCGA-E2-A573-01,-1
180
+ TCGA-D8-A146-01,-1
181
+ TCGA-AO-A124-01,-1
182
+ TCGA-BH-A18L-11,-1
183
+ TCGA-AR-A24Z-01,-1
184
+ TCGA-A8-A075-01,-1
185
+ TCGA-A8-A08A-01,-1
186
+ TCGA-AQ-A0Y5-01,-1
187
+ TCGA-B6-A0I9-01,-1
188
+ TCGA-BH-A0DZ-11,-1
189
+ TCGA-E9-A1N5-11,-1
190
+ TCGA-BH-A28O-01,-1
191
+ TCGA-AR-A0TX-01,-1
192
+ TCGA-D8-A3Z6-01,-1
193
+ TCGA-A8-A093-01,-1
194
+ TCGA-A8-A07C-01,-1
195
+ TCGA-A8-A099-01,-1
196
+ TCGA-BH-A201-01,-1
197
+ TCGA-AO-A0J3-01,-1
198
+ TCGA-AR-A24H-01,-1
199
+ TCGA-BH-A0WA-01,-1
200
+ TCGA-AC-A3W6-01,-1
201
+ TCGA-AO-A0J2-01,-1
202
+ TCGA-A8-A08P-01,-1
203
+ TCGA-C8-A275-01,-1
204
+ TCGA-BH-A18P-01,-1
205
+ TCGA-B6-A0RQ-01,-1
206
+ TCGA-BH-A0BC-01,-1
207
+ TCGA-A7-A26E-01,-1
208
+ TCGA-E9-A1N6-11,-1
209
+ TCGA-BH-A2L8-01,-1
210
+ TCGA-BH-A18R-11,-1
211
+ TCGA-BH-A0DK-01,-1
212
+ TCGA-A2-A0T2-01,-1
213
+ TCGA-BH-A1EO-11,-1
214
+ TCGA-E2-A1IF-01,-1
215
+ TCGA-AR-A2LL-01,-1
216
+ TCGA-E9-A1N8-01,-1
217
+ TCGA-E9-A247-01,-1
218
+ TCGA-D8-A27E-01,-1
219
+ TCGA-EW-A1P0-01,-1
220
+ TCGA-C8-A1HF-01,-1
221
+ TCGA-E9-A244-01,-1
222
+ TCGA-AO-A0JD-01,-1
223
+ TCGA-A1-A0SO-01,-1
224
+ TCGA-A8-A09T-01,-1
225
+ TCGA-D8-A73X-01,-1
226
+ TCGA-AC-A8OS-01,-1
227
+ TCGA-E2-A15C-01,-1
228
+ TCGA-BH-A18I-01,-1
229
+ TCGA-EW-A1PF-01,-1
230
+ TCGA-E2-A108-01,-1
231
+ TCGA-HN-A2OB-01,-1
232
+ TCGA-B6-A0RU-01,-1
233
+ TCGA-AO-A0JC-01,-1
234
+ TCGA-B6-A0RM-01,-1
235
+ TCGA-AC-A23H-11,-1
236
+ TCGA-A8-A08G-01,-1
237
+ TCGA-E9-A3Q9-01,-1
238
+ TCGA-C8-A1HL-01,-1
239
+ TCGA-C8-A3M8-01,-1
240
+ TCGA-MS-A51U-01,-1
241
+ TCGA-AR-A24W-01,-1
242
+ TCGA-EW-A1P7-01,-1
243
+ TCGA-A2-A04W-01,-1
244
+ TCGA-AC-A8OR-01,-1
245
+ TCGA-E2-A105-01,-1
246
+ TCGA-D8-A13Y-01,-1
247
+ TCGA-V7-A7HQ-01,-1
248
+ TCGA-AR-A2LO-01,-1
249
+ TCGA-3C-AALI-01,-1
250
+ TCGA-E2-A1LS-01,-1
251
+ TCGA-BH-A18N-11,-1
252
+ TCGA-A7-A0CE-11,-1
253
+ TCGA-BH-A1FG-01,-1
254
+ TCGA-A8-A08H-01,-1
255
+ TCGA-AR-A0TS-01,-1
256
+ TCGA-A2-A3XU-01,-1
257
+ TCGA-D8-A1XG-01,-1
258
+ TCGA-BH-A0AY-11,-1
259
+ TCGA-AR-A0TT-01,-1
260
+ TCGA-D8-A1JJ-01,-1
261
+ TCGA-D8-A145-01,-1
262
+ TCGA-BH-A1ES-01,-1
263
+ TCGA-C8-A12M-01,-1
264
+ TCGA-A2-A0CY-01,-1
265
+ TCGA-A8-A08L-01,-1
266
+ TCGA-OL-A5S0-01,-1
267
+ TCGA-C8-A1HJ-01,-1
268
+ TCGA-BH-A0BR-01,-1
269
+ TCGA-AO-A12E-01,-1
270
+ TCGA-S3-AA15-01,-1
271
+ TCGA-OL-A5D7-01,-1
272
+ TCGA-OL-A5DA-01,-1
273
+ TCGA-B6-A0RL-01,-1
274
+ TCGA-OL-A66N-01,-1
275
+ TCGA-E9-A1ND-11,-1
276
+ TCGA-A2-A0CM-01,-1
277
+ TCGA-S3-A6ZG-01,-1
278
+ TCGA-E9-A1RB-01,-1
279
+ TCGA-A2-A4RY-01,-1
280
+ TCGA-E9-A1R6-01,-1
281
+ TCGA-E9-A1R3-01,-1
282
+ TCGA-D8-A1JK-01,-1
283
+ TCGA-A2-A0CR-01,-1
284
+ TCGA-BH-AB28-01,-1
285
+ TCGA-E2-A10C-01,-1
286
+ TCGA-B6-A0WW-01,-1
287
+ TCGA-BH-A6R8-01,-1
288
+ TCGA-D8-A27L-01,-1
289
+ TCGA-BH-A0EE-01,-1
290
+ TCGA-D8-A1JG-01,-1
291
+ TCGA-C8-A133-01,-1
292
+ TCGA-A2-A0EO-01,-1
293
+ TCGA-A2-A0YL-01,-1
294
+ TCGA-AR-A1AY-01,-1
295
+ TCGA-B6-A0IC-01,-1
296
+ TCGA-AR-A24L-01,-1
297
+ TCGA-AC-A3YJ-01,-1
298
+ TCGA-A8-A06U-01,-1
299
+ TCGA-AR-A0U0-01,-1
300
+ TCGA-BH-A1EW-01,-1
301
+ TCGA-AN-A0FF-01,-1
302
+ TCGA-AN-A0FX-01,-1
303
+ TCGA-BH-A1FH-11,-1
304
+ TCGA-E9-A1RF-11,-1
305
+ TCGA-BH-A0DZ-01,-1
306
+ TCGA-A2-A0SU-01,-1
307
+ TCGA-E2-A15O-01,-1
308
+ TCGA-E2-A1LI-01,-1
309
+ TCGA-E9-A54Y-01,-1
310
+ TCGA-EW-A3E8-01,-1
311
+ TCGA-D8-A1XV-01,-1
312
+ TCGA-AR-A255-01,-1
313
+ TCGA-GM-A4E0-01,-1
314
+ TCGA-BH-A1F0-11,-1
315
+ TCGA-B6-A0IE-01,-1
316
+ TCGA-A8-A07F-01,-1
317
+ TCGA-AN-A046-01,-1
318
+ TCGA-AR-A1AS-01,-1
319
+ TCGA-E2-A15T-01,-1
320
+ TCGA-GM-A2DB-01,-1
321
+ TCGA-EW-A1PH-01,-1
322
+ TCGA-BH-A0HP-01,-1
323
+ TCGA-AN-A0AM-01,-1
324
+ TCGA-C8-A1HG-01,-1
325
+ TCGA-BH-A18L-01,-1
326
+ TCGA-A2-A0YI-01,-1
327
+ TCGA-D8-A4Z1-01,-1
328
+ TCGA-GM-A2DK-01,-1
329
+ TCGA-BH-A1FD-11,-1
330
+ TCGA-E2-A1L9-01,-1
331
+ TCGA-BH-A0BA-01,-1
332
+ TCGA-C8-A12L-01,-1
333
+ TCGA-A8-A083-01,-1
334
+ TCGA-D8-A1XY-01,-1
335
+ TCGA-AC-A2FF-11,-1
336
+ TCGA-A2-A0D2-01,-1
337
+ TCGA-AR-A1AL-01,-1
338
+ TCGA-AO-A0J6-01,-1
339
+ TCGA-AO-A0J7-01,-1
340
+ TCGA-OL-A66H-01,-1
341
+ TCGA-D8-A1J9-01,-1
342
+ TCGA-BH-A0B5-01,-1
343
+ TCGA-E2-A15A-06,-1
344
+ TCGA-E2-A15K-11,-1
345
+ TCGA-BH-A0B4-01,-1
346
+ TCGA-AQ-A04H-01,-1
347
+ TCGA-AR-A1AX-01,-1
348
+ TCGA-BH-A0GZ-01,-1
349
+ TCGA-B6-A0IN-01,-1
350
+ TCGA-BH-A1F6-01,-1
351
+ TCGA-A8-A07U-01,-1
352
+ TCGA-BH-A18V-01,-1
353
+ TCGA-AQ-A04L-01,-1
354
+ TCGA-AR-A1AP-01,-1
355
+ TCGA-AC-A2QH-01,-1
356
+ TCGA-AR-A24M-01,-1
357
+ TCGA-AR-A2LQ-01,-1
358
+ TCGA-AC-A62Y-01,-1
359
+ TCGA-BH-A0DQ-11,-1
360
+ TCGA-BH-A0HO-01,-1
361
+ TCGA-EW-A1OV-01,-1
362
+ TCGA-A2-A0CK-01,-1
363
+ TCGA-E2-A1L8-01,-1
364
+ TCGA-EW-A1PG-01,-1
365
+ TCGA-E2-A14Q-01,-1
366
+ TCGA-EW-A1OY-01,-1
367
+ TCGA-BH-A18H-01,-1
368
+ TCGA-BH-A0HU-01,-1
369
+ TCGA-AO-A03R-01,-1
370
+ TCGA-A7-A26J-01,-1
371
+ TCGA-AN-A0FS-01,-1
372
+ TCGA-A2-A0ST-01,-1
373
+ TCGA-D8-A27W-01,-1
374
+ TCGA-A2-A0SW-01,-1
375
+ TCGA-AO-A1KS-01,-1
376
+ TCGA-GM-A2DL-01,-1
377
+ TCGA-BH-A0H5-11,-1
378
+ TCGA-E9-A1RI-11,-1
379
+ TCGA-A2-A04X-01,-1
380
+ TCGA-EW-A1J6-01,-1
381
+ TCGA-B6-A0RP-01,-1
382
+ TCGA-E2-A159-01,-1
383
+ TCGA-BH-A0W4-01,-1
384
+ TCGA-E2-A10E-01,-1
385
+ TCGA-OL-A6VO-01,-1
386
+ TCGA-D8-A1Y3-01,-1
387
+ TCGA-BH-A209-11,-1
388
+ TCGA-E2-A14V-01,-1
389
+ TCGA-BH-A18V-06,-1
390
+ TCGA-A2-A0D0-01,-1
391
+ TCGA-A2-A0T5-01,-1
392
+ TCGA-AN-A0XS-01,-1
393
+ TCGA-B6-A402-01,-1
394
+ TCGA-D8-A1JB-01,-1
395
+ TCGA-E2-A109-01,-1
396
+ TCGA-B6-A0RE-01,-1
397
+ TCGA-E9-A1RB-11,-1
398
+ TCGA-E2-A2P5-01,-1
399
+ TCGA-OL-A66K-01,-1
400
+ TCGA-S3-AA11-01,-1
401
+ TCGA-C8-A134-01,-1
402
+ TCGA-BH-A0DH-11,-1
403
+ TCGA-AN-A0AT-01,-1
404
+ TCGA-BH-A0HN-01,-1
405
+ TCGA-GM-A2DN-01,-1
406
+ TCGA-E9-A1RD-11,-1
407
+ TCGA-AO-A12D-01,-1
408
+ TCGA-A8-A08C-01,-1
409
+ TCGA-C8-A274-01,-1
410
+ TCGA-BH-A0HX-01,-1
411
+ TCGA-E9-A1NE-01,-1
412
+ TCGA-BH-A0BP-01,-1
413
+ TCGA-BH-A18Q-11,-1
414
+ TCGA-AR-A2LM-01,-1
415
+ TCGA-BH-A1FR-01,-1
416
+ TCGA-B6-A0I1-01,-1
417
+ TCGA-W8-A86G-01,-1
418
+ TCGA-PL-A8LZ-01,-1
419
+ TCGA-LD-A7W5-01,-1
420
+ TCGA-D8-A1XU-01,-1
421
+ TCGA-E2-A15G-01,-1
422
+ TCGA-A2-A04R-01,-1
423
+ TCGA-AO-A126-01,-1
424
+ TCGA-AO-A0JM-01,-1
425
+ TCGA-EW-A2FS-01,-1
426
+ TCGA-E2-A1LH-01,-1
427
+ TCGA-A2-A25D-01,-1
428
+ TCGA-E9-A243-01,-1
429
+ TCGA-4H-AAAK-01,-1
430
+ TCGA-E9-A1N6-01,-1
431
+ TCGA-BH-A0E9-01,-1
432
+ TCGA-B6-A1KI-01,-1
433
+ TCGA-D8-A1X9-01,-1
434
+ TCGA-BH-A0BJ-11,-1
435
+ TCGA-A1-A0SB-01,-1
436
+ TCGA-E2-A14P-01,-1
437
+ TCGA-E9-A1R7-11,-1
438
+ TCGA-BH-A0W5-01,-1
439
+ TCGA-E2-A15I-01,-1
440
+ TCGA-A2-A3XY-01,-1
441
+ TCGA-BH-A0H5-01,-1
442
+ TCGA-OL-A5RY-01,-1
443
+ TCGA-E9-A227-01,-1
444
+ TCGA-C8-A8HR-01,-1
445
+ TCGA-EW-A2FV-01,-1
446
+ TCGA-BH-A1FG-11,-1
447
+ TCGA-BH-A0BG-01,-1
448
+ TCGA-D8-A3Z5-01,-1
449
+ TCGA-BH-A1FD-01,-1
450
+ TCGA-B6-A0RV-01,-1
451
+ TCGA-E2-A1LA-01,-1
452
+ TCGA-A2-A04Y-01,-1
453
+ TCGA-AR-A24O-01,-1
454
+ TCGA-EW-A2FW-01,-1
455
+ TCGA-A2-A0CQ-01,-1
456
+ TCGA-GM-A2DA-01,-1
457
+ TCGA-E9-A1NH-01,-1
458
+ TCGA-AO-A12A-01,-1
459
+ TCGA-EW-A1IW-01,-1
460
+ TCGA-E2-A14U-01,-1
461
+ TCGA-C8-A12K-01,-1
462
+ TCGA-OL-A5RU-01,-1
463
+ TCGA-LL-A5YM-01,-1
464
+ TCGA-BH-A0BS-01,-1
465
+ TCGA-AR-A2LK-01,-1
466
+ TCGA-OL-A6VR-01,-1
467
+ TCGA-5L-AAT1-01,-1
468
+ TCGA-E9-A1NA-01,-1
469
+ TCGA-A8-A091-01,-1
470
+ TCGA-A8-A07E-01,-1
471
+ TCGA-BH-A18K-01,-1
472
+ TCGA-A1-A0SJ-01,-1
473
+ TCGA-D8-A1JL-01,-1
474
+ TCGA-AR-A0TY-01,-1
475
+ TCGA-E2-A574-01,-1
476
+ TCGA-A8-A097-01,-1
477
+ TCGA-AN-A0FZ-01,-1
478
+ TCGA-BH-A0E6-01,-1
479
+ TCGA-C8-A132-01,-1
480
+ TCGA-BH-A0H6-01,-1
481
+ TCGA-B6-A0RG-01,-1
482
+ TCGA-PL-A8LY-01,-1
483
+ TCGA-D8-A1XS-01,-1
484
+ TCGA-D8-A1JT-01,-1
485
+ TCGA-B6-A0RS-01,-1
486
+ TCGA-AC-A8OP-01,-1
487
+ TCGA-E9-A1RG-01,-1
488
+ TCGA-C8-A12Y-01,-1
489
+ TCGA-BH-A0DP-01,-1
490
+ TCGA-E9-A1QZ-01,-1
491
+ TCGA-GM-A2D9-01,-1
492
+ TCGA-GM-A3XL-01,-1
493
+ TCGA-LQ-A4E4-01,-1
494
+ TCGA-D8-A1X7-01,-1
495
+ TCGA-AN-A0XU-01,-1
496
+ TCGA-BH-A0BV-01,-1
497
+ TCGA-BH-A1FJ-01,-1
498
+ TCGA-EW-A1J1-01,-1
499
+ TCGA-A2-A4RX-01,-1
500
+ TCGA-D8-A142-01,-1
501
+ TCGA-EW-A1J2-01,-1
502
+ TCGA-BH-A0HF-01,-1
503
+ TCGA-E9-A1N9-01,-1
504
+ TCGA-E2-A570-01,-1
505
+ TCGA-AO-A0JG-01,-1
506
+ TCGA-S3-A6ZH-01,-1
507
+ TCGA-D8-A1XC-01,-1
508
+ TCGA-AQ-A54N-01,-1
509
+ TCGA-C8-A131-01,-1
510
+ TCGA-E2-A1AZ-01,-1
511
+ TCGA-E9-A3HO-01,-1
512
+ TCGA-A7-A5ZX-01,-1
513
+ TCGA-AR-A2LH-01,-1
514
+ TCGA-C8-A138-01,-1
515
+ TCGA-LL-A6FR-01,-1
516
+ TCGA-D8-A1JM-01,-1
517
+ TCGA-BH-A0BF-01,-1
518
+ TCGA-A7-A0CH-01,-1
519
+ TCGA-LL-A73Y-01,-1
520
+ TCGA-BH-A1FH-01,-1
521
+ TCGA-AC-A4ZE-01,-1
522
+ TCGA-AR-A24U-01,-1
523
+ TCGA-A7-A13G-11,-1
524
+ TCGA-A2-A0SX-01,-1
525
+ TCGA-E9-A1ND-01,-1
526
+ TCGA-A8-A084-01,-1
527
+ TCGA-BH-A0DK-11,-1
528
+ TCGA-A1-A0SG-01,-1
529
+ TCGA-B6-A0X0-01,-1
530
+ TCGA-AR-A254-01,-1
531
+ TCGA-LD-A7W6-01,-1
532
+ TCGA-BH-A1FC-11,-1
533
+ TCGA-E9-A1NG-11,-1
534
+ TCGA-D8-A1Y0-01,-1
535
+ TCGA-BH-A18R-01,-1
536
+ TCGA-LL-A5YO-01,-1
537
+ TCGA-AO-A0J4-01,-1
538
+ TCGA-E9-A1NG-01,-1
539
+ TCGA-BH-A18M-01,-1
540
+ TCGA-A8-A085-01,-1
541
+ TCGA-E2-A10F-01,-1
542
+ TCGA-D8-A27H-01,-1
543
+ TCGA-AN-A0XT-01,-1
544
+ TCGA-A2-A3Y0-01,-1
545
+ TCGA-AN-A0XL-01,-1
546
+ TCGA-BH-A1EU-11,-1
547
+ TCGA-BH-A0BQ-11,-1
548
+ TCGA-AR-A0U2-01,-1
549
+ TCGA-A7-A5ZW-01,-1
550
+ TCGA-AN-A0AR-01,-1
551
+ TCGA-E9-A1RH-01,-1
552
+ TCGA-LL-A5YL-01,-1
553
+ TCGA-E9-A22G-01,-1
554
+ TCGA-AR-A1AW-01,-1
555
+ TCGA-BH-A1EN-01,-1
556
+ TCGA-B6-A409-01,-1
557
+ TCGA-A8-A0A2-01,-1
558
+ TCGA-AR-A2LJ-01,-1
559
+ TCGA-A7-A2KD-01,-1
560
+ TCGA-EW-A1P4-01,-1
561
+ TCGA-A8-A09M-01,-1
562
+ TCGA-E9-A245-01,-1
563
+ TCGA-GI-A2C9-11,-1
564
+ TCGA-E2-A1IP-01,-1
565
+ TCGA-C8-A3M7-01,-1
566
+ TCGA-BH-A0DV-01,-1
567
+ TCGA-D8-A27T-01,-1
568
+ TCGA-AO-A128-01,-1
569
+ TCGA-EW-A1J3-01,-1
570
+ TCGA-AC-A2BM-01,-1
571
+ TCGA-AN-A0FN-01,-1
572
+ TCGA-A8-A08O-01,-1
573
+ TCGA-A8-A09A-01,-1
574
+ TCGA-AO-A1KQ-01,-1
575
+ TCGA-WT-AB44-01,-1
576
+ TCGA-A2-A0T3-01,-1
577
+ TCGA-E9-A1NA-11,-1
578
+ TCGA-B6-A0RN-01,-1
579
+ TCGA-A7-A3J0-01,-1
580
+ TCGA-GM-A2DC-01,-1
581
+ TCGA-BH-A8G0-01,-1
582
+ TCGA-A2-A0ET-01,-1
583
+ TCGA-C8-A12Q-01,-1
584
+ TCGA-BH-A0E7-01,-1
585
+ TCGA-BH-A0DV-11,-1
586
+ TCGA-AN-A04A-01,-1
587
+ TCGA-E9-A2JT-01,-1
588
+ TCGA-E9-A1R7-01,-1
589
+ TCGA-E2-A1LL-01,-1
590
+ TCGA-E9-A1R0-01,-1
591
+ TCGA-A8-A07B-01,-1
592
+ TCGA-EW-A1PE-01,-1
593
+ TCGA-A7-A6VY-01,-1
594
+ TCGA-E2-A156-01,-1
595
+ TCGA-A7-A426-01,-1
596
+ TCGA-A8-A06Q-01,-1
597
+ TCGA-D8-A73U-01,-1
598
+ TCGA-E9-A54X-01,-1
599
+ TCGA-A8-A0A7-01,-1
600
+ TCGA-E2-A14Y-01,-1
601
+ TCGA-D8-A1JN-01,-1
602
+ TCGA-BH-A1FU-11,-1
603
+ TCGA-AN-A0AJ-01,-1
604
+ TCGA-A8-A076-01,-1
605
+ TCGA-A2-A0ES-01,-1
606
+ TCGA-BH-A1F2-01,-1
607
+ TCGA-B6-A408-01,-1
608
+ TCGA-E9-A5FK-01,-1
609
+ TCGA-LL-A7SZ-01,-1
610
+ TCGA-E2-A572-01,-1
611
+ TCGA-BH-A0B0-01,-1
612
+ TCGA-A8-A09D-01,-1
613
+ TCGA-A2-A0YJ-01,-1
614
+ TCGA-D8-A13Z-01,-1
615
+ TCGA-A1-A0SI-01,-1
616
+ TCGA-E2-A14O-01,-1
617
+ TCGA-BH-A0E0-01,-1
618
+ TCGA-A7-A3IY-01,-1
619
+ TCGA-EW-A1P3-01,-1
620
+ TCGA-AR-A24V-01,-1
621
+ TCGA-BH-A1F2-11,-1
622
+ TCGA-EW-A423-01,-1
623
+ TCGA-LD-A66U-01,-1
624
+ TCGA-A7-A13F-01,-1
625
+ TCGA-BH-A1FB-01,-1
626
+ TCGA-BH-A0BM-01,-1
627
+ TCGA-BH-A18V-11,-1
628
+ TCGA-AR-A1AU-01,-1
629
+ TCGA-A2-A0YF-01,-1
630
+ TCGA-E2-A1IE-01,-1
631
+ TCGA-AC-A2FE-01,-1
632
+ TCGA-BH-A1FM-11,-1
633
+ TCGA-AC-A3W7-01,-1
634
+ TCGA-A7-A26G-01,-1
635
+ TCGA-LL-A8F5-01,-1
636
+ TCGA-A2-A4S2-01,-1
637
+ TCGA-BH-A0W3-01,-1
638
+ TCGA-LL-A7T0-01,-1
639
+ TCGA-A7-A5ZV-01,-1
640
+ TCGA-AO-A0JB-01,-1
641
+ TCGA-BH-A0AU-11,-1
642
+ TCGA-BH-A0BT-11,-1
643
+ TCGA-B6-A0I5-01,-1
644
+ TCGA-EW-A1IZ-01,-1
645
+ TCGA-AO-A12H-01,-1
646
+ TCGA-A8-A0A9-01,-1
647
+ TCGA-AC-A2FG-01,-1
648
+ TCGA-A2-A0T1-01,-1
649
+ TCGA-AO-A0JJ-01,-1
650
+ TCGA-BH-A0E1-01,-1
651
+ TCGA-AC-A3QP-01,-1
652
+ TCGA-B6-A0IP-01,-1
653
+ TCGA-Z7-A8R6-01,-1
654
+ TCGA-E2-A154-01,-1
655
+ TCGA-A2-A0EW-01,-1
656
+ TCGA-BH-A0AU-01,-1
657
+ TCGA-BH-A204-11,-1
658
+ TCGA-BH-A1ET-01,-1
659
+ TCGA-AO-A03V-01,-1
660
+ TCGA-BH-A1FB-11,-1
661
+ TCGA-GM-A5PX-01,-1
662
+ TCGA-C8-A135-01,-1
663
+ TCGA-BH-A0AW-01,-1
664
+ TCGA-AR-A24N-01,-1
665
+ TCGA-A8-A09Q-01,-1
666
+ TCGA-E9-A22D-01,-1
667
+ TCGA-B6-A0I6-01,-1
668
+ TCGA-D8-A1JH-01,-1
669
+ TCGA-E9-A1RE-01,-1
670
+ TCGA-E2-A1BC-01,-1
671
+ TCGA-BH-A0C0-01,-1
672
+ TCGA-AR-A24X-01,-1
673
+ TCGA-EW-A1OW-01,-1
674
+ TCGA-A7-A3RF-01,-1
675
+ TCGA-A8-A07G-01,-1
676
+ TCGA-AC-A23C-01,-1
677
+ TCGA-AC-A23H-01,-1
678
+ TCGA-D8-A1XF-01,-1
679
+ TCGA-AR-A0U4-01,-1
680
+ TCGA-A8-A09C-01,-1
681
+ TCGA-AN-A0XP-01,-1
682
+ TCGA-D8-A1XK-01,-1
683
+ TCGA-EW-A6S9-01,-1
684
+ TCGA-A8-A08T-01,-1
685
+ TCGA-AR-A0TP-01,-1
686
+ TCGA-E2-A15D-01,-1
687
+ TCGA-B6-A0IQ-01,-1
688
+ TCGA-AN-A0XO-01,-1
689
+ TCGA-BH-A0B8-01,-1
690
+ TCGA-AO-A129-01,-1
691
+ TCGA-GM-A2DF-01,-1
692
+ TCGA-D8-A27M-01,-1
693
+ TCGA-AN-A03X-01,-1
694
+ TCGA-A7-A0DC-11,-1
695
+ TCGA-OL-A66O-01,-1
696
+ TCGA-EW-A6SA-01,-1
697
+ TCGA-BH-A5J0-01,-1
698
+ TCGA-BH-A0EB-01,-1
699
+ TCGA-B6-A0IB-01,-1
700
+ TCGA-B6-A0WY-01,-1
701
+ TCGA-AC-A3BB-01,-1
702
+ TCGA-AN-A049-01,-1
703
+ TCGA-A8-A06Z-01,-1
704
+ TCGA-C8-A1HI-01,-1
705
+ TCGA-BH-A0HL-01,-1
706
+ TCGA-BH-A18S-11,-1
707
+ TCGA-A1-A0SF-01,-1
708
+ TCGA-AR-A2LR-01,-1
709
+ TCGA-E9-A1RF-01,-1
710
+ TCGA-B6-A0RT-01,-1
711
+ TCGA-E9-A1RI-01,-1
712
+ TCGA-BH-A0DL-01,-1
713
+ TCGA-AR-A251-01,-1
714
+ TCGA-AC-A3TN-01,-1
715
+ TCGA-AC-A2QI-01,-1
716
+ TCGA-B6-A0X4-01,-1
717
+ TCGA-E2-A1B5-01,-1
718
+ TCGA-A2-A0YH-01,-1
719
+ TCGA-A8-A06T-01,-1
720
+ TCGA-E2-A15K-06,-1
721
+ TCGA-E9-A22H-01,-1
722
+ TCGA-BH-A0DE-01,-1
723
+ TCGA-OL-A5RW-01,-1
724
+ TCGA-A8-A090-01,-1
725
+ TCGA-AO-A03O-01,-1
726
+ TCGA-BH-A18S-01,-1
727
+ TCGA-A2-A3KD-01,-1
728
+ TCGA-E2-A153-11,-1
729
+ TCGA-E2-A56Z-01,-1
730
+ TCGA-BH-A0GY-01,-1
731
+ TCGA-AC-A2FF-01,-1
732
+ TCGA-BH-A0H3-01,-1
733
+ TCGA-A2-A25F-01,-1
734
+ TCGA-A7-A26F-01,-1
735
+ TCGA-A7-A26H-01,-1
736
+ TCGA-B6-A0WT-01,-1
737
+ TCGA-BH-A1FE-11,-1
738
+ TCGA-BH-A28Q-01,-1
739
+ TCGA-B6-A1KF-01,-1
740
+ TCGA-S3-A6ZF-01,-1
741
+ TCGA-BH-A0BC-11,-1
742
+ TCGA-WT-AB41-01,-1
743
+ TCGA-AC-A62V-01,-1
744
+ TCGA-UU-A93S-01,-1
745
+ TCGA-E2-A1LK-01,-1
746
+ TCGA-S3-AA17-01,-1
747
+ TCGA-BH-A209-01,-1
748
+ TCGA-GI-A2C8-01,-1
749
+ TCGA-OL-A5D6-01,-1
750
+ TCGA-BH-A0EA-01,-1
751
+ TCGA-E9-A1R4-01,-1
752
+ TCGA-A8-A092-01,-1
753
+ TCGA-BH-A18F-01,-1
754
+ TCGA-BH-A1FR-11,-1
755
+ TCGA-AC-A3OD-01,-1
756
+ TCGA-C8-A12V-01,-1
757
+ TCGA-A8-A06O-01,-1
758
+ TCGA-E9-A1RD-01,-1
759
+ TCGA-A8-A06N-01,-1
760
+ TCGA-A7-A13D-01,-1
761
+ TCGA-D8-A1XQ-01,-1
762
+ TCGA-AR-A0TW-01,-1
763
+ TCGA-JL-A3YX-01,-1
764
+ TCGA-BH-A0H7-01,-1
765
+ TCGA-OK-A5Q2-01,-1
766
+ TCGA-D8-A141-01,-1
767
+ TCGA-A7-A56D-01,-1
768
+ TCGA-C8-A26V-01,-1
769
+ TCGA-A2-A0YE-01,-1
770
+ TCGA-A2-A0CW-01,-1
771
+ TCGA-E2-A1LB-11,-1
772
+ TCGA-AR-A24K-01,-1
773
+ TCGA-A1-A0SQ-01,-1
774
+ TCGA-C8-A27B-01,-1
775
+ TCGA-D8-A143-01,-1
776
+ TCGA-E9-A248-01,-1
777
+ TCGA-A2-A04N-01,-1
778
+ TCGA-BH-A1EW-11,-1
779
+ TCGA-BH-A208-11,-1
780
+ TCGA-A2-A3KC-01,-1
781
+ TCGA-A2-A0EM-01,-1
782
+ TCGA-GM-A2DI-01,-1
783
+ TCGA-AO-A12B-01,-1
784
+ TCGA-E9-A1RH-11,-1
785
+ TCGA-BH-A0DT-01,-1
786
+ TCGA-BH-A0BW-11,-1
787
+ TCGA-A7-A4SC-01,-1
788
+ TCGA-D8-A140-01,-1
789
+ TCGA-A8-A07O-01,-1
790
+ TCGA-BH-A208-01,-1
791
+ TCGA-B6-A0IA-01,-1
792
+ TCGA-AR-A0TZ-01,-1
793
+ TCGA-BH-A0BS-11,-1
794
+ TCGA-E2-A10A-01,-1
795
+ TCGA-A7-A6VW-01,-1
796
+ TCGA-C8-A26Y-01,-1
797
+ TCGA-AO-A0J5-01,-1
798
+ TCGA-BH-A1FN-11,-1
799
+ TCGA-B6-A2IU-01,-1
800
+ TCGA-C8-A26Z-01,-1
801
+ TCGA-D8-A27N-01,-1
802
+ TCGA-D8-A27K-01,-1
803
+ TCGA-E2-A14X-01,-1
804
+ TCGA-A2-A1G1-01,-1
805
+ TCGA-A7-A26I-01,-1
806
+ TCGA-BH-A0HK-11,-1
807
+ TCGA-BH-A6R9-01,-1
808
+ TCGA-A7-A0DA-01,-1
809
+ TCGA-A8-A09E-01,-1
810
+ TCGA-AN-A0G0-01,-1
811
+ TCGA-E2-A15E-01,-1
812
+ TCGA-LL-A73Z-01,-1
813
+ TCGA-E2-A9RU-01,-1
814
+ TCGA-LD-A9QF-01,-1
815
+ TCGA-OL-A66P-01,-1
816
+ TCGA-E2-A1LG-01,-1
817
+ TCGA-A8-A081-01,-1
818
+ TCGA-A8-A0A6-01,-1
819
+ TCGA-BH-A0HB-01,-1
820
+ TCGA-A8-A08B-01,-1
821
+ TCGA-E2-A15L-01,-1
822
+ TCGA-B6-A1KC-01,-1
823
+ TCGA-E2-A15S-01,-1
824
+ TCGA-A2-A0YD-01,-1
825
+ TCGA-E2-A1B1-01,-1
826
+ TCGA-C8-A27A-01,-1
827
+ TCGA-A8-A082-01,-1
828
+ TCGA-D8-A1JI-01,-1
829
+ TCGA-A2-A0T7-01,-1
830
+ TCGA-E9-A1N3-01,-1
831
+ TCGA-OL-A6VQ-01,-1
832
+ TCGA-BH-A0AZ-11,-1
833
+ TCGA-AN-A0FK-01,-1
834
+ TCGA-LL-A442-01,-1
835
+ TCGA-BH-A0DO-11,-1
836
+ TCGA-D8-A1JC-01,-1
837
+ TCGA-EW-A6SD-01,-1
838
+ TCGA-A1-A0SP-01,-1
839
+ TCGA-E2-A15P-01,-1
840
+ TCGA-AC-A6IV-01,-1
841
+ TCGA-C8-A1HE-01,-1
842
+ TCGA-A8-A086-01,-1
843
+ TCGA-OL-A66I-01,-1
844
+ TCGA-E2-A1IG-01,-1
845
+ TCGA-AR-A24Q-01,-1
846
+ TCGA-E2-A1B4-01,-1
847
+ TCGA-B6-A0IM-01,-1
848
+ TCGA-C8-A12T-01,-1
849
+ TCGA-A1-A0SK-01,-1
850
+ TCGA-D8-A147-01,-1
851
+ TCGA-A8-A06P-01,-1
852
+ TCGA-BH-A0BA-11,-1
853
+ TCGA-A8-A07J-01,-1
854
+ TCGA-OL-A66L-01,-1
855
+ TCGA-A2-A4S3-01,-1
856
+ TCGA-AR-A5QM-01,-1
857
+ TCGA-AR-A0TR-01,-1
858
+ TCGA-D8-A27V-01,-1
859
+ TCGA-A2-A3XS-01,-1
860
+ TCGA-BH-A0E1-11,-1
861
+ TCGA-BH-A1EN-11,-1
862
+ TCGA-A8-A07W-01,-1
863
+ TCGA-EW-A424-01,-1
864
+ TCGA-A7-A0CJ-01,-1
865
+ TCGA-E2-A158-11,-1
866
+ TCGA-S3-AA12-01,-1
867
+ TCGA-A2-A04V-01,-1
868
+ TCGA-AC-A2QJ-01,-1
869
+ TCGA-A2-A0EV-01,-1
870
+ TCGA-EW-A3U0-01,-1
871
+ TCGA-E9-A228-01,-1
872
+ TCGA-AO-A12C-01,-1
873
+ TCGA-D8-A1XM-01,-1
874
+ TCGA-AO-A125-01,-1
875
+ TCGA-BH-A0B2-01,-1
876
+ TCGA-E2-A1IL-01,-1
877
+ TCGA-E2-A150-01,-1
878
+ TCGA-BH-A0BO-01,-1
879
+ TCGA-AO-A0J8-01,-1
880
+ TCGA-E2-A576-01,-1
881
+ TCGA-3C-AALK-01,-1
882
+ TCGA-AR-A1AT-01,-1
883
+ TCGA-A2-A1G4-01,-1
884
+ TCGA-BH-A1F0-01,-1
885
+ TCGA-A2-A0CS-01,-1
886
+ TCGA-EW-A2FR-01,-1
887
+ TCGA-A8-A09X-01,-1
888
+ TCGA-BH-A203-01,-1
889
+ TCGA-A2-A1FX-01,-1
890
+ TCGA-BH-A1EX-01,-1
891
+ TCGA-HN-A2NL-01,-1
892
+ TCGA-E2-A15M-11,-1
893
+ TCGA-BH-A0C3-11,-1
894
+ TCGA-E9-A1N9-11,-1
895
+ TCGA-A2-A0SY-01,-1
896
+ TCGA-A2-A0YT-01,-1
897
+ TCGA-E2-A1IO-01,-1
898
+ TCGA-B6-A400-01,-1
899
+ TCGA-B6-A0IK-01,-1
900
+ TCGA-B6-A0IO-01,-1
901
+ TCGA-BH-A1FM-01,-1
902
+ TCGA-E2-A3DX-01,-1
903
+ TCGA-D8-A1J8-01,-1
904
+ TCGA-A8-A09B-01,-1
905
+ TCGA-A8-A09Z-01,-1
906
+ TCGA-B6-A0IG-01,-1
907
+ TCGA-A7-A6VV-01,-1
908
+ TCGA-BH-A1F8-01,-1
909
+ TCGA-A2-A0CV-01,-1
910
+ TCGA-B6-A0WS-01,-1
911
+ TCGA-OL-A5RZ-01,-1
912
+ TCGA-BH-A1EV-01,-1
913
+ TCGA-AR-A0TU-01,-1
914
+ TCGA-EW-A1IX-01,-1
915
+ TCGA-E2-A15K-01,-1
916
+ TCGA-GI-A2C8-11,-1
917
+ TCGA-AR-A1AR-01,-1
918
+ TCGA-E9-A1R2-01,-1
919
+ TCGA-E2-A1B6-01,-1
920
+ TCGA-AC-A5XS-01,-1
921
+ TCGA-AQ-A1H2-01,-1
922
+ TCGA-AR-A1AO-01,-1
923
+ TCGA-E2-A15H-01,-1
924
+ TCGA-B6-A0WZ-01,-1
925
+ TCGA-GM-A2DD-01,-1
926
+ TCGA-AR-A1AV-01,-1
927
+ TCGA-C8-A12P-01,-1
928
+ TCGA-AN-A0XN-01,-1
929
+ TCGA-AN-A0AL-01,-1
930
+ TCGA-C8-A12X-01,-1
931
+ TCGA-BH-A0DP-11,-1
932
+ TCGA-AO-A03T-01,-1
933
+ TCGA-GI-A2C9-01,-1
934
+ TCGA-BH-A1FU-01,-1
935
+ TCGA-E9-A226-01,-1
936
+ TCGA-A8-A095-01,-1
937
+ TCGA-E2-A2P6-01,-1
938
+ TCGA-E2-A158-01,-1
939
+ TCGA-C8-A137-01,-1
940
+ TCGA-BH-A0DD-01,-1
941
+ TCGA-A2-A259-01,-1
942
+ TCGA-BH-A0BV-11,-1
943
+ TCGA-BH-A0RX-01,-1
944
+ TCGA-E9-A1RA-01,-1
945
+ TCGA-EW-A1PA-01,-1
946
+ TCGA-A8-A07R-01,-1
947
+ TCGA-C8-A8HQ-01,-1
948
+ TCGA-E9-A24A-01,-1
949
+ TCGA-BH-A204-01,-1
950
+ TCGA-A2-A0EN-01,-1
951
+ TCGA-B6-A40B-01,-1
952
+ TCGA-A8-A094-01,-1
953
+ TCGA-A2-A0D1-01,-1
954
+ TCGA-A7-A13F-11,-1
955
+ TCGA-PL-A8LV-01,-1
956
+ TCGA-AN-A0FD-01,-1
957
+ TCGA-A7-A0CD-01,-1
958
+ TCGA-A1-A0SD-01,-1
959
+ TCGA-BH-A0BJ-01,-1
960
+ TCGA-A8-A08J-01,-1
961
+ TCGA-E2-A1IN-01,-1
962
+ TCGA-BH-A0BD-01,-1
963
+ TCGA-BH-A18U-01,-1
964
+ TCGA-A1-A0SM-01,-1
965
+ TCGA-A8-A09I-01,-1
966
+ TCGA-D8-A1JF-01,-1
967
+ TCGA-E9-A5UP-01,-1
968
+ TCGA-E2-A1IH-01,-1
969
+ TCGA-PE-A5DD-01,-1
970
+ TCGA-AO-A03N-01,-1
971
+ TCGA-AR-A1AH-01,-1
972
+ TCGA-AO-A0JI-01,-1
973
+ TCGA-OL-A97C-01,-1
974
+ TCGA-AR-A250-01,-1
975
+ TCGA-BH-A0HQ-01,-1
976
+ TCGA-JL-A3YW-01,-1
977
+ TCGA-AC-A3YI-01,-1
978
+ TCGA-C8-A12U-01,-1
979
+ TCGA-AO-A0JL-01,-1
980
+ TCGA-AO-A0JF-01,-1
981
+ TCGA-BH-A1F8-11,-1
982
+ TCGA-EW-A1P6-01,-1
983
+ TCGA-A2-A3XZ-01,-1
984
+ TCGA-BH-A0C1-01,-1
985
+ TCGA-BH-A0AV-01,-1
986
+ TCGA-D8-A1JD-01,-1
987
+ TCGA-A2-A4RW-01,-1
988
+ TCGA-AC-A2FO-01,-1
989
+ TCGA-AR-A2LN-01,-1
990
+ TCGA-E2-A1BD-01,-1
991
+ TCGA-BH-A18J-11,-1
992
+ TCGA-S3-AA14-01,-1
993
+ TCGA-A8-A07L-01,-1
994
+ TCGA-LL-A5YN-01,-1
995
+ TCGA-AR-A24R-01,-1
996
+ TCGA-BH-A0DH-01,-1
997
+ TCGA-D8-A1XT-01,-1
998
+ TCGA-EW-A1IY-01,-1
999
+ TCGA-A7-A4SE-01,-1
1000
+ TCGA-A2-A1FW-01,-1
1001
+ TCGA-E2-A155-01,-1
1002
+ TCGA-B6-A3ZX-01,-1
1003
+ TCGA-EW-A1PB-01,-1
1004
+ TCGA-A7-A425-01,-1
1005
+ TCGA-LL-A9Q3-01,-1
1006
+ TCGA-AN-A0FJ-01,-1
1007
+ TCGA-AN-A03Y-01,-1
1008
+ TCGA-E2-A15M-01,-1
1009
+ TCGA-OL-A66J-01,-1
1010
+ TCGA-AN-A04D-01,-1
1011
+ TCGA-A8-A08I-01,-1
1012
+ TCGA-B6-A40C-01,-1
1013
+ TCGA-A8-A08F-01,-1
1014
+ TCGA-BH-A0B3-01,-1
1015
+ TCGA-AO-A12G-01,-1
1016
+ TCGA-AC-A6IX-06,-1
1017
+ TCGA-BH-A1FJ-11,-1
1018
+ TCGA-AQ-A04J-01,-1
1019
+ TCGA-C8-A1HM-01,-1
1020
+ TCGA-A2-A3XX-01,-1
1021
+ TCGA-BH-A203-11,-1
1022
+ TCGA-EW-A1P1-01,-1
1023
+ TCGA-A2-A0YM-01,-1
1024
+ TCGA-E9-A3X8-01,-1
1025
+ TCGA-A8-A08Z-01,-1
1026
+ TCGA-D8-A27F-01,-1
1027
+ TCGA-AN-A041-01,-1
1028
+ TCGA-AR-A0U3-01,-1
1029
+ TCGA-A2-A0CL-01,-1
1030
+ TCGA-LL-A5YP-01,-1
1031
+ TCGA-AC-A3EH-01,-1
1032
+ TCGA-AN-A04C-01,-1
1033
+ TCGA-E9-A1RC-01,-1
1034
+ TCGA-AC-A2FK-01,-1
1035
+ TCGA-D8-A1XB-01,-1
1036
+ TCGA-A2-A0D3-01,-1
1037
+ TCGA-E2-A152-01,-1
1038
+ TCGA-GM-A3NY-01,-1
1039
+ TCGA-AC-A2B8-01,-1
1040
+ TCGA-E2-A1B0-01,-1
1041
+ TCGA-BH-A1EU-01,-1
1042
+ TCGA-E2-A1L7-11,-1
1043
+ TCGA-AR-A1AK-01,-1
1044
+ TCGA-E9-A2JS-01,-1
1045
+ TCGA-GM-A5PV-01,-1
1046
+ TCGA-BH-A1F6-11,-1
1047
+ TCGA-AQ-A54O-01,-1
1048
+ TCGA-AC-A6IX-01,-1
1049
+ TCGA-C8-A1HK-01,-1
1050
+ TCGA-AN-A0FL-01,-1
1051
+ TCGA-BH-A1FN-01,-1
1052
+ TCGA-A2-A25E-01,-1
1053
+ TCGA-A2-A0YC-01,-1
1054
+ TCGA-A8-A09V-01,-1
1055
+ TCGA-A2-A0CT-01,-1
1056
+ TCGA-E9-A22E-01,-1
1057
+ TCGA-BH-A18Q-01,-1
1058
+ TCGA-A2-A1FV-01,-1
1059
+ TCGA-AO-A03L-01,-1
1060
+ TCGA-E2-A15E-06,-1
1061
+ TCGA-BH-A1ES-06,-1
1062
+ TCGA-B6-A0WV-01,-1
1063
+ TCGA-AN-A0XW-01,-1
1064
+ TCGA-AC-A23G-01,-1
1065
+ TCGA-AC-A3QQ-01,-1
1066
+ TCGA-EW-A1P8-01,-1
1067
+ TCGA-B6-A0I2-01,-1
1068
+ TCGA-A2-A0CX-01,-1
1069
+ TCGA-B6-A0RI-01,-1
1070
+ TCGA-B6-A0WX-01,-1
1071
+ TCGA-BH-A42U-01,-1
1072
+ TCGA-A8-A09G-01,-1
1073
+ TCGA-C8-A26W-01,-1
1074
+ TCGA-E2-A1LH-11,-1
1075
+ TCGA-AO-A03M-01,-1
1076
+ TCGA-E2-A1LB-01,-1
1077
+ TCGA-BH-A0DX-01,-1
1078
+ TCGA-AC-A6NO-01,-1
1079
+ TCGA-EW-A1J5-01,-1
1080
+ TCGA-AN-A0XV-01,-1
1081
+ TCGA-BH-A1F5-01,-1
1082
+ TCGA-A8-A07I-01,-1
1083
+ TCGA-C8-A12W-01,-1
1084
+ TCGA-AC-A8OQ-01,-1
1085
+ TCGA-A7-A4SF-01,-1
1086
+ TCGA-BH-A0BZ-11,-1
1087
+ TCGA-EW-A6SC-01,-1
1088
+ TCGA-AO-A1KR-01,-1
1089
+ TCGA-EW-A1PD-01,-1
1090
+ TCGA-EW-A1PC-01,-1
1091
+ TCGA-E2-A10B-01,-1
1092
+ TCGA-AR-A0TQ-01,-1
1093
+ TCGA-A2-A0EX-01,-1
1094
+ TCGA-E2-A14N-01,-1
1095
+ TCGA-5L-AAT0-01,-1
1096
+ TCGA-AR-A1AN-01,-1
1097
+ TCGA-D8-A1X5-01,-1
1098
+ TCGA-A2-A1G6-01,-1
1099
+ TCGA-A2-A04T-01,-1
1100
+ TCGA-B6-A0IJ-01,-1
1101
+ TCGA-AR-A256-01,-1
1102
+ TCGA-A7-A3J1-01,-1
1103
+ TCGA-C8-A12O-01,-1
1104
+ TCGA-E9-A249-01,-1
1105
+ TCGA-UL-AAZ6-01,-1
1106
+ TCGA-A8-A08R-01,-1
1107
+ TCGA-A2-A0T4-01,-1
1108
+ TCGA-BH-A0AZ-01,-1
1109
+ TCGA-AO-A03U-01,-1
1110
+ TCGA-A2-A0CO-01,-1
1111
+ TCGA-D8-A1JE-01,-1
1112
+ TCGA-A7-A0D9-11,-1
1113
+ TCGA-BH-A0H0-01,-1
1114
+ TCGA-AR-A5QP-01,-1
1115
+ TCGA-D8-A27R-01,-1
1116
+ TCGA-C8-A278-01,-1
1117
+ TCGA-A7-A13G-01,-1
1118
+ TCGA-BH-A0DL-11,-1
1119
+ TCGA-A8-A079-01,-1
1120
+ TCGA-A2-A0EP-01,-1
1121
+ TCGA-A2-A0T0-01,-1
1122
+ TCGA-D8-A27I-01,-1
1123
+ TCGA-BH-A0EI-01,-1
1124
+ TCGA-E2-A15A-01,-1
1125
+ TCGA-BH-A0DT-11,-1
1126
+ TCGA-AC-A2FM-01,-1
1127
+ TCGA-BH-A1EY-01,-1
1128
+ TCGA-AN-A0FT-01,-1
1129
+ TCGA-E9-A1NF-01,-1
1130
+ TCGA-BH-A0B6-01,-1
1131
+ TCGA-C8-A130-01,-1
1132
+ TCGA-A2-A0ER-01,-1
1133
+ TCGA-A2-A0EQ-01,-1
1134
+ TCGA-D8-A1XL-01,-1
1135
+ TCGA-C8-A12N-01,-1
1136
+ TCGA-GM-A2DO-01,-1
1137
+ TCGA-A8-A0AD-01,-1
1138
+ TCGA-Z7-A8R5-01,-1
1139
+ TCGA-A8-A07S-01,-1
1140
+ TCGA-BH-A0DD-11,-1
1141
+ TCGA-BH-A0HI-01,-1
1142
+ TCGA-AN-A0FV-01,-1
1143
+ TCGA-AC-A23E-01,-1
1144
+ TCGA-AQ-A7U7-01,-1
1145
+ TCGA-C8-A26X-01,-1
1146
+ TCGA-D8-A1XJ-01,-1
1147
+ TCGA-A8-A08X-01,-1
1148
+ TCGA-B6-A1KN-01,-1
1149
+ TCGA-AR-A1AM-01,-1
1150
+ TCGA-A2-A4S0-01,-1
1151
+ TCGA-AO-A1KP-01,-1
1152
+ TCGA-EW-A1OX-01,-1
1153
+ TCGA-BH-A0B2-11,-1
1154
+ TCGA-E9-A1NC-01,-1
1155
+ TCGA-LL-A740-01,-1
1156
+ TCGA-BH-A0C3-01,-1
1157
+ TCGA-BH-A0H9-01,-1
1158
+ TCGA-D8-A1X8-01,-1
1159
+ TCGA-E9-A22A-01,-1
1160
+ TCGA-AR-A1AI-01,-1
1161
+ TCGA-AC-A2BK-01,-1
1162
+ TCGA-A7-A13H-01,-1
1163
+ TCGA-LL-A6FQ-01,-1
1164
+ TCGA-C8-A1HO-01,-1
1165
+ TCGA-D8-A1XO-01,-1
1166
+ TCGA-E2-A1LE-01,-1
1167
+ TCGA-E2-A15J-01,-1
1168
+ TCGA-A7-A0DB-01,-1
1169
+ TCGA-BH-A1FE-01,-1
1170
+ TCGA-D8-A27G-01,-1
1171
+ TCGA-BH-A42T-01,-1
1172
+ TCGA-AN-A0FY-01,-1
1173
+ TCGA-BH-A18K-11,-1
1174
+ TCGA-B6-A0X5-01,-1
1175
+ TCGA-A2-A0YK-01,-1
1176
+ TCGA-A7-A0CG-01,-1
1177
+ TCGA-AN-A0FW-01,-1
1178
+ TCGA-D8-A27P-01,-1
1179
+ TCGA-BH-A0DS-01,-1
1180
+ TCGA-E2-A1L6-01,-1
1181
+ TCGA-BH-A0DG-01,-1
1182
+ TCGA-A2-A0CP-01,-1
1183
+ TCGA-BH-A5IZ-01,-1
1184
+ TCGA-A8-A09W-01,-1
1185
+ TCGA-E2-A107-01,-1
1186
+ TCGA-AR-A252-01,-1
1187
+ TCGA-C8-A12Z-01,-1
1188
+ TCGA-BH-A202-01,-1
1189
+ TCGA-AO-A1KT-01,-1
1190
+ TCGA-D8-A1XW-01,-1
1191
+ TCGA-D8-A1JU-01,-1
1192
+ TCGA-E9-A1N5-01,-1
1193
+ TCGA-A2-A4S1-01,-1
1194
+ TCGA-E2-A1IG-11,-1
1195
+ TCGA-E2-A153-01,-1
1196
+ TCGA-A2-A0YG-01,-1
1197
+ TCGA-BH-A0B7-01,-1
1198
+ TCGA-D8-A1X6-01,-1
1199
+ TCGA-BH-A0BL-01,-1
1200
+ TCGA-BH-A0DO-01,-1
1201
+ TCGA-A2-A04Q-01,-1
1202
+ TCGA-BH-A0B5-11,-1
1203
+ TCGA-BH-A1FE-06,-1
1204
+ TCGA-E9-A1NI-01,-1
1205
+ TCGA-BH-A0HY-01,-1
1206
+ TCGA-AR-A24T-01,-1
1207
+ TCGA-E9-A1NF-11,-1
1208
+ TCGA-AO-A0JA-01,-1
1209
+ TCGA-D8-A1XZ-01,-1
1210
+ TCGA-A7-A13E-11,-1
1211
+ TCGA-C8-A8HP-01,-1
1212
+ TCGA-E9-A5FL-01,-1
1213
+ TCGA-AC-A2FB-11,-1
1214
+ TCGA-E2-A15F-01,-1
1215
+ TCGA-A2-A3XT-01,-1
1216
+ TCGA-B6-A0X7-01,-1
1217
+ TCGA-BH-A1EV-11,-1
1218
+ TCGA-3C-AALJ-01,-1
1219
+ TCGA-B6-A0X1-01,-1
p3/preprocess/Obesity/code/GSE123086.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE123086"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE123086"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE123086.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE123086.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE123086.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Yes, from series design we can see RNA microarray was used
38
+ is_gene_available = True
39
+
40
+ # 2.1 Data Availability
41
+ # Trait data is in Feature 1 under "primary diagnosis"
42
+ trait_row = 1
43
+
44
+ # Age data is spread across Features 3 and 4
45
+ age_row = 3
46
+
47
+ # Gender data is in Feature 2 under "Sex"
48
+ gender_row = 2
49
+
50
+ # 2.2 Data Type Conversion Functions
51
+ def convert_trait(x):
52
+ # Extract value after colon and convert to binary
53
+ if pd.isna(x):
54
+ return None
55
+ value = x.split(': ')[1]
56
+ if value == 'OBESITY':
57
+ return 1
58
+ elif value == 'HEALTHY_CONTROL':
59
+ return 0
60
+ return None
61
+
62
+ def convert_age(x):
63
+ # Extract age value as continuous
64
+ if pd.isna(x):
65
+ return None
66
+ if not x.startswith('age:'):
67
+ return None
68
+ try:
69
+ return float(x.split(': ')[1])
70
+ except:
71
+ return None
72
+
73
+ def convert_gender(x):
74
+ # Convert gender to binary (female=0, male=1)
75
+ if pd.isna(x):
76
+ return None
77
+ if not x.startswith('Sex:'):
78
+ return None
79
+ value = x.split(': ')[1]
80
+ if value == 'Female':
81
+ return 0
82
+ elif value == 'Male':
83
+ return 1
84
+ return None
85
+
86
+ # 3. Initial Filtering and Save Metadata
87
+ is_trait_available = trait_row is not None
88
+ validate_and_save_cohort_info(is_final=False,
89
+ cohort=cohort,
90
+ info_path=json_path,
91
+ is_gene_available=is_gene_available,
92
+ is_trait_available=is_trait_available)
93
+
94
+ # 4. Clinical Feature Extraction
95
+ if trait_row is not None:
96
+ clinical_features = geo_select_clinical_features(
97
+ clinical_data,
98
+ trait=trait,
99
+ trait_row=trait_row,
100
+ convert_trait=convert_trait,
101
+ age_row=age_row,
102
+ convert_age=convert_age,
103
+ gender_row=gender_row,
104
+ convert_gender=convert_gender
105
+ )
106
+ print("Preview of extracted clinical features:")
107
+ print(preview_df(clinical_features))
108
+ clinical_features.to_csv(out_clinical_data_file)
109
+ # Extract gene expression data from matrix file
110
+ gene_data = get_genetic_data(matrix_file)
111
+
112
+ # Print first 20 row IDs and shape of data to help debug
113
+ print("Shape of gene expression data:", gene_data.shape)
114
+ print("\nFirst few rows of data:")
115
+ print(gene_data.head())
116
+ print("\nFirst 20 gene/probe identifiers:")
117
+ print(gene_data.index[:20])
118
+
119
+ # Inspect a snippet of raw file to verify identifier format
120
+ import gzip
121
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
122
+ lines = []
123
+ for i, line in enumerate(f):
124
+ if "!series_matrix_table_begin" in line:
125
+ # Get the next 5 lines after the marker
126
+ for _ in range(5):
127
+ lines.append(next(f).strip())
128
+ break
129
+ print("\nFirst few lines after matrix marker in raw file:")
130
+ for line in lines:
131
+ print(line)
132
+ # Looking at the identifiers - they are numeric values (1,2,3,9,10 etc)
133
+ # These appear to be probe/feature IDs rather than gene symbols
134
+ # Therefore mapping to gene symbols will be required
135
+ requires_gene_mapping = True
136
+ # Get file paths using library function
137
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
138
+
139
+ # For SOFT files with platform annotations, we need to get rows not starting with '!'
140
+ # but also not containing just numeric IDs and entrez genes
141
+ gene_annotation = pd.read_csv(soft_file, compression='gzip', sep='\t', header=None,
142
+ comment='!', on_bad_lines='skip')
143
+
144
+ # Find rows with detailed platform annotations (containing gene symbols)
145
+ annotation_starts = False
146
+ annotation_lines = []
147
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
148
+ for line in f:
149
+ if "!platform_table_begin" in line:
150
+ annotation_starts = True
151
+ # Get the header line
152
+ header = next(f).strip()
153
+ annotation_lines.append(header)
154
+ continue
155
+ if annotation_starts:
156
+ if "!platform_table_end" in line:
157
+ break
158
+ annotation_lines.append(line.strip())
159
+
160
+ # Convert annotation lines to dataframe
161
+ annotation_content = '\n'.join(annotation_lines)
162
+ gene_annotation = pd.read_csv(io.StringIO(annotation_content), sep='\t')
163
+
164
+ # Preview annotation data
165
+ print("Gene annotation shape:", gene_annotation.shape)
166
+ print("\nAll column names:")
167
+ print(gene_annotation.columns.tolist())
168
+
169
+ print("\nFirst few rows:")
170
+ print(gene_annotation.head().to_string())
171
+
172
+ print("\nNumber of non-null values in each column:")
173
+ print(gene_annotation.count())
174
+
175
+ # Print example rows showing ID and gene symbol columns
176
+ print("\nSample rows showing the ID and gene symbol mapping:")
177
+ symbol_col = [col for col in gene_annotation.columns if 'symbol' in col.lower()][0]
178
+ print(gene_annotation[['ID', symbol_col]].head(10))
179
+ # Extract complete platform annotation table from SOFT file
180
+ platform_lines = []
181
+ annotation_starts = False
182
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
183
+ for line in f:
184
+ if line.startswith('^PLATFORM'):
185
+ platform_lines.append(line)
186
+ elif line.startswith('!Platform_data_row_count'):
187
+ platform_lines.append(line)
188
+ elif line.startswith('!Platform_table_begin'):
189
+ annotation_starts = True
190
+ header = next(f).strip()
191
+ platform_lines.append(header)
192
+ continue
193
+ elif annotation_starts:
194
+ if line.startswith('!Platform_table_end'):
195
+ break
196
+ platform_lines.append(line.strip())
197
+
198
+ # Parse platform annotation content
199
+ platform_content = '\n'.join(platform_lines)
200
+ gene_annotation = pd.read_csv(io.StringIO(platform_content), sep='\t', comment='!', skiprows=2)
201
+
202
+ # Create mapping DataFrame using ID and gene symbol
203
+ mapping_df = gene_annotation[['ID', 'GB_ACC']].copy()
204
+ mapping_df = mapping_df.rename(columns={'GB_ACC': 'Gene'})
205
+
206
+ # Clean gene symbols - split on spaces/semicolons and take first value
207
+ mapping_df['Gene'] = mapping_df['Gene'].astype(str).apply(lambda x: x.split(';')[0].split()[0])
208
+ mapping_df = mapping_df.dropna()
209
+
210
+ # Apply gene mapping to convert probe expression to gene expression
211
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
212
+
213
+ # Normalize gene symbols using the provided function
214
+ gene_data = normalize_gene_symbols_in_index(gene_data)
215
+
216
+ # Save gene expression data
217
+ gene_data.to_csv(out_gene_data_file)
218
+
219
+ # Preview the mapped gene data
220
+ print("Shape of gene expression data after mapping:", gene_data.shape)
221
+ print("\nFirst few mapped genes and their expression values:")
222
+ print(gene_data.head())
223
+ # Get file paths using library function
224
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
225
+
226
+ # Try to peek at the SOFT file contents first
227
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
228
+ # Read first few lines to understand file structure
229
+ print("First 20 lines of SOFT file:")
230
+ for i, line in enumerate(f):
231
+ if i < 20:
232
+ print(line.strip())
233
+ else:
234
+ break
235
+
236
+ # Reset file pointer
237
+ f.seek(0)
238
+
239
+ # Look for the platform table section
240
+ print("\nPlatform table header:")
241
+ for line in f:
242
+ if "!Platform_table_begin" in line:
243
+ # Print the next line which should be the header
244
+ print(next(f).strip())
245
+ break
246
+
247
+ # Now extract annotation data using a simpler method - get lines between table markers
248
+ annotation_lines = []
249
+ table_started = False
250
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
251
+ for line in f:
252
+ if "!Platform_table_begin" in line:
253
+ header = next(f).strip()
254
+ annotation_lines.append(header)
255
+ table_started = True
256
+ continue
257
+ if table_started:
258
+ if "!Platform_table_end" in line:
259
+ break
260
+ annotation_lines.append(line.strip())
261
+
262
+ # Convert to dataframe
263
+ annotation_text = '\n'.join(annotation_lines)
264
+ gene_annotation = pd.read_csv(io.StringIO(annotation_text), sep='\t')
265
+
266
+ # Preview annotation data
267
+ print("\nAnnotation data shape:", gene_annotation.shape)
268
+ print("\nColumn names:")
269
+ print(gene_annotation.columns.tolist())
270
+ print("\nFirst few rows:")
271
+ print(gene_annotation.head())
272
+ # 1. Let's examine SOFT file content first to identify correct gene identifier columns
273
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
274
+ for line in f:
275
+ if '!Platform_table_begin' in line:
276
+ header = next(f).strip()
277
+ print("Platform table header:")
278
+ print(header)
279
+ print("\nFirst few data rows:")
280
+ for i in range(5):
281
+ print(next(f).strip())
282
+ break
283
+
284
+ # Extract gene metadata using library function
285
+ gene_metadata = get_gene_annotation(soft_file)
286
+
287
+ # Print available columns to identify gene symbol column
288
+ print("\nAvailable annotation columns:")
289
+ print(gene_metadata.columns.tolist())
290
+
291
+ print("\nPreview of gene metadata:")
292
+ print(gene_metadata.head())
293
+
294
+ # Get gene expression data
295
+ gene_data = get_genetic_data(matrix_file)
296
+
297
+ # Print shape and preview of expression data before mapping
298
+ print("\nShape of gene expression data before mapping:", gene_data.shape)
299
+ print("\nPreview of gene expression data before mapping:")
300
+ print(gene_data.head())
301
+ # Use library function to get gene annotation from SOFT file
302
+ gene_metadata = get_gene_annotation(soft_file)
303
+
304
+ # Create mapping DataFrame using ID and ENTREZ_GENE_ID
305
+ mapping_df = gene_metadata[['ID', 'ENTREZ_GENE_ID']].copy()
306
+ mapping_df = mapping_df.rename(columns={'ENTREZ_GENE_ID': 'Gene'})
307
+
308
+ # Clean and prepare mapping data
309
+ mapping_df['ID'] = mapping_df['ID'].astype(str)
310
+ mapping_df['Gene'] = mapping_df['Gene'].astype(str)
311
+ mapping_df = mapping_df.dropna()
312
+
313
+ # Apply gene mapping to convert probe expression to gene expression
314
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
315
+
316
+ # Normalize gene symbols
317
+ gene_data = normalize_gene_symbols_in_index(gene_data)
318
+
319
+ # Save processed gene expression data
320
+ gene_data.to_csv(out_gene_data_file)
321
+
322
+ print("\nShape of gene expression data after mapping:", gene_data.shape)
323
+ print("\nFirst few mapped genes and their expression values:")
324
+ print(gene_data.head())
325
+ # Get file paths using library function
326
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
327
+
328
+ # Extract gene annotation from SOFT file and get meaningful data
329
+ gene_annotation = get_gene_annotation(soft_file)
330
+
331
+ # Preview gene annotation data
332
+ print("Gene annotation shape:", gene_annotation.shape)
333
+ print("\nGene annotation preview:")
334
+ print(preview_df(gene_annotation))
335
+
336
+ print("\nNumber of non-null values in each column:")
337
+ print(gene_annotation.count())
338
+
339
+ # Print example rows showing the mapping information columns
340
+ print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
341
+ print("\nFirst 5 rows:")
342
+ print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
343
+
344
+ print("\nNote: Gene mapping will use:")
345
+ print("'ID' column: Probe identifiers")
346
+ print("'GENE_SYMBOL' column: Contains gene symbol information")
p3/preprocess/Obesity/code/GSE123088.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE123088"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE123088"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE123088.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE123088.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE123088.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ import pandas as pd
37
+ import numpy as np
38
+
39
+ # Check gene expression data availability
40
+ is_gene_available = True # CD4+ T cells expression data should be present
41
+
42
+ # Find trait, age and gender data rows and define conversion functions
43
+ trait_row = 1 # 'primary diagnosis' contains obesity info
44
+ age_row = 3 # 'age' info starts in row 3, continues in row 4
45
+ gender_row = 2 # 'Sex' information
46
+
47
+ def convert_trait(x):
48
+ if pd.isna(x):
49
+ return None
50
+ val = x.split(': ')[1] if ': ' in x else x
51
+ if val.upper() in ['OBESITY']:
52
+ return 1
53
+ elif 'CONTROL' in val.upper():
54
+ return 0
55
+ return None
56
+
57
+ def convert_age(x):
58
+ if pd.isna(x):
59
+ return None
60
+ try:
61
+ val = x.split(': ')[1] if ': ' in x else x
62
+ return float(val)
63
+ except:
64
+ return None
65
+
66
+ def convert_gender(x):
67
+ if pd.isna(x):
68
+ return None
69
+ val = x.split(': ')[1] if ': ' in x else x
70
+ if val.upper() == 'FEMALE':
71
+ return 0
72
+ elif val.upper() == 'MALE':
73
+ return 1
74
+ return None
75
+
76
+ # Validate and save initial cohort info
77
+ _ = validate_and_save_cohort_info(
78
+ is_final=False,
79
+ cohort=cohort,
80
+ info_path=json_path,
81
+ is_gene_available=is_gene_available,
82
+ is_trait_available=trait_row is not None
83
+ )
84
+
85
+ # Extract clinical features if trait data is available
86
+ if trait_row is not None:
87
+ selected_clinical_df = geo_select_clinical_features(
88
+ clinical_data,
89
+ trait=trait,
90
+ trait_row=trait_row,
91
+ convert_trait=convert_trait,
92
+ age_row=age_row,
93
+ convert_age=convert_age,
94
+ gender_row=gender_row,
95
+ convert_gender=convert_gender
96
+ )
97
+
98
+ # Preview the clinical features
99
+ preview = preview_df(selected_clinical_df)
100
+ print("Clinical features preview:")
101
+ print(preview)
102
+
103
+ # Save clinical features
104
+ selected_clinical_df.to_csv(out_clinical_data_file)
105
+ # Extract gene expression data from matrix file
106
+ gene_data = get_genetic_data(matrix_file)
107
+
108
+ # Print first 20 row IDs and shape of data to help debug
109
+ print("Shape of gene expression data:", gene_data.shape)
110
+ print("\nFirst few rows of data:")
111
+ print(gene_data.head())
112
+ print("\nFirst 20 gene/probe identifiers:")
113
+ print(gene_data.index[:20])
114
+
115
+ # Inspect a snippet of raw file to verify identifier format
116
+ import gzip
117
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
118
+ lines = []
119
+ for i, line in enumerate(f):
120
+ if "!series_matrix_table_begin" in line:
121
+ # Get the next 5 lines after the marker
122
+ for _ in range(5):
123
+ lines.append(next(f).strip())
124
+ break
125
+ print("\nFirst few lines after matrix marker in raw file:")
126
+ for line in lines:
127
+ print(line)
128
+ # Based on the gene expression data shown, the identifiers appear to be numerical indices (1, 2, 3, etc.)
129
+ # rather than human gene symbols. This indicates mapping to gene symbols will be required.
130
+ requires_gene_mapping = True
131
+ # Get file paths using library function
132
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
133
+
134
+ # First inspect a snippet of raw SOFT file to understand its structure
135
+ import gzip
136
+ print("Inspecting raw SOFT file structure:")
137
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
138
+ lines = []
139
+ for i, line in enumerate(f):
140
+ if i < 20: # Look at first 20 lines
141
+ lines.append(line.strip())
142
+ else:
143
+ break
144
+ print('\n'.join(lines))
145
+ print("\n" + "="*50 + "\n")
146
+
147
+ # Extract gene annotation from SOFT file, excluding header lines
148
+ gene_annotation = get_gene_annotation(soft_file)
149
+
150
+ # Preview gene annotation data
151
+ print("Gene annotation shape:", gene_annotation.shape)
152
+ print("\nGene annotation columns:")
153
+ print(gene_annotation.columns.tolist())
154
+ print("\nGene annotation preview:")
155
+ print(preview_df(gene_annotation))
156
+
157
+ print("\nNumber of non-null values in each column:")
158
+ print(gene_annotation.count())
159
+
160
+ # Print first few rows of annotation data to verify structure
161
+ print("\nFirst 5 rows of annotation data:")
162
+ print(gene_annotation.head().to_string())
163
+ # First find the SubSeries ID from the SOFT file
164
+ import gzip
165
+ subseries_id = None
166
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
167
+ for line in f:
168
+ if line.startswith('!Series_relation'):
169
+ if 'SubSeries of:' not in line:
170
+ subseries_id = line.strip().split(' = ')[1].split(' ')[0]
171
+ break
172
+
173
+ # The correct subseries directory should be one level up
174
+ platform_soft_file = os.path.join(os.path.dirname(os.path.dirname(soft_file)),
175
+ subseries_id,
176
+ f"{subseries_id}_family.soft.gz")
177
+
178
+ # Extract platform annotation from the subseries SOFT file
179
+ platform_lines = []
180
+ with gzip.open(platform_soft_file, 'rt', encoding='utf-8') as f:
181
+ reading_platform = False
182
+ for line in f:
183
+ if line.startswith('!Platform_table_begin'):
184
+ reading_platform = True
185
+ # Skip the header line
186
+ header = next(f).strip().split('\t')
187
+ continue
188
+ elif line.startswith('!Platform_table_end'):
189
+ break
190
+ elif reading_platform:
191
+ platform_lines.append(line.strip())
192
+
193
+ # Create platform annotation dataframe
194
+ platform_data = [line.split('\t') for line in platform_lines]
195
+ df_platform = pd.DataFrame(platform_data, columns=header)
196
+
197
+ # Get mapping using ID and gene symbol columns
198
+ mapping_data = get_gene_mapping(df_platform, 'ID', 'Gene Symbol')
199
+
200
+ # Apply gene mapping to convert probe-level data to gene expression data
201
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
202
+
203
+ # Preview results
204
+ print("Shape of gene expression data after mapping:", gene_data.shape)
205
+ print("\nFirst few rows of mapped gene expression data:")
206
+ print(gene_data.head())
207
+ # Ensure index is string type for gene symbol mapping
208
+ gene_data.index = gene_data.index.astype(str)
209
+
210
+ # Convert Entrez IDs to gene symbols using the built-in mapping
211
+ gene_data = normalize_gene_symbols_in_index(gene_data)
212
+
213
+ # Print shape and preview results
214
+ print("Shape of gene expression data after mapping:", gene_data.shape)
215
+ print("\nFirst few rows of mapped gene expression data:")
216
+ print(gene_data.head())
217
+
218
+ # Save gene expression data
219
+ gene_data.to_csv(out_gene_data_file)
220
+ # 1. First get platform annotation with gene symbols
221
+ import gzip
222
+
223
+ with gzip.open(soft_file, 'rt') as f:
224
+ platform_section = False
225
+ platform_lines = []
226
+ for line in f:
227
+ if line.startswith('^PLATFORM'):
228
+ platform_section = True
229
+ elif platform_section and line.startswith('!Platform_table_begin'):
230
+ header = next(f).strip().split('\t')
231
+ for l in f:
232
+ if l.startswith('!Platform_table_end'):
233
+ break
234
+ platform_lines.append(l.strip())
235
+
236
+ # Create platform annotation dataframe
237
+ platform_data = [line.split('\t') for line in platform_lines]
238
+ platform_df = pd.DataFrame(platform_data, columns=header)
239
+ mapping_df = get_gene_mapping(platform_df, 'ID', 'Gene Symbol')
240
+
241
+ # Apply mapping to convert probe-level data to gene expression data
242
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
243
+
244
+ # 2. Load clinical data and normalize gene symbols
245
+ selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
246
+ gene_data = normalize_gene_symbols_in_index(gene_data)
247
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
248
+ gene_data.to_csv(out_gene_data_file)
249
+
250
+ # 3. Link clinical and genetic data
251
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
252
+
253
+ # 4. Handle missing values
254
+ linked_data = handle_missing_values(linked_data, trait)
255
+
256
+ # 5. Check for biased features and remove them if needed
257
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
258
+
259
+ # 6. Validate and save cohort info
260
+ is_usable = validate_and_save_cohort_info(
261
+ is_final=True,
262
+ cohort=cohort,
263
+ info_path=json_path,
264
+ is_gene_available=True,
265
+ is_trait_available=True,
266
+ is_biased=is_biased,
267
+ df=linked_data,
268
+ note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity"
269
+ )
270
+
271
+ # 7. Save linked data if usable
272
+ if is_usable:
273
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
274
+ linked_data.to_csv(out_data_file)
275
+ # 1. Since we have Entrez IDs in the gene expression data index,
276
+ # we can directly normalize them to gene symbols
277
+ gene_data = normalize_gene_symbols_in_index(gene_data)
278
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
279
+ gene_data.to_csv(out_gene_data_file)
280
+
281
+ # 2. Load clinical data and link with genetic data
282
+ selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
283
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
284
+
285
+ # 3. Handle missing values
286
+ linked_data = handle_missing_values(linked_data, trait)
287
+
288
+ # 4. Check for biased features and remove them if needed
289
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
290
+
291
+ # 5. Validate and save cohort info
292
+ is_usable = validate_and_save_cohort_info(
293
+ is_final=True,
294
+ cohort=cohort,
295
+ info_path=json_path,
296
+ is_gene_available=True,
297
+ is_trait_available=True,
298
+ is_biased=is_biased,
299
+ df=linked_data,
300
+ note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity"
301
+ )
302
+
303
+ # 6. Save linked data if usable
304
+ if is_usable:
305
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
306
+ linked_data.to_csv(out_data_file)
p3/preprocess/Obesity/code/GSE158237.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE158237"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE158237"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE158237.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE158237.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE158237.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on series title and summary mentioning RNA extraction and transcriptomics,
38
+ # this dataset likely contains gene expression data
39
+ is_gene_available = True
40
+
41
+ # 2. Variable Availability and Data Type Conversion
42
+ # 2.1 Data Availability
43
+ trait_row = 10 # BMI data in Feature 10
44
+ age_row = 1 # Age data in Feature 1
45
+ gender_row = 2 # Sex data in Feature 2
46
+
47
+ # 2.2 Data Type Conversion Functions
48
+ def convert_trait(value):
49
+ # Convert BMI value to binary (0 for non-obese, 1 for obese)
50
+ if pd.isna(value):
51
+ return None
52
+ try:
53
+ bmi = float(value.split(': ')[1])
54
+ return 1 if bmi >= 30 else 0 # Standard obesity threshold
55
+ except:
56
+ return None
57
+
58
+ def convert_age(value):
59
+ # Convert age to continuous value
60
+ if pd.isna(value):
61
+ return None
62
+ try:
63
+ age = float(value.split(': ')[1])
64
+ return age
65
+ except:
66
+ return None
67
+
68
+ def convert_gender(value):
69
+ # Convert sex to binary (0 for female, 1 for male)
70
+ if pd.isna(value):
71
+ return None
72
+ try:
73
+ sex = int(value.split(': ')[1])
74
+ return 1 if sex == 1 else 0 # Assuming Sex:1 is male and Sex:2 is female
75
+ except:
76
+ return None
77
+
78
+ # 3. Save Metadata
79
+ # Conduct initial filtering
80
+ validate_and_save_cohort_info(is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=(trait_row is not None))
85
+
86
+ # 4. Clinical Feature Extraction
87
+ # Since trait_row is not None, extract clinical features
88
+ if trait_row is not None:
89
+ clinical_features = geo_select_clinical_features(clinical_data,
90
+ trait=trait,
91
+ trait_row=trait_row,
92
+ convert_trait=convert_trait,
93
+ age_row=age_row,
94
+ convert_age=convert_age,
95
+ gender_row=gender_row,
96
+ convert_gender=convert_gender)
97
+
98
+ # Preview the extracted features
99
+ preview = preview_df(clinical_features)
100
+ print("Preview of clinical features:", preview)
101
+
102
+ # Save to CSV
103
+ clinical_features.to_csv(out_clinical_data_file)
104
+ # Extract gene expression data from matrix file
105
+ gene_data = get_genetic_data(matrix_file)
106
+
107
+ # Print first 20 row IDs and shape of data to help debug
108
+ print("Shape of gene expression data:", gene_data.shape)
109
+ print("\nFirst few rows of data:")
110
+ print(gene_data.head())
111
+ print("\nFirst 20 gene/probe identifiers:")
112
+ print(gene_data.index[:20])
113
+
114
+ # Inspect a snippet of raw file to verify identifier format
115
+ import gzip
116
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
117
+ lines = []
118
+ for i, line in enumerate(f):
119
+ if "!series_matrix_table_begin" in line:
120
+ # Get the next 5 lines after the marker
121
+ for _ in range(5):
122
+ lines.append(next(f).strip())
123
+ break
124
+ print("\nFirst few lines after matrix marker in raw file:")
125
+ for line in lines:
126
+ print(line)
127
+ # From the output, we can see the identifiers appear to be numeric probe IDs (e.g. 16657436)
128
+ # rather than human gene symbols (which would look like BRCA1, TP53 etc)
129
+ # These need to be mapped to gene symbols for biological interpretation
130
+ requires_gene_mapping = True
131
+ # Get file paths using library function
132
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
133
+
134
+ # Extract gene annotation from SOFT file
135
+ # Use different prefix filters to capture platform annotation with gene symbols
136
+ gene_annotation = filter_content_by_prefix(soft_file,
137
+ prefixes_a=['!Platform_table_begin'],
138
+ unselect=False,
139
+ source_type='file',
140
+ return_df_a=True)[0]
141
+
142
+ # Preview gene annotation data
143
+ print("Gene annotation shape:", gene_annotation.shape)
144
+ print("\nGene annotation columns:", list(gene_annotation.columns))
145
+ print("\nGene annotation preview:")
146
+ print(preview_df(gene_annotation))
147
+
148
+ # Print non-null values for each column to help identify useful columns
149
+ print("\nNumber of non-null values in each column:")
150
+ print(gene_annotation.count())
151
+
152
+ # Print example rows showing ID and gene symbol columns
153
+ print("\nExample rows with ID and gene symbol information:")
154
+ print(gene_annotation[['ID', 'Symbol']].head(10).to_string())
155
+ # Get file paths using library function
156
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
157
+
158
+ # First examine the raw SOFT file content to locate platform annotation section
159
+ import gzip
160
+ platform_start = False
161
+ header_line = None
162
+ first_data_line = None
163
+
164
+ with gzip.open(soft_file, 'rt') as f:
165
+ for line in f:
166
+ if '!Platform_table_begin' in line:
167
+ platform_start = True
168
+ # Get the next two lines (header and first data)
169
+ header_line = next(f).strip()
170
+ first_data_line = next(f).strip()
171
+ break
172
+
173
+ print("Header line found:")
174
+ print(header_line)
175
+ print("\nFirst data line example:")
176
+ print(first_data_line)
177
+
178
+ # Extract platform annotation data
179
+ from io import StringIO
180
+ platform_data = []
181
+ platform_start = False
182
+
183
+ with gzip.open(soft_file, 'rt') as f:
184
+ for line in f:
185
+ if '!Platform_table_begin' in line:
186
+ platform_start = True
187
+ continue
188
+ elif '!Platform_table_end' in line:
189
+ break
190
+ elif platform_start:
191
+ platform_data.append(line.strip())
192
+
193
+ # Convert to dataframe
194
+ gene_annotation = pd.read_csv(StringIO('\n'.join(platform_data)), sep='\t')
195
+
196
+ # Preview gene annotation data
197
+ print("\nGene annotation shape:", gene_annotation.shape)
198
+ print("\nGene annotation columns:", gene_annotation.columns.tolist())
199
+ print("\nFirst few rows preview:")
200
+ print(gene_annotation.head().to_string())
201
+
202
+ # Look for columns that might contain gene symbols
203
+ symbol_candidates = [col for col in gene_annotation.columns
204
+ if any(term in col.lower()
205
+ for term in ['gene', 'symbol', 'entrez', 'refseq'])]
206
+ print("\nPotential gene symbol columns:", symbol_candidates)
207
+ from io import StringIO
208
+
209
+ # First inspect the SOFT file content to understand structure
210
+ import gzip
211
+ print("Examining SOFT file content...")
212
+ with gzip.open(soft_file, 'rt') as f:
213
+ for line in f:
214
+ # Look for platform annotation sections that might contain gene info
215
+ if "!Platform_table_begin" in line:
216
+ header = next(f).strip()
217
+ print("\nFound platform table with header:")
218
+ print(header)
219
+ print("\nFirst few data lines:")
220
+ for _ in range(5):
221
+ print(next(f).strip())
222
+ break
223
+
224
+ # Try extracting gene annotation using different prefix patterns
225
+ gene_metadata_str = filter_content_by_prefix(soft_file,
226
+ prefixes_a=['^', '#'],
227
+ unselect=True,
228
+ source_type='file',
229
+ return_df_a=False)[0]
230
+
231
+ # Process the metadata string to find the section with gene annotations
232
+ annotation_lines = []
233
+ capture = False
234
+ for line in gene_metadata_str.split('\n'):
235
+ if 'Reporter Database Entry [gene symbol]' in line:
236
+ # Found the start of gene symbol annotations
237
+ capture = True
238
+ continue
239
+ if capture and line.strip():
240
+ if line.startswith('!'): # End of section
241
+ break
242
+ annotation_lines.append(line)
243
+
244
+ if annotation_lines:
245
+ # Convert captured lines to DataFrame
246
+ gene_metadata = pd.read_csv(StringIO('\n'.join(annotation_lines)), sep='\t')
247
+
248
+ print("\nAvailable columns in gene annotation data:")
249
+ print(gene_metadata.columns.tolist())
250
+
251
+ # Create mapping dataframe using ID and gene symbol columns
252
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
253
+
254
+ # Apply gene mapping to convert probe-level data to gene-level data
255
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
256
+
257
+ # Print shape information to confirm successful mapping
258
+ print(f"\nShape of mapped gene expression data: {gene_data.shape}")
259
+ print("\nFirst few gene symbols:")
260
+ print(gene_data.index[:10])
261
+ else:
262
+ print("\nNo gene symbol annotation section found in the SOFT file.")
263
+ # Load the clinical data that was successfully saved earlier
264
+ selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
265
+
266
+ # Create minimal df with just clinical features for validation
267
+ minimal_df = selected_clinical.copy()
268
+
269
+ # Check for biased features with just clinical data
270
+ is_biased, minimal_df = judge_and_remove_biased_features(minimal_df, trait)
271
+
272
+ # Save validation info with minimal df
273
+ is_usable = validate_and_save_cohort_info(
274
+ is_final=True,
275
+ cohort=cohort,
276
+ info_path=json_path,
277
+ is_gene_available=False, # Gene mapping failed
278
+ is_trait_available=True,
279
+ is_biased=is_biased,
280
+ df=minimal_df,
281
+ note="Failed to extract gene symbol annotations from SOFT file"
282
+ )
283
+
284
+ # Do not save linked data since processing was unsuccessful
p3/preprocess/Obesity/code/GSE158850.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE158850"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE158850"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE158850.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE158850.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE158850.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on series title and design, this appears to be skeletal muscle transcriptome data
38
+ is_gene_available = True
39
+
40
+ # 2.1 Data Availability
41
+ # Trait: No specific obesity measurement values are provided
42
+ trait_row = None
43
+
44
+ # Age: Background info indicates having young and elderly groups, but not specific ages
45
+ age_row = None
46
+
47
+ # Gender: Feature 1 shows mix of male/female
48
+ gender_row = None
49
+
50
+ # 2.2 Data Type Conversion Functions
51
+ def convert_trait(x):
52
+ # Not used since trait data not available
53
+ return None
54
+
55
+ def convert_age(x):
56
+ # Not used since age data not available
57
+ return None
58
+
59
+ def convert_gender(x):
60
+ # Not used since gender data not available
61
+ return None
62
+
63
+ # 3. Save metadata
64
+ is_trait_available = trait_row is not None
65
+ validate_and_save_cohort_info(
66
+ is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=is_trait_available
71
+ )
72
+
73
+ # 4. Skip clinical feature extraction since trait_row is None
74
+ # Extract gene expression data from matrix file
75
+ gene_data = get_genetic_data(matrix_file)
76
+
77
+ # Print first 20 row IDs and shape of data to help debug
78
+ print("Shape of gene expression data:", gene_data.shape)
79
+ print("\nFirst few rows of data:")
80
+ print(gene_data.head())
81
+ print("\nFirst 20 gene/probe identifiers:")
82
+ print(gene_data.index[:20])
83
+
84
+ # Inspect a snippet of raw file to verify identifier format
85
+ import gzip
86
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
87
+ lines = []
88
+ for i, line in enumerate(f):
89
+ if "!series_matrix_table_begin" in line:
90
+ # Get the next 5 lines after the marker
91
+ for _ in range(5):
92
+ lines.append(next(f).strip())
93
+ break
94
+ print("\nFirst few lines after matrix marker in raw file:")
95
+ for line in lines:
96
+ print(line)
97
+ requires_gene_mapping = True
98
+ # Get file paths using library function
99
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
100
+
101
+ # Extract gene annotation from SOFT file and get meaningful data
102
+ gene_annotation = get_gene_annotation(soft_file)
103
+
104
+ # Preview gene annotation data
105
+ print("Gene annotation shape:", gene_annotation.shape)
106
+ print("\nGene annotation preview:")
107
+ print(preview_df(gene_annotation))
108
+
109
+ print("\nNumber of non-null values in each column:")
110
+ print(gene_annotation.count())
111
+
112
+ # Print example rows showing the mapping information columns
113
+ print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
114
+ print("\nFirst 5 rows:")
115
+ print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
116
+
117
+ print("\nNote: Gene mapping will use:")
118
+ print("'ID' column: Probe identifiers")
119
+ print("'GENE_SYMBOL' column: Contains gene symbol information")
120
+ # Create mapping between probe IDs and gene symbols
121
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
122
+
123
+ # Apply gene mapping to convert probe-level data to gene-level data
124
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
125
+
126
+ # Verify the result
127
+ print("Shape of gene expression data after mapping:", gene_data.shape)
128
+ print("\nFirst few rows after mapping:")
129
+ print(gene_data.head())
130
+ print("\nFirst 20 gene symbols:")
131
+ print(gene_data.index[:20])
132
+ # 1. Normalize and save gene data
133
+ gene_data.index = gene_data.index.str.replace('-mRNA', '')
134
+ gene_data = normalize_gene_symbols_in_index(gene_data)
135
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
136
+ gene_data.to_csv(out_gene_data_file)
137
+
138
+ # Create empty DataFrame for validation since we lack clinical data
139
+ empty_df = pd.DataFrame()
140
+
141
+ # Validate and save cohort info, marking as biased due to lack of trait data
142
+ validate_and_save_cohort_info(
143
+ is_final=True,
144
+ cohort=cohort,
145
+ info_path=json_path,
146
+ is_gene_available=True,
147
+ is_trait_available=False,
148
+ is_biased=True,
149
+ df=empty_df,
150
+ note="Study has gene expression data but lacks usable clinical trait information for obesity analysis"
151
+ )
p3/preprocess/Obesity/code/GSE159809.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE159809"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE159809"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE159809.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE159809.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE159809.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on series description, this dataset studies transcriptomes, so gene expression data is available
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # From study background, all subjects are obese men, with age categories of young/elderly
42
+ trait_row = 0 # First characteristic row contains subject info
43
+ age_row = 0 # Age category (young/elderly) can be inferred from the same row
44
+ gender_row = 0 # Gender (all male) can be inferred from the same row
45
+
46
+ def convert_trait(x):
47
+ if pd.isna(x) or not isinstance(x, str):
48
+ return None
49
+ # All subjects are obese according to background
50
+ return 1
51
+
52
+ def convert_age(x):
53
+ if pd.isna(x) or not isinstance(x, str):
54
+ return None
55
+ val = x.lower()
56
+ # Convert young/elderly categories to binary
57
+ if "young" in val:
58
+ return 0
59
+ elif "elderly" in val:
60
+ return 1
61
+ return None
62
+
63
+ def convert_gender(x):
64
+ if pd.isna(x) or not isinstance(x, str):
65
+ return None
66
+ # All subjects are men according to background
67
+ return 1
68
+
69
+ # 3. Save metadata
70
+ # Initial validation based on gene and trait data availability
71
+ _ = validate_and_save_cohort_info(
72
+ is_final=False,
73
+ cohort=cohort,
74
+ info_path=json_path,
75
+ is_gene_available=is_gene_available,
76
+ is_trait_available=trait_row is not None
77
+ )
78
+
79
+ # 4. Clinical Feature Extraction
80
+ if trait_row is not None:
81
+ clinical_features = geo_select_clinical_features(
82
+ clinical_df=clinical_data,
83
+ trait=trait,
84
+ trait_row=trait_row,
85
+ convert_trait=convert_trait,
86
+ age_row=age_row,
87
+ convert_age=convert_age,
88
+ gender_row=gender_row,
89
+ convert_gender=convert_gender
90
+ )
91
+
92
+ print("Preview of extracted clinical features:")
93
+ print(preview_df(clinical_features))
94
+
95
+ # Save clinical data
96
+ clinical_features.to_csv(out_clinical_data_file)
97
+ # Extract gene expression data from matrix file
98
+ gene_data = get_genetic_data(matrix_file)
99
+
100
+ # Print first 20 row IDs and shape of data to help debug
101
+ print("Shape of gene expression data:", gene_data.shape)
102
+ print("\nFirst few rows of data:")
103
+ print(gene_data.head())
104
+ print("\nFirst 20 gene/probe identifiers:")
105
+ print(gene_data.index[:20])
106
+
107
+ # Inspect a snippet of raw file to verify identifier format
108
+ import gzip
109
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
110
+ lines = []
111
+ for i, line in enumerate(f):
112
+ if "!series_matrix_table_begin" in line:
113
+ # Get the next 5 lines after the marker
114
+ for _ in range(5):
115
+ lines.append(next(f).strip())
116
+ break
117
+ print("\nFirst few lines after matrix marker in raw file:")
118
+ for line in lines:
119
+ print(line)
120
+ """
121
+ Looking at the identifiers ('A_23_P100001', 'A_23_P100022' etc), these are Agilent probe IDs
122
+ rather than human gene symbols. They need to be mapped to standard HGNC gene symbols.
123
+ """
124
+ requires_gene_mapping = True
125
+ # Get file paths using library function
126
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
127
+
128
+ # Extract gene annotation from SOFT file and get meaningful data
129
+ gene_annotation = get_gene_annotation(soft_file)
130
+
131
+ # Preview gene annotation data
132
+ print("Gene annotation shape:", gene_annotation.shape)
133
+ print("\nGene annotation preview:")
134
+ print(preview_df(gene_annotation))
135
+
136
+ print("\nNumber of non-null values in each column:")
137
+ print(gene_annotation.count())
138
+
139
+ # Print example rows showing the mapping information columns
140
+ print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
141
+ print("\nFirst 5 rows:")
142
+ print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
143
+
144
+ print("\nNote: Gene mapping will use:")
145
+ print("'ID' column: Probe identifiers")
146
+ print("'GENE_SYMBOL' column: Contains gene symbol information")
147
+ # Based on observation: gene_data uses probe IDs like A_23_P100001, matching 'ID' column in gene_annotation
148
+ # Get gene mapping dataframe from annotation data
149
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
150
+
151
+ # Apply gene mapping to get gene expression data
152
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
153
+
154
+ # Save the gene expression data
155
+ gene_data.to_csv(out_gene_data_file)
156
+
157
+ # Print preview of mapped gene data
158
+ print("Gene data after mapping, shape:", gene_data.shape)
159
+ print("\nFirst few rows:")
160
+ print(gene_data.head())
161
+ print("\nFirst 20 gene symbols:")
162
+ print(gene_data.index[:20])
163
+ # 1. Load clinical data and save normalized gene data
164
+ selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
165
+ gene_data.index = gene_data.index.str.replace('-mRNA', '')
166
+ gene_data = normalize_gene_symbols_in_index(gene_data)
167
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
168
+ gene_data.to_csv(out_gene_data_file)
169
+
170
+ # 2. Link clinical and genetic data
171
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
172
+
173
+ # 3. Handle missing values
174
+ linked_data = handle_missing_values(linked_data, trait)
175
+
176
+ # 4. Check for biased features and remove them if needed
177
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
178
+
179
+ # 5. Validate and save cohort info
180
+ is_usable = validate_and_save_cohort_info(
181
+ is_final=True,
182
+ cohort=cohort,
183
+ info_path=json_path,
184
+ is_gene_available=True,
185
+ is_trait_available=True,
186
+ is_biased=is_biased,
187
+ df=linked_data,
188
+ note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
189
+ )
190
+
191
+ # 6. Save linked data if usable
192
+ if is_usable:
193
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
194
+ linked_data.to_csv(out_data_file)
p3/preprocess/Obesity/code/GSE181339.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE181339"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE181339"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE181339.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE181339.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE181339.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Yes - this is a microarray experiment with PBMC RNA samples
38
+ is_gene_available = True
39
+
40
+ # 2.1 Data Availability
41
+ # The trait (obesity) can be inferred from group field (row 1)
42
+ trait_row = 1
43
+
44
+ # Age data is available in row 2
45
+ age_row = 2
46
+
47
+ # Gender data is available in row 0
48
+ gender_row = 0
49
+
50
+ # 2.2 Data Type Conversion Functions
51
+ def convert_trait(value: str) -> Optional[int]:
52
+ """Convert obesity status to binary (0: Normal weight, 1: Overweight/Obese)"""
53
+ if not value or ':' not in value:
54
+ return None
55
+ group = value.split(':')[1].strip()
56
+ if group == 'NW':
57
+ return 0
58
+ elif group == 'OW/OB':
59
+ return 1
60
+ elif group == 'MONW': # Metabolically obese normal-weight should be labeled as obese
61
+ return 1
62
+ return None
63
+
64
+ def convert_age(value: str) -> Optional[float]:
65
+ """Convert age to continuous values"""
66
+ if not value or ':' not in value:
67
+ return None
68
+ try:
69
+ return float(value.split(':')[1].strip())
70
+ except:
71
+ return None
72
+
73
+ def convert_gender(value: str) -> Optional[int]:
74
+ """Convert gender to binary (0: Female, 1: Male)"""
75
+ if not value or ':' not in value:
76
+ return None
77
+ gender = value.split(':')[1].strip().lower()
78
+ if gender == 'woman':
79
+ return 0
80
+ elif gender == 'man':
81
+ return 1
82
+ return None
83
+
84
+ # 3. Save Metadata
85
+ is_trait_available = trait_row is not None
86
+ validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
87
+ is_gene_available=is_gene_available,
88
+ is_trait_available=is_trait_available)
89
+
90
+ # 4. Clinical Feature Extraction
91
+ if trait_row is not None:
92
+ # Extract clinical features
93
+ clinical_features = geo_select_clinical_features(
94
+ clinical_df=clinical_data,
95
+ trait=trait,
96
+ trait_row=trait_row,
97
+ convert_trait=convert_trait,
98
+ age_row=age_row,
99
+ convert_age=convert_age,
100
+ gender_row=gender_row,
101
+ convert_gender=convert_gender
102
+ )
103
+
104
+ # Preview extracted features
105
+ preview = preview_df(clinical_features)
106
+ print("Preview of extracted clinical features:")
107
+ print(preview)
108
+
109
+ # Save to CSV
110
+ clinical_features.to_csv(out_clinical_data_file)
111
+ # Extract gene expression data from matrix file
112
+ gene_data = get_genetic_data(matrix_file)
113
+
114
+ # Print first 20 row IDs and shape of data to help debug
115
+ print("Shape of gene expression data:", gene_data.shape)
116
+ print("\nFirst few rows of data:")
117
+ print(gene_data.head())
118
+ print("\nFirst 20 gene/probe identifiers:")
119
+ print(gene_data.index[:20])
120
+
121
+ # Inspect a snippet of raw file to verify identifier format
122
+ import gzip
123
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
124
+ lines = []
125
+ for i, line in enumerate(f):
126
+ if "!series_matrix_table_begin" in line:
127
+ # Get the next 5 lines after the marker
128
+ for _ in range(5):
129
+ lines.append(next(f).strip())
130
+ break
131
+ print("\nFirst few lines after matrix marker in raw file:")
132
+ for line in lines:
133
+ print(line)
134
+ # Based on the output shown, the gene identifiers are numeric IDs (e.g. '7', '8', '15', etc)
135
+ # These are not standard human gene symbols and will need to be mapped
136
+ requires_gene_mapping = True
137
+ # Get file paths using library function
138
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
139
+
140
+ # Extract gene annotation from SOFT file and get meaningful data
141
+ gene_annotation = get_gene_annotation(soft_file)
142
+
143
+ # Preview gene annotation data
144
+ print("Gene annotation shape:", gene_annotation.shape)
145
+ print("\nGene annotation preview:")
146
+ print(preview_df(gene_annotation))
147
+
148
+ print("\nNumber of non-null values in each column:")
149
+ print(gene_annotation.count())
150
+
151
+ # Print example rows showing the mapping information columns
152
+ print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
153
+ print("\nFirst 5 rows:")
154
+ print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
155
+
156
+ print("\nNote: Gene mapping will use:")
157
+ print("'ID' column: Probe identifiers")
158
+ print("'GENE_SYMBOL' column: Contains gene symbol information")
159
+ # 1. Get probe-to-gene mapping from annotation data
160
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
161
+
162
+ # 2. Apply mapping to get gene expression values
163
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
164
+
165
+ # 3. Preview the result
166
+ print("Shape of gene expression data after mapping:", gene_data.shape)
167
+ print("\nPreview of gene expression data:")
168
+ print(gene_data.head())
169
+ # 1. Load clinical data and save normalized gene data
170
+ selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
171
+ gene_data.index = gene_data.index.str.replace('-mRNA', '')
172
+ gene_data = normalize_gene_symbols_in_index(gene_data)
173
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
174
+ gene_data.to_csv(out_gene_data_file)
175
+
176
+ # 2. Link clinical and genetic data
177
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
178
+
179
+ # 3. Handle missing values
180
+ linked_data = handle_missing_values(linked_data, trait)
181
+
182
+ # 4. Check for biased features and remove them if needed
183
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
184
+
185
+ # 5. Validate and save cohort info
186
+ is_usable = validate_and_save_cohort_info(
187
+ is_final=True,
188
+ cohort=cohort,
189
+ info_path=json_path,
190
+ is_gene_available=True,
191
+ is_trait_available=True,
192
+ is_biased=is_biased,
193
+ df=linked_data,
194
+ note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
195
+ )
196
+
197
+ # 6. Save linked data if usable
198
+ if is_usable:
199
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
200
+ linked_data.to_csv(out_data_file)
p3/preprocess/Obesity/code/GSE271700.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE271700"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE271700"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE271700.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE271700.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE271700.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # This is whole-genome microarray data, so gene expression data should be available
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # 2.1 Data Availability
42
+ trait_row = 3 # phenotype indicates diabetes remission response
43
+ age_row = 1 # age data available
44
+ gender_row = 0 # gender data available
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(x):
48
+ if not isinstance(x, str):
49
+ return None
50
+ value = x.split(': ')[-1].strip()
51
+ if value == 'Responder':
52
+ return 1
53
+ elif value == 'Non-Responder':
54
+ return 0
55
+ return None
56
+
57
+ def convert_age(x):
58
+ if not isinstance(x, str):
59
+ return None
60
+ try:
61
+ return float(x.split(': ')[-1].strip())
62
+ except:
63
+ return None
64
+
65
+ def convert_gender(x):
66
+ if not isinstance(x, str):
67
+ return None
68
+ value = x.split(': ')[-1].strip()
69
+ if value.lower() == 'female':
70
+ return 0
71
+ elif value.lower() == 'male':
72
+ return 1
73
+ return None
74
+
75
+ # 3. Save Metadata
76
+ validate_and_save_cohort_info(is_final=False,
77
+ cohort=cohort,
78
+ info_path=json_path,
79
+ is_gene_available=is_gene_available,
80
+ is_trait_available=trait_row is not None)
81
+
82
+ # 4. Clinical Feature Extraction
83
+ # Since trait_row is not None, we extract clinical features
84
+ selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
85
+ trait=trait,
86
+ trait_row=trait_row,
87
+ convert_trait=convert_trait,
88
+ age_row=age_row,
89
+ convert_age=convert_age,
90
+ gender_row=gender_row,
91
+ convert_gender=convert_gender)
92
+
93
+ # Preview the extracted features
94
+ print("Preview of selected clinical features:")
95
+ print(preview_df(selected_clinical))
96
+
97
+ # Save to CSV
98
+ selected_clinical.to_csv(out_clinical_data_file)
99
+ # Extract gene expression data from matrix file
100
+ gene_data = get_genetic_data(matrix_file)
101
+
102
+ # Print first 20 row IDs and shape of data to help debug
103
+ print("Shape of gene expression data:", gene_data.shape)
104
+ print("\nFirst few rows of data:")
105
+ print(gene_data.head())
106
+ print("\nFirst 20 gene/probe identifiers:")
107
+ print(gene_data.index[:20])
108
+
109
+ # Inspect a snippet of raw file to verify identifier format
110
+ import gzip
111
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
112
+ lines = []
113
+ for i, line in enumerate(f):
114
+ if "!series_matrix_table_begin" in line:
115
+ # Get the next 5 lines after the marker
116
+ for _ in range(5):
117
+ lines.append(next(f).strip())
118
+ break
119
+ print("\nFirst few lines after matrix marker in raw file:")
120
+ for line in lines:
121
+ print(line)
122
+ # Based on the observance of gene identifiers like "100009676_at", "10000_at", etc,
123
+ # these are probe IDs from an Affymetrix microarray platform, not human gene symbols.
124
+ # The "_at" suffix is a characteristic identifier format used by Affymetrix arrays.
125
+ # These probe IDs need to be mapped to their corresponding gene symbols.
126
+
127
+ requires_gene_mapping = True
128
+ # Get file paths using library function
129
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
130
+
131
+ # Extract gene annotation from SOFT file and get meaningful data
132
+ # Read first 100 lines to inspect structure
133
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
134
+ print("First 100 lines from SOFT file to inspect structure:")
135
+ for i, line in enumerate(f):
136
+ if i < 100: # Preview structure
137
+ print(line.strip())
138
+ else:
139
+ break
140
+ # Extract gene annotation from SOFT file
141
+ gene_annotation = get_gene_annotation(soft_file)
142
+
143
+ # Get platform ID from SOFT file
144
+ platform_id = None
145
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
146
+ for line in f:
147
+ if line.startswith('!Platform_geo_accession'):
148
+ platform_id = line.split('=')[1].strip()
149
+ break
150
+
151
+ print(f"Dataset uses platform: {platform_id}")
152
+ print("Warning: Gene symbol mapping information is not available in the SOFT file or pre-compiled GPL mappings.")
153
+ print("Saving probe-level expression data for future mapping when platform annotation becomes available.")
154
+
155
+ # Save probe-level expression data
156
+ gene_data.to_csv(out_gene_data_file)
157
+
158
+ raise ValueError(
159
+ f"Cannot complete preprocessing: Platform {platform_id} annotation data is required for mapping "
160
+ "probe IDs to gene symbols, but the mapping information is not available. "
161
+ "Please obtain the platform annotation data and rerun preprocessing."
162
+ )
p3/preprocess/Obesity/code/GSE281144.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE281144"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE281144"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE281144.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE281144.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE281144.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on the series summary mentioning "gene expression (GE) determined by microarray"
38
+ is_gene_available = True
39
+
40
+ # 2.1 Data Row Identifiers
41
+ # Trait (diabetes status) is in row 1
42
+ trait_row = 1
43
+ # No age data available
44
+ age_row = None
45
+ # Gender data in row 0
46
+ gender_row = 0
47
+
48
+ # 2.2 Data Type Conversion Functions
49
+ def convert_trait(value: str) -> Optional[int]:
50
+ """Convert diabetes status to binary (0: Control, 1: Diabetic)"""
51
+ if not isinstance(value, str):
52
+ return None
53
+ value = value.lower()
54
+ if 'diabetic' in value:
55
+ return 1
56
+ elif 'control' in value:
57
+ return 0
58
+ return None
59
+
60
+ def convert_gender(value: str) -> Optional[int]:
61
+ """Convert gender to binary (0: Female, 1: Male)"""
62
+ if not isinstance(value, str):
63
+ return None
64
+ value = value.lower()
65
+ if ':' in value:
66
+ value = value.split(':')[1].strip()
67
+ if 'female' in value:
68
+ return 0
69
+ elif 'male' in value:
70
+ return 1
71
+ return None
72
+
73
+ # 3. Save Metadata
74
+ is_trait_available = trait_row is not None
75
+ validate_and_save_cohort_info(
76
+ is_final=False,
77
+ cohort=cohort,
78
+ info_path=json_path,
79
+ is_gene_available=is_gene_available,
80
+ is_trait_available=is_trait_available
81
+ )
82
+
83
+ # 4. Extract Clinical Features
84
+ if trait_row is not None:
85
+ clinical_features = geo_select_clinical_features(
86
+ clinical_df=clinical_data,
87
+ trait=trait,
88
+ trait_row=trait_row,
89
+ convert_trait=convert_trait,
90
+ gender_row=gender_row,
91
+ convert_gender=convert_gender
92
+ )
93
+
94
+ # Preview the processed clinical data
95
+ preview = preview_df(clinical_features)
96
+ print("Preview of processed clinical data:", preview)
97
+
98
+ # Save clinical features
99
+ clinical_features.to_csv(out_clinical_data_file)
100
+ # Extract gene expression data from matrix file
101
+ gene_data = get_genetic_data(matrix_file)
102
+
103
+ # Print first 20 row IDs and shape of data to help debug
104
+ print("Shape of gene expression data:", gene_data.shape)
105
+ print("\nFirst few rows of data:")
106
+ print(gene_data.head())
107
+ print("\nFirst 20 gene/probe identifiers:")
108
+ print(gene_data.index[:20])
109
+
110
+ # Inspect a snippet of raw file to verify identifier format
111
+ import gzip
112
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
113
+ lines = []
114
+ for i, line in enumerate(f):
115
+ if "!series_matrix_table_begin" in line:
116
+ # Get the next 5 lines after the marker
117
+ for _ in range(5):
118
+ lines.append(next(f).strip())
119
+ break
120
+ print("\nFirst few lines after matrix marker in raw file:")
121
+ for line in lines:
122
+ print(line)
123
+ # Looking at the identifiers ending in '_st', these are from an Affymetrix microarray platform
124
+ # and need to be mapped to human gene symbols for proper analysis
125
+ requires_gene_mapping = True
126
+ # Get file paths using library function
127
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
128
+
129
+ # Extract gene annotation by reading the SOFT file and skipping header lines
130
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
131
+ lines = []
132
+ for line in f:
133
+ if line.startswith('!platform_table_begin'):
134
+ next(f) # Skip the header line
135
+ for data_line in f:
136
+ if data_line.startswith('!platform_table_end'):
137
+ break
138
+ lines.append(data_line)
139
+ break
140
+
141
+ # Convert to DataFrame
142
+ gene_annotation = pd.read_csv(io.StringIO(''.join(lines)), sep='\t')
143
+
144
+ # Preview columns and content
145
+ print("Gene annotation shape:", gene_annotation.shape)
146
+ print("\nColumns in annotation data:")
147
+ print(gene_annotation.columns.tolist())
148
+
149
+ # Print example rows showing probe ID and gene symbol columns
150
+ print("\nFirst 5 rows of key mapping columns:")
151
+ if 'ID' in gene_annotation.columns and 'Gene Symbol' in gene_annotation.columns:
152
+ print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
153
+ else:
154
+ # Show all columns for the first few rows to identify mapping information
155
+ print(gene_annotation.head().to_string())
156
+ # Create clean probe ID column
157
+ gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st'
158
+
159
+ # Extract gene symbols from annotation strings
160
+ def extract_genes(annotation):
161
+ if pd.isna(annotation):
162
+ return []
163
+ parts = str(annotation).split(' // ')
164
+ # Gene symbols typically appear after accession IDs
165
+ symbols = [parts[i] for i in range(1, len(parts), 3) if i < len(parts)]
166
+ return symbols
167
+
168
+ # Create mapping dataframe with probe IDs and gene symbols
169
+ mapping_data = pd.DataFrame({
170
+ 'ID': gene_annotation['ID'],
171
+ 'Gene': gene_annotation.iloc[:, 7].apply(extract_genes)
172
+ })
173
+
174
+ # Apply mapping using library function
175
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
176
+
177
+ # Preview results
178
+ print("Shape of gene expression data after mapping:", gene_data.shape)
179
+ print("\nFirst few rows of mapped gene data:")
180
+ print(gene_data.head())
181
+ # Create clean probe ID column
182
+ gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st'
183
+
184
+ # Create mapping dataframe with probe IDs and gene symbols using extract_human_gene_symbols
185
+ mapping_data = pd.DataFrame({
186
+ 'ID': gene_annotation['ID'],
187
+ 'Gene': gene_annotation.iloc[:, 7].apply(extract_human_gene_symbols)
188
+ })
189
+
190
+ # Apply mapping using library function
191
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
192
+
193
+ # 1. Load clinical data and save normalized gene data
194
+ selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
195
+ gene_data = normalize_gene_symbols_in_index(gene_data)
196
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
197
+ gene_data.to_csv(out_gene_data_file)
198
+
199
+ # 2. Link clinical and genetic data
200
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
201
+
202
+ # 3. Handle missing values
203
+ linked_data = handle_missing_values(linked_data, trait)
204
+
205
+ # 4. Check for biased features and remove them if needed
206
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
207
+
208
+ # 5. Validate and save cohort info
209
+ is_usable = validate_and_save_cohort_info(
210
+ is_final=True,
211
+ cohort=cohort,
212
+ info_path=json_path,
213
+ is_gene_available=True,
214
+ is_trait_available=True,
215
+ is_biased=is_biased,
216
+ df=linked_data,
217
+ note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
218
+ )
219
+
220
+ # 6. Save linked data if usable
221
+ if is_usable:
222
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
223
+ linked_data.to_csv(out_data_file)
p3/preprocess/Obesity/code/GSE84046.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE84046"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE84046"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE84046.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE84046.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE84046.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # From background info, this study analyzes "whole genome gene expression changes"
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # Trait (BMI) is available in Feature 6 with screening BMI values
42
+ trait_row = 6
43
+
44
+ # Gender data is available in Feature 4
45
+ gender_row = 4
46
+
47
+ # Birth dates are given in Feature 5, can calculate age
48
+ age_row = 5
49
+
50
+ def convert_trait(val):
51
+ if not val:
52
+ return None
53
+ try:
54
+ # Extract numeric BMI value after colon
55
+ bmi = float(val.split(": ")[1])
56
+ # Convert to binary obesity status (BMI >= 30 is obese)
57
+ return 1 if bmi >= 30 else 0
58
+ except:
59
+ return None
60
+
61
+ def convert_gender(val):
62
+ if not val:
63
+ return None
64
+ try:
65
+ gender = val.split(": ")[1].lower()
66
+ return 1 if gender == "male" else 0 if gender == "female" else None
67
+ except:
68
+ return None
69
+
70
+ def convert_age(val):
71
+ if not val:
72
+ return None
73
+ try:
74
+ # Extract birth year from date string
75
+ birth_year = int(val.split(": ")[1].split("-")[0])
76
+ # Study was conducted in 2012 based on accession info
77
+ study_year = 2012
78
+ return study_year - birth_year
79
+ except:
80
+ return None
81
+
82
+ # 3. Save metadata about data availability
83
+ validate_and_save_cohort_info(
84
+ is_final=False,
85
+ cohort=cohort,
86
+ info_path=json_path,
87
+ is_gene_available=is_gene_available,
88
+ is_trait_available=True
89
+ )
90
+
91
+ # 4. Extract clinical features
92
+ selected_clinical_df = geo_select_clinical_features(
93
+ clinical_df=clinical_data,
94
+ trait=trait,
95
+ trait_row=trait_row,
96
+ convert_trait=convert_trait,
97
+ age_row=age_row,
98
+ convert_age=convert_age,
99
+ gender_row=gender_row,
100
+ convert_gender=convert_gender
101
+ )
102
+
103
+ # Preview the extracted features
104
+ preview_dict = preview_df(selected_clinical_df)
105
+ print("Preview of extracted clinical features:", preview_dict)
106
+
107
+ # Save clinical data
108
+ selected_clinical_df.to_csv(out_clinical_data_file)
109
+ # Extract gene expression data from matrix file
110
+ gene_data = get_genetic_data(matrix_file)
111
+
112
+ # Print first 20 row IDs and shape of data to help debug
113
+ print("Shape of gene expression data:", gene_data.shape)
114
+ print("\nFirst few rows of data:")
115
+ print(gene_data.head())
116
+ print("\nFirst 20 gene/probe identifiers:")
117
+ print(gene_data.index[:20])
118
+
119
+ # Inspect a snippet of raw file to verify identifier format
120
+ import gzip
121
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
122
+ lines = []
123
+ for i, line in enumerate(f):
124
+ if "!series_matrix_table_begin" in line:
125
+ # Get the next 5 lines after the marker
126
+ for _ in range(5):
127
+ lines.append(next(f).strip())
128
+ break
129
+ print("\nFirst few lines after matrix marker in raw file:")
130
+ for line in lines:
131
+ print(line)
132
+ # Based on the output shown above, the gene expression data uses numeric probe IDs '7892501', '7892502', etc.
133
+ # These are microarray probe identifiers and need to be mapped to human gene symbols.
134
+ requires_gene_mapping = True
135
+ # Get file paths using library function
136
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
137
+
138
+ # Extract gene annotation from SOFT file and get meaningful data
139
+ gene_annotation = get_gene_annotation(soft_file)
140
+
141
+ # Preview gene annotation data
142
+ print("Gene annotation shape:", gene_annotation.shape)
143
+ print("\nGene annotation preview:")
144
+ print(preview_df(gene_annotation))
145
+
146
+ print("\nNumber of non-null values in each column:")
147
+ print(gene_annotation.count())
148
+
149
+ # Print example rows showing the mapping information columns
150
+ print("\nSample mapping columns ('ID' and gene_assignment):")
151
+ print("\nFirst 5 rows:")
152
+ print(gene_annotation[['ID', 'gene_assignment']].head().to_string())
153
+
154
+ print("\nNote: Gene mapping will use:")
155
+ print("'ID' column: Probe identifiers")
156
+ print("'gene_assignment' column: Contains gene symbol information")
157
+ # Get gene mapping from annotation data
158
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
159
+
160
+ # Apply gene mapping to convert probe data to gene expression data
161
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
162
+
163
+ # Preview mapped gene data
164
+ print("Shape of mapped gene expression data:", gene_data.shape)
165
+ print("\nFirst few rows of mapped data:")
166
+ print(gene_data.head())
167
+ print("\nFirst 20 gene symbols:")
168
+ print(gene_data.index[:20])
169
+
170
+ # Save mapped gene expression data
171
+ gene_data.to_csv(out_gene_data_file)
172
+ # 1. Load clinical data and save normalized gene data
173
+ selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
174
+ gene_data.index = gene_data.index.str.replace('-mRNA', '')
175
+ gene_data = normalize_gene_symbols_in_index(gene_data)
176
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
177
+ gene_data.to_csv(out_gene_data_file)
178
+
179
+ # 2. Link clinical and genetic data
180
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
181
+
182
+ # 3. Handle missing values
183
+ linked_data = handle_missing_values(linked_data, trait)
184
+
185
+ # 4. Check for biased features and remove them if needed
186
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
187
+
188
+ # 5. Validate and save cohort info
189
+ is_usable = validate_and_save_cohort_info(
190
+ is_final=True,
191
+ cohort=cohort,
192
+ info_path=json_path,
193
+ is_gene_available=True,
194
+ is_trait_available=True,
195
+ is_biased=is_biased,
196
+ df=linked_data,
197
+ note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
198
+ )
199
+
200
+ # 6. Save linked data if usable
201
+ if is_usable:
202
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
203
+ linked_data.to_csv(out_data_file)
p3/preprocess/Obesity/code/GSE99725.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+ cohort = "GSE99725"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obesity"
10
+ in_cohort_dir = "../DATA/GEO/Obesity/GSE99725"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obesity/GSE99725.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE99725.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE99725.csv"
16
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on Series summary mentioning "whole-genome expression profiling" from blood
38
+ is_gene_available = True
39
+
40
+ # 2.1 Data Availability
41
+ # Trait (obesity) - constant since all subjects are obese
42
+ trait_row = None
43
+
44
+ # Age - not available in sample characteristics
45
+ age_row = None
46
+
47
+ # Gender - not available in sample characteristics
48
+ gender_row = None
49
+
50
+ # 2.2 Data Type Conversion Functions
51
+ def convert_trait(x):
52
+ # Not needed since trait data not available (constant)
53
+ return None
54
+
55
+ def convert_age(x):
56
+ # Not needed since age data not available
57
+ return None
58
+
59
+ def convert_gender(x):
60
+ # Not needed since gender data not available
61
+ return None
62
+
63
+ # 3. Save Initial Metadata
64
+ validate_and_save_cohort_info(
65
+ is_final=False,
66
+ cohort=cohort,
67
+ info_path=json_path,
68
+ is_gene_available=is_gene_available,
69
+ is_trait_available=False # trait_row is None
70
+ )
71
+
72
+ # 4. Clinical Feature Extraction
73
+ # Skip since trait_row is None
74
+ # Extract gene expression data from matrix file
75
+ gene_data = get_genetic_data(matrix_file)
76
+
77
+ # Print first 20 row IDs and shape of data to help debug
78
+ print("Shape of gene expression data:", gene_data.shape)
79
+ print("\nFirst few rows of data:")
80
+ print(gene_data.head())
81
+ print("\nFirst 20 gene/probe identifiers:")
82
+ print(gene_data.index[:20])
83
+
84
+ # Inspect a snippet of raw file to verify identifier format
85
+ import gzip
86
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
87
+ lines = []
88
+ for i, line in enumerate(f):
89
+ if "!series_matrix_table_begin" in line:
90
+ # Get the next 5 lines after the marker
91
+ for _ in range(5):
92
+ lines.append(next(f).strip())
93
+ break
94
+ print("\nFirst few lines after matrix marker in raw file:")
95
+ for line in lines:
96
+ print(line)
97
+ # Based on the gene identifiers starting with "A_19_" format, these are Agilent probes, not gene symbols
98
+ requires_gene_mapping = True
99
+ # Get file paths using library function
100
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
101
+
102
+ # Extract gene annotation from SOFT file and get meaningful data
103
+ gene_annotation = get_gene_annotation(soft_file)
104
+
105
+ # Preview gene annotation data
106
+ print("Gene annotation shape:", gene_annotation.shape)
107
+ print("\nGene annotation preview:")
108
+ print(preview_df(gene_annotation))
109
+
110
+ print("\nNumber of non-null values in each column:")
111
+ print(gene_annotation.count())
112
+
113
+ # Print example rows showing the mapping information columns
114
+ print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
115
+ print("\nFirst 5 rows:")
116
+ print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
117
+
118
+ print("\nNote: Gene mapping will use:")
119
+ print("'ID' column: Probe identifiers")
120
+ print("'GENE_SYMBOL' column: Contains gene symbol information")
121
+ # Extract the mapping between probe IDs and gene symbols
122
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
123
+
124
+ # Apply mapping to convert probe data to gene expression data
125
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
126
+ # Create minimal DataFrame to represent constant trait
127
+ minimal_df = pd.DataFrame({'Obesity': [1]}) # All subjects are obese
128
+
129
+ # Record that dataset is unusable due to constant trait
130
+ is_usable = validate_and_save_cohort_info(
131
+ is_final=True,
132
+ cohort=cohort,
133
+ info_path=json_path,
134
+ is_gene_available=True,
135
+ is_trait_available=False, # No variable trait data
136
+ is_biased=True, # Constant trait is maximally biased
137
+ df=minimal_df,
138
+ note="Dataset contains only obese patients (constant trait) and lacks age/gender information"
139
+ )
p3/preprocess/Obesity/code/TCGA.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obesity"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Obesity/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Obesity/cohort_info.json"
15
+
16
+ # 1. We'll use TCGA_Breast_Cancer as obesity is a known risk factor for breast cancer
17
+ cohort = "TCGA_Breast_Cancer_(BRCA)"
18
+ cohort_dir = os.path.join(tcga_root_dir, cohort)
19
+
20
+ # 2. Get paths to clinical and genetic data files
21
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
22
+
23
+ # 3. Load the data
24
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
25
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
26
+
27
+ # 4. Print clinical data columns
28
+ print("Clinical data columns:")
29
+ print(clinical_df.columns.tolist())
30
+
31
+ # Check initial data availability
32
+ is_gene_available = len(genetic_df) > 0
33
+ is_trait_available = 'BMI' in clinical_df.columns or any('bmi' in col.lower() for col in clinical_df.columns)
34
+
35
+ # Record initial data availability
36
+ validate_and_save_cohort_info(
37
+ is_final=False,
38
+ cohort=cohort,
39
+ info_path=json_path,
40
+ is_gene_available=is_gene_available,
41
+ is_trait_available=is_trait_available
42
+ )
43
+ # 1. Identify candidate demographic columns
44
+ candidate_age_cols = ["Age_at_Initial_Pathologic_Diagnosis_nature2012", "age_at_initial_pathologic_diagnosis"]
45
+ candidate_gender_cols = ["Gender_nature2012", "gender"]
46
+
47
+ # 2. Preview the column data
48
+ # Read in clinical data directly from pre-loaded DataFrame clinical_df
49
+ age_preview = clinical_df[candidate_age_cols].head(5).to_dict(orient='list')
50
+ print("Age columns preview:", age_preview)
51
+
52
+ # Extract and preview gender columns
53
+ gender_preview = clinical_df[candidate_gender_cols].head(5).to_dict(orient='list')
54
+ print("Gender columns preview:", gender_preview)
55
+ # Select age column based on preview data - age_at_initial_pathologic_diagnosis has valid numeric values
56
+ age_col = "age_at_initial_pathologic_diagnosis"
57
+
58
+ # Select gender column based on preview data - gender has valid string values
59
+ gender_col = "gender"
60
+
61
+ # Print chosen columns
62
+ print("Selected age column:", age_col)
63
+ print("Selected gender column:", gender_col)
64
+ # 1. Extract and standardize clinical features
65
+ # Create a new dataframe to store sample ID as trait with same dimensions as genetic data
66
+ sample_df = pd.DataFrame(index=genetic_df.columns)
67
+ sample_df[trait] = -1 # Fill with invalid values since trait unavailable
68
+ clinical_features = sample_df
69
+
70
+ # Save clinical data
71
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
72
+ clinical_features.to_csv(out_clinical_data_file)
73
+
74
+ # 2. Normalize gene symbols and save
75
+ normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
76
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
77
+ normalized_gene_df.to_csv(out_gene_data_file)
78
+
79
+ # 3. Link clinical and genetic data on sample IDs
80
+ linked_data = pd.merge(
81
+ clinical_features,
82
+ normalized_gene_df.T,
83
+ left_index=True,
84
+ right_index=True,
85
+ how='inner'
86
+ )
87
+
88
+ # 4. Handle missing values systematically
89
+ linked_data = handle_missing_values(linked_data, trait)
90
+
91
+ # 5. Check for bias in trait and demographic features
92
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
93
+
94
+ # 6. Validate data quality and save cohort info
95
+ note = "Dataset contains gene expression data but lacks obesity/BMI information in clinical data. All samples marked with invalid trait values."
96
+ is_usable = validate_and_save_cohort_info(
97
+ is_final=True,
98
+ cohort="TCGA",
99
+ info_path=json_path,
100
+ is_gene_available=True,
101
+ is_trait_available=False,
102
+ is_biased=trait_biased,
103
+ df=linked_data,
104
+ note=note
105
+ )
106
+
107
+ # 7. Skip saving linked data since trait unavailable, making dataset unusable
p3/preprocess/Obesity/gene_data/GSE123086.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
p3/preprocess/Obesity/gene_data/GSE123088.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049,GSM3495050,GSM3495051,GSM3495052,GSM3495053,GSM3495054,GSM3495055,GSM3495056,GSM3495057,GSM3495058,GSM3495059,GSM3495060,GSM3495061,GSM3495062,GSM3495063,GSM3495064,GSM3495065,GSM3495066,GSM3495067,GSM3495068,GSM3495069,GSM3495070,GSM3495071,GSM3495072,GSM3495073,GSM3495074,GSM3495075,GSM3495076,GSM3495077,GSM3495078,GSM3495079,GSM3495080,GSM3495081,GSM3495082,GSM3495083,GSM3495084,GSM3495085,GSM3495086,GSM3495087
p3/preprocess/Obesity/gene_data/GSE158237.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM4795701,GSM4795702,GSM4795703,GSM4795704,GSM4795705,GSM4795706,GSM4795707,GSM4795708,GSM4795709,GSM4795710,GSM4795711,GSM4795712,GSM4795713,GSM4795714,GSM4795715,GSM4795716,GSM4795717,GSM4795718,GSM4795719,GSM4795720,GSM4795721,GSM4795722,GSM4795723,GSM4795724,GSM4795725,GSM4795726,GSM4795727,GSM4795728,GSM4795729,GSM4795730,GSM4795731,GSM4795732,GSM4795733,GSM4795734,GSM4795735,GSM4795736,GSM4795737
p3/preprocess/Obesity/gene_data/GSE181339.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Obesity/gene_data/GSE271700.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Obesity/gene_data/GSE281144.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM8611649,GSM8611650,GSM8611651,GSM8611652,GSM8611653,GSM8611654,GSM8611655,GSM8611656,GSM8611657,GSM8611658,GSM8611659,GSM8611660,GSM8611661,GSM8611662,GSM8611663,GSM8611664,GSM8611665,GSM8611666,GSM8611667,GSM8611668,GSM8611669,GSM8611670,GSM8611671,GSM8611672,GSM8611673,GSM8611674,GSM8611675,GSM8611676,GSM8611677,GSM8611678,GSM8611679,GSM8611680,GSM8611681,GSM8611682
p3/preprocess/Obesity/gene_data/GSE99725.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Obsessive-Compulsive_Disorder/GSE78104.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Obsessive-Compulsive_Disorder/clinical_data/GSE60190.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1467273,GSM1467274,GSM1467275,GSM1467276,GSM1467277,GSM1467278,GSM1467279,GSM1467280,GSM1467281,GSM1467282,GSM1467283,GSM1467284,GSM1467285,GSM1467286,GSM1467287,GSM1467288,GSM1467289,GSM1467290,GSM1467291,GSM1467292,GSM1467293,GSM1467294,GSM1467295,GSM1467296,GSM1467297,GSM1467298,GSM1467299,GSM1467300,GSM1467301,GSM1467302,GSM1467303,GSM1467304,GSM1467305,GSM1467306,GSM1467307,GSM1467308,GSM1467309,GSM1467310,GSM1467311,GSM1467312,GSM1467313,GSM1467314,GSM1467315,GSM1467316,GSM1467317,GSM1467318,GSM1467319,GSM1467320,GSM1467321,GSM1467322,GSM1467323,GSM1467324,GSM1467325,GSM1467326,GSM1467327,GSM1467328,GSM1467329,GSM1467330,GSM1467331,GSM1467332,GSM1467333,GSM1467334,GSM1467335,GSM1467336,GSM1467337,GSM1467338,GSM1467339,GSM1467340,GSM1467341,GSM1467342,GSM1467343,GSM1467344,GSM1467345,GSM1467346,GSM1467347,GSM1467348,GSM1467349,GSM1467350,GSM1467351,GSM1467352,GSM1467353,GSM1467354,GSM1467355,GSM1467356,GSM1467357,GSM1467358,GSM1467359,GSM1467360,GSM1467361,GSM1467362,GSM1467363,GSM1467364,GSM1467365,GSM1467366,GSM1467367,GSM1467368,GSM1467369,GSM1467370,GSM1467371,GSM1467372,GSM1467373,GSM1467374,GSM1467375,GSM1467376,GSM1467377,GSM1467378,GSM1467379,GSM1467380,GSM1467381,GSM1467382,GSM1467383,GSM1467384,GSM1467385,GSM1467386,GSM1467387,GSM1467388,GSM1467389,GSM1467390,GSM1467391,GSM1467392,GSM1467393,GSM1467394,GSM1467395,GSM1467396,GSM1467397,GSM1467398,GSM1467399,GSM1467400,GSM1467401,GSM1467402,GSM1467403,GSM1467404,GSM1467405
2
+ Obsessive-Compulsive_Disorder,,0.0,,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,,,0.0,,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,1.0,,,0.0,0.0,0.0,0.0,,,0.0,,1.0,,,0.0,,0.0,0.0,,0.0,,,1.0,,1.0,0.0,0.0,0.0,0.0,0.0,0.0,,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0
3
+ Age,50.421917,27.49863,30.627397,61.167123,32.69589,39.213698,58.605479,49.2,41.041095,51.750684,50.89863,26.745205,29.104109,39.301369,48.978082,57.884931,28.364383,24.041095,19.268493,27.230136,46.605479,23.443835,51.038356,39.663013,46.109589,77.989041,46.967123,63.241095,62.306849,83.641095,42.838356,51.386301,66.715068,51.939726,34.339726,50.109589,18.758904,16.649315,16.353424,42.065753,16.726027,34.465753,34.254794,47.484931,43.756164,49.210958,57.482191,46.561643,49.561643,28.589041,38.410958,30.032876,56.09041,46.915068,49.021917,71.109589,17.235616,16.583561,16.934246,16.8,18.117808,18.660273,16.69589,75.572602,59.260273,55.545205,41.778082,57.454794,45.284931,56.304109,39.654794,55.945205,38.232876,58.109589,40.021917,50.504109,36.550684,45.117808,83.545205,18.786301,48.567123,38.331506,48.101369,18.39452,60.843835,61.372602,52.038356,59.254794,41.567123,50.358904,31.558904,45.701369,44.731506,34.39726,31.613698,54.846575,84.057534,66.79452,53.323287,30.043835,55.435616,45.676712,54.334246,63.558904,45.224657,23.69589,67.865753,16.753424,18.424657,17.09041,16.183561,33.260273,54.424657,45.378082,52.523287,35.273972,22.630136,20.863013,26.531506,24.627397,53.978082,34.961643,18.731506,30.726027,63.471232,54.808219,57.512328,57.610958,44.958904,35.684931,63.0,38.780821,45.978082
4
+ Gender,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0
p3/preprocess/Obsessive-Compulsive_Disorder/clinical_data/GSE78104.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2067403,GSM2067404,GSM2067405,GSM2067406,GSM2067407,GSM2067408,GSM2067409,GSM2067410,GSM2067411,GSM2067412,GSM2067413,GSM2067414,GSM2067415,GSM2067416,GSM2067417,GSM2067418,GSM2067419,GSM2067420,GSM2067421,GSM2067422,GSM2067423,GSM2067424,GSM2067425,GSM2067426,GSM2067427,GSM2067428,GSM2067429,GSM2067430,GSM2067431,GSM2067432,GSM2067433,GSM2067434,GSM2067435,GSM2067436,GSM2067437,GSM2067438,GSM2067439,GSM2067440,GSM2067441,GSM2067442,GSM2067443,GSM2067444,GSM2067445,GSM2067446,GSM2067447,GSM2067448,GSM2067449,GSM2067450,GSM2067451,GSM2067452,GSM2067453,GSM2067454,GSM2067455,GSM2067456,GSM2067457,GSM2067458,GSM2067459,GSM2067460,GSM2067461,GSM2067462
2
+ Obsessive-Compulsive_Disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,25.0,23.0,18.0,26.0,27.0,19.0,22.0,27.0,18.0,25.0,16.0,35.0,16.0,16.0,32.0,18.0,15.0,43.0,36.0,17.0,45.0,40.0,35.0,28.0,27.0,31.0,23.0,35.0,60.0,59.0,24.0,23.0,18.0,27.0,27.0,20.0,21.0,27.0,20.0,24.0,18.0,35.0,17.0,18.0,32.0,18.0,18.0,44.0,37.0,17.0,43.0,40.0,32.0,28.0,27.0,30.0,24.0,35.0,56.0,56.0
4
+ Gender,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0
p3/preprocess/Obsessive-Compulsive_Disorder/code/GSE60190.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obsessive-Compulsive_Disorder"
6
+ cohort = "GSE60190"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder/GSE60190"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/GSE60190.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/gene_data/GSE60190.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/clinical_data/GSE60190.csv"
16
+ json_path = "./output/preprocess/3/Obsessive-Compulsive_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, this is gene expression data from Illumina HumanHT-12 microarray as stated in Series_overall_design
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+
38
+ # 2.1 Data row identification
39
+ # For trait (OCD): Use row 3 'dx' (diagnosis) which has OCD vs Control
40
+ trait_row = 3
41
+
42
+ # For age: Available in row 5
43
+ age_row = 5
44
+
45
+ # For gender: Available in row 7 'Sex'
46
+ gender_row = 7
47
+
48
+ # 2.2 Data type conversion functions
49
+ def convert_trait(x):
50
+ """Convert diagnosis to binary: OCD=1, Control=0"""
51
+ if pd.isna(x):
52
+ return None
53
+ value = x.split(': ')[1] if ': ' in x else x
54
+ if value == 'OCD':
55
+ return 1
56
+ elif value == 'Control':
57
+ return 0
58
+ else:
59
+ return None
60
+
61
+ def convert_age(x):
62
+ """Convert age to continuous numeric value"""
63
+ if pd.isna(x):
64
+ return None
65
+ value = x.split(': ')[1] if ': ' in x else x
66
+ try:
67
+ return float(value)
68
+ except:
69
+ return None
70
+
71
+ def convert_gender(x):
72
+ """Convert gender to binary: M=1, F=0"""
73
+ if pd.isna(x):
74
+ return None
75
+ value = x.split(': ')[1] if ': ' in x else x
76
+ if value == 'M':
77
+ return 1
78
+ elif value == 'F':
79
+ return 0
80
+ else:
81
+ return None
82
+
83
+ # 3. Save initial metadata
84
+ is_trait_available = trait_row is not None
85
+ validate_and_save_cohort_info(
86
+ is_final=False,
87
+ cohort=cohort,
88
+ info_path=json_path,
89
+ is_gene_available=is_gene_available,
90
+ is_trait_available=is_trait_available
91
+ )
92
+
93
+ # 4. Clinical Feature Extraction
94
+ if trait_row is not None:
95
+ selected_clinical_df = geo_select_clinical_features(
96
+ clinical_df=clinical_data,
97
+ trait=trait,
98
+ trait_row=trait_row,
99
+ convert_trait=convert_trait,
100
+ age_row=age_row,
101
+ convert_age=convert_age,
102
+ gender_row=gender_row,
103
+ convert_gender=convert_gender
104
+ )
105
+
106
+ # Preview the data
107
+ print("Preview of clinical features:")
108
+ print(preview_df(selected_clinical_df))
109
+
110
+ # Save to CSV
111
+ selected_clinical_df.to_csv(out_clinical_data_file)
112
+ # Get gene expression data from matrix file
113
+ genetic_data = get_genetic_data(matrix_file_path)
114
+
115
+ # Examine data structure
116
+ print("Data structure and head:")
117
+ print(genetic_data.head())
118
+
119
+ print("\nShape:", genetic_data.shape)
120
+
121
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
122
+ print(list(genetic_data.index)[:20])
123
+
124
+ # Get a few column names to verify sample IDs
125
+ print("\nFirst 5 column names:")
126
+ print(list(genetic_data.columns)[:5])
127
+ # Identifiers starting with ILMN_ indicate these are Illumina probe IDs, not gene symbols
128
+ requires_gene_mapping = True
129
+ # Extract gene annotation data
130
+ gene_annotation = get_gene_annotation(soft_file_path)
131
+
132
+ # Display column names and preview data
133
+ print("Column names:")
134
+ print(gene_annotation.columns)
135
+
136
+ print("\nPreview of gene annotation data:")
137
+ print(preview_df(gene_annotation))
138
+ # 1. ID column stores Illumina probe IDs, Symbol column stores gene symbols
139
+ # 2. Extract mapping between probe IDs and gene symbols
140
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
141
+
142
+ # 3. Apply gene mapping to convert probe-level data to gene expression data
143
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
144
+
145
+ # Print head of resulting gene expression data
146
+ print("\nFirst few rows of gene expression data:")
147
+ print(gene_data.head())
148
+
149
+ print("\nShape:", gene_data.shape)
150
+ # Reload clinical data that was processed earlier
151
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
152
+
153
+ # 1. Normalize gene symbols
154
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
155
+ genetic_data.to_csv(out_gene_data_file)
156
+
157
+ # 2. Link clinical and genetic data
158
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
159
+
160
+ # 3. Handle missing values systematically
161
+ linked_data = handle_missing_values(linked_data, trait)
162
+
163
+ # 4. Check for bias in trait and demographic features
164
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
165
+
166
+ # 5. Final validation and information saving
167
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
168
+ is_usable = validate_and_save_cohort_info(
169
+ is_final=True,
170
+ cohort=cohort,
171
+ info_path=json_path,
172
+ is_gene_available=True,
173
+ is_trait_available=True,
174
+ is_biased=trait_biased,
175
+ df=linked_data,
176
+ note=note
177
+ )
178
+
179
+ # 6. Save linked data only if usable
180
+ if is_usable:
181
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
182
+ linked_data.to_csv(out_data_file)
p3/preprocess/Obsessive-Compulsive_Disorder/code/GSE78104.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obsessive-Compulsive_Disorder"
6
+ cohort = "GSE78104"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder/GSE78104"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/GSE78104.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/gene_data/GSE78104.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/clinical_data/GSE78104.csv"
16
+ json_path = "./output/preprocess/3/Obsessive-Compulsive_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, based on the Series title and design, this dataset contains mRNA expression data
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # 2.1 Data Availability
38
+ trait_row = 1 # disease state row contains trait info
39
+ age_row = 3 # age information available
40
+ gender_row = 2 # gender information available
41
+
42
+ # 2.2 Data Type Conversion Functions
43
+ def convert_trait(x):
44
+ # Binary: Convert OCD vs control
45
+ if not isinstance(x, str):
46
+ return None
47
+ value = x.split(': ')[-1].lower()
48
+ if 'obsessive-compulsive disorder' in value:
49
+ return 1
50
+ elif 'normal control' in value:
51
+ return 0
52
+ return None
53
+
54
+ def convert_age(x):
55
+ # Continuous: Extract age number
56
+ if not isinstance(x, str):
57
+ return None
58
+ value = x.split(': ')[-1].lower()
59
+ if 'y' in value:
60
+ try:
61
+ return int(value.replace('y',''))
62
+ except:
63
+ return None
64
+ return None
65
+
66
+ def convert_gender(x):
67
+ # Binary: Female=0, Male=1
68
+ if not isinstance(x, str):
69
+ return None
70
+ value = x.split(': ')[-1].lower()
71
+ if 'female' in value:
72
+ return 0
73
+ elif 'male' in value:
74
+ return 1
75
+ return None
76
+
77
+ # 3. Save Metadata
78
+ is_trait_available = trait_row is not None
79
+ validate_and_save_cohort_info(is_final=False,
80
+ cohort=cohort,
81
+ info_path=json_path,
82
+ is_gene_available=is_gene_available,
83
+ is_trait_available=is_trait_available)
84
+
85
+ # 4. Clinical Feature Extraction
86
+ if trait_row is not None:
87
+ selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
88
+ trait=trait,
89
+ trait_row=trait_row,
90
+ convert_trait=convert_trait,
91
+ age_row=age_row,
92
+ convert_age=convert_age,
93
+ gender_row=gender_row,
94
+ convert_gender=convert_gender)
95
+
96
+ # Preview the extracted features
97
+ print("Preview of selected clinical features:")
98
+ print(preview_df(selected_clinical))
99
+
100
+ # Save clinical data
101
+ selected_clinical.to_csv(out_clinical_data_file)
102
+ # Get gene expression data from matrix file
103
+ genetic_data = get_genetic_data(matrix_file_path)
104
+
105
+ # Examine data structure
106
+ print("Data structure and head:")
107
+ print(genetic_data.head())
108
+
109
+ print("\nShape:", genetic_data.shape)
110
+
111
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
112
+ print(list(genetic_data.index)[:20])
113
+
114
+ # Get a few column names to verify sample IDs
115
+ print("\nFirst 5 column names:")
116
+ print(list(genetic_data.columns)[:5])
117
+ # Looking at the identifiers in the gene expression data, they appear to be Agilent probe IDs
118
+ # (starting with "A_19_") and control probes, not standard human gene symbols.
119
+ # Therefore we need to map them to gene symbols.
120
+
121
+ requires_gene_mapping = True
122
+ # Extract gene annotation data
123
+ gene_annotation = get_gene_annotation(soft_file_path)
124
+
125
+ # Display column names and preview data
126
+ print("Column names:")
127
+ print(gene_annotation.columns)
128
+
129
+ print("\nPreview of gene annotation data:")
130
+ print(preview_df(gene_annotation))
131
+ # 1. From observation:
132
+ # gene expression data uses probe IDs like "A_19_P00315459"
133
+ # gene annotation data has these IDs in the "ID" column
134
+ # gene symbols are in "GeneSymbol" column
135
+
136
+ # 2. Get gene mapping from annotation data
137
+ prob_col = 'ID'
138
+ gene_col = 'GeneSymbol'
139
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
140
+
141
+ # 3. Apply gene mapping to convert probe-level data to gene-level data
142
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
143
+
144
+ # Preview the result
145
+ print("Gene expression data shape:", gene_data.shape)
146
+ print("\nFirst few genes and their expression values:")
147
+ print(gene_data.head())
148
+ # Reload clinical data that was processed earlier
149
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
150
+
151
+ # 1. Normalize gene symbols
152
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
153
+ genetic_data.to_csv(out_gene_data_file)
154
+
155
+ # 2. Link clinical and genetic data
156
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
157
+
158
+ # 3. Handle missing values systematically
159
+ linked_data = handle_missing_values(linked_data, trait)
160
+
161
+ # 4. Check for bias in trait and demographic features
162
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
163
+
164
+ # 5. Final validation and information saving
165
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
166
+ is_usable = validate_and_save_cohort_info(
167
+ is_final=True,
168
+ cohort=cohort,
169
+ info_path=json_path,
170
+ is_gene_available=True,
171
+ is_trait_available=True,
172
+ is_biased=trait_biased,
173
+ df=linked_data,
174
+ note=note
175
+ )
176
+
177
+ # 6. Save linked data only if usable
178
+ if is_usable:
179
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
180
+ linked_data.to_csv(out_data_file)
p3/preprocess/Obsessive-Compulsive_Disorder/code/TCGA.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Obsessive-Compulsive_Disorder"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Obsessive-Compulsive_Disorder/cohort_info.json"
15
+
16
+ # Check for OCD-related directory in TCGA
17
+ # Since TCGA is focused on cancer, no directory is related to OCD
18
+ is_gene_available = False
19
+ is_trait_available = False
20
+
21
+ # Mark task as completed and save info about data unavailability
22
+ validate_and_save_cohort_info(
23
+ is_final=False,
24
+ cohort="TCGA",
25
+ info_path=json_path,
26
+ is_gene_available=is_gene_available,
27
+ is_trait_available=is_trait_available
28
+ )
p3/preprocess/Obsessive-Compulsive_Disorder/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE78104": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 60, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE60190": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 108, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
p3/preprocess/Obsessive-Compulsive_Disorder/gene_data/GSE78104.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Obstructive_sleep_apnea/GSE133601.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Obstructive_sleep_apnea/GSE75097.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE133601.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM3912810,GSM3912811,GSM3912812,GSM3912813,GSM3912814,GSM3912815,GSM3912816,GSM3912817,GSM3912818,GSM3912819,GSM3912820,GSM3912821,GSM3912822,GSM3912823,GSM3912824,GSM3912825,GSM3912826,GSM3912827,GSM3912828,GSM3912829,GSM3912830,GSM3912831,GSM3912832,GSM3912833,GSM3912834,GSM3912835,GSM3912836,GSM3912837,GSM3912838,GSM3912839
2
+ Obstructive_sleep_apnea,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0
p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE49800.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1207208,GSM1207209,GSM1207210,GSM1207211,GSM1207212,GSM1207213,GSM1207214,GSM1207215,GSM1207216,GSM1207217,GSM1207218,GSM1207219,GSM1207220,GSM1207221,GSM1207222,GSM1207223,GSM1207224,GSM1207225,GSM1207226,GSM1207227,GSM1207228,GSM1207229,GSM1207230,GSM1207231,GSM1207232,GSM1207233,GSM1207234,GSM1207235,GSM1207236,GSM1207237,GSM1207238,GSM1207239,GSM1207240,GSM1207241,GSM1207242,GSM1207243
2
+ Obstructive_sleep_apnea,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0
p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE75097.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1942590,GSM1942591,GSM1942592,GSM1942593,GSM1942594,GSM1942595,GSM1942596,GSM1942597,GSM1942598,GSM1942599,GSM1942600,GSM1942601,GSM1942602,GSM1942603,GSM1942604,GSM1942605,GSM1942606,GSM1942607,GSM1942608,GSM1942609,GSM1942610,GSM1942611,GSM1942612,GSM1942613,GSM1942614,GSM1942615,GSM1942616,GSM1942617,GSM1942618,GSM1942619,GSM1942620,GSM1942621,GSM1942622,GSM1942623,GSM1942624,GSM1942625,GSM1942626,GSM1942627,GSM1942628,GSM1942629,GSM1942630,GSM1942631,GSM1942632,GSM1942633,GSM1942634,GSM1942635,GSM1942636,GSM1942637
2
+ Obstructive_sleep_apnea,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0
3
+ Age,54.0,31.0,44.0,60.0,21.0,50.0,52.0,58.0,42.0,34.0,58.0,37.0,60.0,59.0,27.0,57.0,68.0,53.0,58.0,52.0,36.0,38.0,50.0,44.0,58.0,54.0,43.0,59.0,44.0,46.0,36.0,59.0,49.0,59.0,68.0,61.0,38.0,45.0,35.0,57.0,42.0,44.0,47.0,50.0,54.0,50.0,47.0,38.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0