Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +12 -0
- p3/preprocess/Hepatitis/GSE159676.csv +3 -0
- p3/preprocess/Lactose_Intolerance/GSE138297.csv +3 -0
- p3/preprocess/Liver_Cancer/GSE228783.csv +3 -0
- p3/preprocess/Liver_Cancer/TCGA.csv +3 -0
- p3/preprocess/Liver_Cancer/gene_data/GSE148346.csv +3 -0
- p3/preprocess/Liver_Cancer/gene_data/GSE164760.csv +3 -0
- p3/preprocess/Liver_Cancer/gene_data/GSE178201.csv +3 -0
- p3/preprocess/Liver_Cancer/gene_data/GSE228782.csv +3 -0
- p3/preprocess/Liver_Cancer/gene_data/GSE228783.csv +3 -0
- p3/preprocess/Liver_Cancer/gene_data/TCGA.csv +3 -0
- p3/preprocess/Liver_cirrhosis/TCGA.csv +3 -0
- p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv +3 -0
- p3/preprocess/Obesity/clinical_data/GSE181339.csv +4 -0
- p3/preprocess/Obesity/clinical_data/GSE271700.csv +4 -0
- p3/preprocess/Obesity/clinical_data/GSE281144.csv +3 -0
- p3/preprocess/Obesity/clinical_data/GSE84046.csv +4 -0
- p3/preprocess/Obesity/clinical_data/GSE99725.csv +2 -0
- p3/preprocess/Obesity/clinical_data/TCGA.csv +1219 -0
- p3/preprocess/Obesity/code/GSE123086.py +346 -0
- p3/preprocess/Obesity/code/GSE123088.py +306 -0
- p3/preprocess/Obesity/code/GSE158237.py +284 -0
- p3/preprocess/Obesity/code/GSE158850.py +151 -0
- p3/preprocess/Obesity/code/GSE159809.py +194 -0
- p3/preprocess/Obesity/code/GSE181339.py +200 -0
- p3/preprocess/Obesity/code/GSE271700.py +162 -0
- p3/preprocess/Obesity/code/GSE281144.py +223 -0
- p3/preprocess/Obesity/code/GSE84046.py +203 -0
- p3/preprocess/Obesity/code/GSE99725.py +139 -0
- p3/preprocess/Obesity/code/TCGA.py +107 -0
- p3/preprocess/Obesity/gene_data/GSE123086.csv +1 -0
- p3/preprocess/Obesity/gene_data/GSE123088.csv +1 -0
- p3/preprocess/Obesity/gene_data/GSE158237.csv +1 -0
- p3/preprocess/Obesity/gene_data/GSE181339.csv +0 -0
- p3/preprocess/Obesity/gene_data/GSE271700.csv +0 -0
- p3/preprocess/Obesity/gene_data/GSE281144.csv +1 -0
- p3/preprocess/Obesity/gene_data/GSE99725.csv +0 -0
- p3/preprocess/Obsessive-Compulsive_Disorder/GSE78104.csv +0 -0
- p3/preprocess/Obsessive-Compulsive_Disorder/clinical_data/GSE60190.csv +4 -0
- p3/preprocess/Obsessive-Compulsive_Disorder/clinical_data/GSE78104.csv +4 -0
- p3/preprocess/Obsessive-Compulsive_Disorder/code/GSE60190.py +182 -0
- p3/preprocess/Obsessive-Compulsive_Disorder/code/GSE78104.py +180 -0
- p3/preprocess/Obsessive-Compulsive_Disorder/code/TCGA.py +28 -0
- p3/preprocess/Obsessive-Compulsive_Disorder/cohort_info.json +1 -0
- p3/preprocess/Obsessive-Compulsive_Disorder/gene_data/GSE78104.csv +0 -0
- p3/preprocess/Obstructive_sleep_apnea/GSE133601.csv +0 -0
- p3/preprocess/Obstructive_sleep_apnea/GSE75097.csv +0 -0
- p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE133601.csv +2 -0
- p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE49800.csv +2 -0
- p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE75097.csv +4 -0
.gitattributes
CHANGED
@@ -1864,3 +1864,15 @@ p3/preprocess/Large_B-cell_Lymphoma/gene_data/TCGA.csv filter=lfs diff=lfs merge
|
|
1864 |
p3/preprocess/LDL_Cholesterol_Levels/gene_data/GSE28893.csv filter=lfs diff=lfs merge=lfs -text
|
1865 |
p3/preprocess/LDL_Cholesterol_Levels/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1866 |
p3/preprocess/Liver_Cancer/GSE148346.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1864 |
p3/preprocess/LDL_Cholesterol_Levels/gene_data/GSE28893.csv filter=lfs diff=lfs merge=lfs -text
|
1865 |
p3/preprocess/LDL_Cholesterol_Levels/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1866 |
p3/preprocess/Liver_Cancer/GSE148346.csv filter=lfs diff=lfs merge=lfs -text
|
1867 |
+
p3/preprocess/Lactose_Intolerance/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
|
1868 |
+
p3/preprocess/Liver_Cancer/GSE228783.csv filter=lfs diff=lfs merge=lfs -text
|
1869 |
+
p3/preprocess/Liver_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1870 |
+
p3/preprocess/Liver_Cancer/gene_data/GSE148346.csv filter=lfs diff=lfs merge=lfs -text
|
1871 |
+
p3/preprocess/Liver_Cancer/gene_data/GSE164760.csv filter=lfs diff=lfs merge=lfs -text
|
1872 |
+
p3/preprocess/Liver_Cancer/gene_data/GSE178201.csv filter=lfs diff=lfs merge=lfs -text
|
1873 |
+
p3/preprocess/Liver_Cancer/gene_data/GSE228782.csv filter=lfs diff=lfs merge=lfs -text
|
1874 |
+
p3/preprocess/Liver_Cancer/gene_data/GSE228783.csv filter=lfs diff=lfs merge=lfs -text
|
1875 |
+
p3/preprocess/Hepatitis/GSE159676.csv filter=lfs diff=lfs merge=lfs -text
|
1876 |
+
p3/preprocess/Liver_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1877 |
+
p3/preprocess/Liver_cirrhosis/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1878 |
+
p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Hepatitis/GSE159676.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92b48760a588df973eddaa1ff344f4d66ce6aaec7e83c3db71cd904e7dbb7f5f
|
3 |
+
size 45741223
|
p3/preprocess/Lactose_Intolerance/GSE138297.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:189a8de21175fd3a142fbeefcace9b8f322c8273807aed80cdb3e24cfebd8830
|
3 |
+
size 15408914
|
p3/preprocess/Liver_Cancer/GSE228783.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:869104e0ebe8d067b9655070710eaf34cbd25fdfb3e8c33789cc6db7a21343eb
|
3 |
+
size 31578268
|
p3/preprocess/Liver_Cancer/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9a684d83efae816e03c0691e0ab29cc7c975b511bbc6275aa6ee8478d0c1c48
|
3 |
+
size 126898641
|
p3/preprocess/Liver_Cancer/gene_data/GSE148346.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:830556682e0675dd524d2e1f986ec941a14de052b109af704c73ffd79667a6b4
|
3 |
+
size 20446260
|
p3/preprocess/Liver_Cancer/gene_data/GSE164760.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d58b0de4f8a4a5d4b26baf5a61eedfe6bb95b30d2341be5fb0695a4cfcd3d38
|
3 |
+
size 44020082
|
p3/preprocess/Liver_Cancer/gene_data/GSE178201.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb1a59cea40550c8057a150e424e1a7e9b62eab505e3338394c091055230efe3
|
3 |
+
size 48101519
|
p3/preprocess/Liver_Cancer/gene_data/GSE228782.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:747966e5ef3147062b76e3d4640b5a5c6bf1fc9196be79454cff0d63ae9964ac
|
3 |
+
size 17307954
|
p3/preprocess/Liver_Cancer/gene_data/GSE228783.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2bf23a43d7dc835898cc3d3f388f1f187b5b187eb1df2048cd42229d690e1bd
|
3 |
+
size 31577651
|
p3/preprocess/Liver_Cancer/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fda4b7e0eb1b7d3ae8ef43544fbcfc1289fc40b4c948499e0a55cde48b1cf574
|
3 |
+
size 126894803
|
p3/preprocess/Liver_cirrhosis/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8300dea21510062fb8f3f9d9d892babfc8897728cb48b3a0479c8ee77c2638a3
|
3 |
+
size 126898644
|
p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fda4b7e0eb1b7d3ae8ef43544fbcfc1289fc40b4c948499e0a55cde48b1cf574
|
3 |
+
size 126894803
|
p3/preprocess/Obesity/clinical_data/GSE181339.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM5494930,GSM5494931,GSM5494932,GSM5494933,GSM5494934,GSM5494935,GSM5494936,GSM5494937,GSM5494938,GSM5494939,GSM5494940,GSM5494941,GSM5494942,GSM5494943,GSM5494944,GSM5494945,GSM5494946,GSM5494947,GSM5494948,GSM5494949,GSM5494950,GSM5494951,GSM5494952,GSM5494953,GSM5494954,GSM5494955,GSM5494956,GSM5494957,GSM5494958,GSM5494959,GSM5494960,GSM5494961,GSM5494962,GSM5494963,GSM5494964,GSM5494965,GSM5494966,GSM5494967,GSM5494968,GSM5494969,GSM5494970,GSM5494971,GSM5494972,GSM5494973,GSM5494974,GSM5494975,GSM5494976,GSM5494977,GSM5494978,GSM5494979,GSM5494980,GSM5494981,GSM5494982,GSM5494983,GSM5494984,GSM5494985,GSM5494986,GSM5494987,GSM5494988,GSM5494989,GSM5494990,GSM5494991,GSM5494992,GSM5494993,GSM5494994,GSM5494995,GSM5494996,GSM5494997,GSM5494998,GSM5494999,GSM5495000,GSM5495001,GSM5495002,GSM5495003,GSM5495004,GSM5495005,GSM5495006,GSM5495007
|
2 |
+
Obesity,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0
|
3 |
+
Age,21.0,23.0,10.0,17.0,11.0,1.0,18.0,10.0,12.0,23.0,23.0,8.0,11.0,17.0,11.0,1.0,14.0,12.0,21.0,8.0,26.0,8.0,21.0,26.0,14.0,8.0,1.0,10.0,4.0,8.0,10.0,2.0,26.0,2.0,11.0,1.0,3.0,7.0,23.0,13.0,17.0,11.0,4.0,15.0,9.0,4.0,18.0,2.0,21.0,17.0,21.0,1.0,10.0,18.0,13.0,2.0,11.0,10.0,18.0,26.0,15.0,30.0,8.0,17.0,21.0,7.0,8.0,10.0,2.0,2.0,30.0,17.0,30.0,19.0,30.0,2.0,4.0,19.0
|
4 |
+
Gender,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0
|
p3/preprocess/Obesity/clinical_data/GSE271700.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM8382768,GSM8382769,GSM8382770,GSM8382771,GSM8382772,GSM8382773,GSM8382774,GSM8382775,GSM8382776,GSM8382777,GSM8382778,GSM8382779,GSM8382780,GSM8382781,GSM8382782,GSM8382783,GSM8382784,GSM8382785,GSM8382786,GSM8382787,GSM8382788,GSM8382789,GSM8382790,GSM8382791,GSM8382792,GSM8382793,GSM8382794,GSM8382795,GSM8382796,GSM8382797,GSM8382798,GSM8382799,GSM8382800,GSM8382801,GSM8382802,GSM8382803,GSM8382804,GSM8382805,GSM8382806,GSM8382807,GSM8382808,GSM8382809,GSM8382810,GSM8382811,GSM8382812,GSM8382813,GSM8382814,GSM8382815,GSM8382816,GSM8382817,GSM8382818,GSM8382819,GSM8382820,GSM8382821,GSM8382822,GSM8382823,GSM8382824,GSM8382825,GSM8382826,GSM8382827,GSM8382828,GSM8382829,GSM8382830,GSM8382831,GSM8382832,GSM8382833,GSM8382834,GSM8382835,GSM8382836,GSM8382837,GSM8382838,GSM8382839,GSM8382840
|
2 |
+
Obesity,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0
|
3 |
+
Age,51.0,51.0,43.0,43.0,43.0,46.0,46.0,46.0,41.0,41.0,41.0,29.0,29.0,29.0,33.0,33.0,33.0,36.0,36.0,36.0,44.0,44.0,48.0,48.0,36.0,36.0,36.0,41.0,41.0,40.0,40.0,40.0,46.0,46.0,46.0,51.0,51.0,51.0,49.0,49.0,49.0,50.0,50.0,50.0,33.0,33.0,33.0,33.0,33.0,35.0,35.0,35.0,41.0,41.0,41.0,47.0,47.0,47.0,31.0,31.0,31.0,28.0,28.0,28.0,36.0,36.0,36.0,37.0,37.0,37.0,39.0,39.0,39.0
|
4 |
+
Gender,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0
|
p3/preprocess/Obesity/clinical_data/GSE281144.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM8611649,GSM8611650,GSM8611651,GSM8611652,GSM8611653,GSM8611654,GSM8611655,GSM8611656,GSM8611657,GSM8611658,GSM8611659,GSM8611660,GSM8611661,GSM8611662,GSM8611663,GSM8611664,GSM8611665,GSM8611666,GSM8611667,GSM8611668,GSM8611669,GSM8611670,GSM8611671,GSM8611672,GSM8611673,GSM8611674,GSM8611675,GSM8611676,GSM8611677,GSM8611678,GSM8611679,GSM8611680,GSM8611681,GSM8611682
|
2 |
+
Obesity,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Obesity/clinical_data/GSE84046.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2226420,GSM2226421,GSM2226422,GSM2226423,GSM2226424,GSM2226425,GSM2226426,GSM2226427,GSM2226428,GSM2226429,GSM2226430,GSM2226431,GSM2226432,GSM2226433,GSM2226434,GSM2226435,GSM2226436,GSM2226437,GSM2226438,GSM2226439,GSM2226440,GSM2226441,GSM2226442,GSM2226443,GSM2226444,GSM2226445,GSM2226446,GSM2226447,GSM2226448,GSM2226449,GSM2226450,GSM2226451,GSM2226452,GSM2226453,GSM2226454,GSM2226455,GSM2226456,GSM2226457,GSM2226458,GSM2226459,GSM2226460,GSM2226461,GSM2226462,GSM2226463
|
2 |
+
Obesity,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0
|
3 |
+
Age,60.0,68.0,60.0,68.0,57.0,65.0,68.0,57.0,65.0,68.0,69.0,60.0,58.0,69.0,60.0,58.0,68.0,61.0,68.0,61.0,59.0,60.0,68.0,59.0,60.0,68.0,57.0,66.0,58.0,57.0,66.0,58.0,58.0,66.0,65.0,58.0,66.0,65.0,60.0,66.0,59.0,60.0,66.0,59.0
|
4 |
+
Gender,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0
|
p3/preprocess/Obesity/clinical_data/GSE99725.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM2650879,GSM2650880,GSM2650881,GSM2650882,GSM2650883,GSM2650884,GSM2650885,GSM2650886,GSM2650887,GSM2650888,GSM2650889,GSM2650890,GSM2650891,GSM2650892,GSM2650893,GSM2650894,GSM2650895,GSM2650896,GSM2650897,GSM2650898,GSM2650899,GSM2650900,GSM2650901,GSM2650902,GSM2650903,GSM2650904,GSM2650905,GSM2650906,GSM2650907,GSM2650908,GSM2650909,GSM2650910,GSM2650911,GSM2650912,GSM2650913,GSM2650914,GSM2650915,GSM2650916,GSM2650917,GSM2650918,GSM2650919,GSM2650920,GSM2650921,GSM2650922,GSM2650923,GSM2650924,GSM2650925,GSM2650926,GSM2650927,GSM2650928,GSM2650929,GSM2650930,GSM2650931,GSM2650932,GSM2650933,GSM2650934,GSM2650935
|
2 |
+
Obesity,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Obesity/clinical_data/TCGA.csv
ADDED
@@ -0,0 +1,1219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,Obesity
|
2 |
+
TCGA-AR-A5QQ-01,-1
|
3 |
+
TCGA-D8-A1JA-01,-1
|
4 |
+
TCGA-BH-A0BQ-01,-1
|
5 |
+
TCGA-BH-A0BT-01,-1
|
6 |
+
TCGA-A8-A06X-01,-1
|
7 |
+
TCGA-A8-A096-01,-1
|
8 |
+
TCGA-BH-A0C7-01,-1
|
9 |
+
TCGA-AC-A5XU-01,-1
|
10 |
+
TCGA-PE-A5DE-01,-1
|
11 |
+
TCGA-PE-A5DC-01,-1
|
12 |
+
TCGA-AR-A0TV-01,-1
|
13 |
+
TCGA-GM-A3XG-01,-1
|
14 |
+
TCGA-BH-A18J-01,-1
|
15 |
+
TCGA-BH-A0W7-01,-1
|
16 |
+
TCGA-E9-A3QA-01,-1
|
17 |
+
TCGA-A7-A4SD-01,-1
|
18 |
+
TCGA-BH-A0HA-01,-1
|
19 |
+
TCGA-AR-A5QN-01,-1
|
20 |
+
TCGA-A7-A0CH-11,-1
|
21 |
+
TCGA-A7-A0CE-01,-1
|
22 |
+
TCGA-AR-A0U1-01,-1
|
23 |
+
TCGA-EW-A1OZ-01,-1
|
24 |
+
TCGA-A2-A0EY-01,-1
|
25 |
+
TCGA-A8-A09R-01,-1
|
26 |
+
TCGA-LL-A440-01,-1
|
27 |
+
TCGA-BH-A8FY-01,-1
|
28 |
+
TCGA-E2-A1II-01,-1
|
29 |
+
TCGA-A7-A6VX-01,-1
|
30 |
+
TCGA-C8-A273-01,-1
|
31 |
+
TCGA-BH-A1EO-01,-1
|
32 |
+
TCGA-OL-A5RX-01,-1
|
33 |
+
TCGA-BH-A0B9-01,-1
|
34 |
+
TCGA-EW-A1P5-01,-1
|
35 |
+
TCGA-AO-A03P-01,-1
|
36 |
+
TCGA-AN-A0AS-01,-1
|
37 |
+
TCGA-A2-A1G0-01,-1
|
38 |
+
TCGA-B6-A0I8-01,-1
|
39 |
+
TCGA-A7-A4SA-01,-1
|
40 |
+
TCGA-E9-A1RC-11,-1
|
41 |
+
TCGA-A7-A0DB-11,-1
|
42 |
+
TCGA-AR-A24S-01,-1
|
43 |
+
TCGA-BH-A0H9-11,-1
|
44 |
+
TCGA-LD-A74U-01,-1
|
45 |
+
TCGA-D8-A1XA-01,-1
|
46 |
+
TCGA-D8-A1XR-01,-1
|
47 |
+
TCGA-A8-A07Z-01,-1
|
48 |
+
TCGA-E2-A1IJ-01,-1
|
49 |
+
TCGA-GM-A2DH-01,-1
|
50 |
+
TCGA-BH-A0AY-01,-1
|
51 |
+
TCGA-BH-A42V-01,-1
|
52 |
+
TCGA-B6-A0IH-01,-1
|
53 |
+
TCGA-A1-A0SH-01,-1
|
54 |
+
TCGA-AR-A1AQ-01,-1
|
55 |
+
TCGA-A7-A0DC-01,-1
|
56 |
+
TCGA-A8-A07P-01,-1
|
57 |
+
TCGA-A1-A0SN-01,-1
|
58 |
+
TCGA-BH-A18T-01,-1
|
59 |
+
TCGA-BH-A0E0-11,-1
|
60 |
+
TCGA-E9-A22B-01,-1
|
61 |
+
TCGA-BH-A0HA-11,-1
|
62 |
+
TCGA-BH-A18P-11,-1
|
63 |
+
TCGA-E9-A1N4-11,-1
|
64 |
+
TCGA-S3-AA10-01,-1
|
65 |
+
TCGA-AO-A0J9-01,-1
|
66 |
+
TCGA-A1-A0SE-01,-1
|
67 |
+
TCGA-OL-A5RV-01,-1
|
68 |
+
TCGA-BH-A18U-11,-1
|
69 |
+
TCGA-A2-A04U-01,-1
|
70 |
+
TCGA-A2-A3XV-01,-1
|
71 |
+
TCGA-A7-A3IZ-01,-1
|
72 |
+
TCGA-E2-A1LS-11,-1
|
73 |
+
TCGA-AC-A2FM-11,-1
|
74 |
+
TCGA-D8-A1Y2-01,-1
|
75 |
+
TCGA-E9-A229-01,-1
|
76 |
+
TCGA-A7-A4SB-01,-1
|
77 |
+
TCGA-BH-A0HK-01,-1
|
78 |
+
TCGA-3C-AAAU-01,-1
|
79 |
+
TCGA-BH-A18M-11,-1
|
80 |
+
TCGA-E2-A14Z-01,-1
|
81 |
+
TCGA-A2-A3XW-01,-1
|
82 |
+
TCGA-D8-A1Y1-01,-1
|
83 |
+
TCGA-AC-A7VB-01,-1
|
84 |
+
TCGA-B6-A0RO-01,-1
|
85 |
+
TCGA-A2-A04P-01,-1
|
86 |
+
TCGA-A7-A13E-01,-1
|
87 |
+
TCGA-A7-A0D9-01,-1
|
88 |
+
TCGA-E2-A14R-01,-1
|
89 |
+
TCGA-GM-A3XN-01,-1
|
90 |
+
TCGA-A8-A06Y-01,-1
|
91 |
+
TCGA-E2-A1IK-01,-1
|
92 |
+
TCGA-E2-A1IU-01,-1
|
93 |
+
TCGA-BH-A0E2-01,-1
|
94 |
+
TCGA-BH-A0B3-11,-1
|
95 |
+
TCGA-A2-A0CZ-01,-1
|
96 |
+
TCGA-AR-A2LE-01,-1
|
97 |
+
TCGA-A8-A0A1-01,-1
|
98 |
+
TCGA-E2-A1L7-01,-1
|
99 |
+
TCGA-E2-A14T-01,-1
|
100 |
+
TCGA-AC-A5EH-01,-1
|
101 |
+
TCGA-GM-A2DM-01,-1
|
102 |
+
TCGA-A2-A0D4-01,-1
|
103 |
+
TCGA-BH-A0B1-01,-1
|
104 |
+
TCGA-AO-A12F-01,-1
|
105 |
+
TCGA-AC-A3HN-01,-1
|
106 |
+
TCGA-C8-A1HN-01,-1
|
107 |
+
TCGA-A2-A25C-01,-1
|
108 |
+
TCGA-E9-A6HE-01,-1
|
109 |
+
TCGA-EW-A6SB-01,-1
|
110 |
+
TCGA-E9-A1N4-01,-1
|
111 |
+
TCGA-B6-A0RH-01,-1
|
112 |
+
TCGA-A8-A09N-01,-1
|
113 |
+
TCGA-AO-A0JE-01,-1
|
114 |
+
TCGA-E2-A106-01,-1
|
115 |
+
TCGA-E2-A14S-01,-1
|
116 |
+
TCGA-AC-A3TM-01,-1
|
117 |
+
TCGA-AQ-A1H3-01,-1
|
118 |
+
TCGA-E2-A15R-01,-1
|
119 |
+
TCGA-A8-A06R-01,-1
|
120 |
+
TCGA-E9-A295-01,-1
|
121 |
+
TCGA-AC-A62X-01,-1
|
122 |
+
TCGA-BH-A18N-01,-1
|
123 |
+
TCGA-BH-A1FL-01,-1
|
124 |
+
TCGA-D8-A1XD-01,-1
|
125 |
+
TCGA-AC-A2FB-01,-1
|
126 |
+
TCGA-BH-A0DQ-01,-1
|
127 |
+
TCGA-AC-A3W5-01,-1
|
128 |
+
TCGA-D8-A1JP-01,-1
|
129 |
+
TCGA-BH-A0HW-01,-1
|
130 |
+
TCGA-BH-A0BW-01,-1
|
131 |
+
TCGA-LL-A6FP-01,-1
|
132 |
+
TCGA-A8-A0A4-01,-1
|
133 |
+
TCGA-AC-A6IW-01,-1
|
134 |
+
TCGA-BH-A0C0-11,-1
|
135 |
+
TCGA-XX-A899-01,-1
|
136 |
+
TCGA-A2-A25A-01,-1
|
137 |
+
TCGA-E9-A1R5-01,-1
|
138 |
+
TCGA-5T-A9QA-01,-1
|
139 |
+
TCGA-GM-A3NW-01,-1
|
140 |
+
TCGA-D8-A1JS-01,-1
|
141 |
+
TCGA-AR-A1AJ-01,-1
|
142 |
+
TCGA-AN-A0AK-01,-1
|
143 |
+
TCGA-BH-A0H7-11,-1
|
144 |
+
TCGA-D8-A73W-01,-1
|
145 |
+
TCGA-BH-A0BM-11,-1
|
146 |
+
TCGA-BH-A0BZ-01,-1
|
147 |
+
TCGA-A2-A0EU-01,-1
|
148 |
+
TCGA-B6-A401-01,-1
|
149 |
+
TCGA-AC-A7VC-01,-1
|
150 |
+
TCGA-AR-A24P-01,-1
|
151 |
+
TCGA-S3-AA0Z-01,-1
|
152 |
+
TCGA-LL-A50Y-01,-1
|
153 |
+
TCGA-OL-A5D8-01,-1
|
154 |
+
TCGA-A8-A08S-01,-1
|
155 |
+
TCGA-A8-A09K-01,-1
|
156 |
+
TCGA-BH-A0DI-01,-1
|
157 |
+
TCGA-A2-A0T6-01,-1
|
158 |
+
TCGA-A2-A25B-01,-1
|
159 |
+
TCGA-E2-A1BC-11,-1
|
160 |
+
TCGA-A2-A0SV-01,-1
|
161 |
+
TCGA-BH-A18G-01,-1
|
162 |
+
TCGA-BH-A0DG-11,-1
|
163 |
+
TCGA-AN-A0XR-01,-1
|
164 |
+
TCGA-A8-A0AB-01,-1
|
165 |
+
TCGA-AO-A1KO-01,-1
|
166 |
+
TCGA-A2-A0CU-01,-1
|
167 |
+
TCGA-BH-A0B7-11,-1
|
168 |
+
TCGA-BH-A1ET-11,-1
|
169 |
+
TCGA-A2-A1FZ-01,-1
|
170 |
+
TCGA-BH-A0B8-11,-1
|
171 |
+
TCGA-BH-A1FC-01,-1
|
172 |
+
TCGA-E2-A14W-01,-1
|
173 |
+
TCGA-LL-A441-01,-1
|
174 |
+
TCGA-PL-A8LX-01,-1
|
175 |
+
TCGA-XX-A89A-01,-1
|
176 |
+
TCGA-BH-A8FZ-01,-1
|
177 |
+
TCGA-E9-A5UO-01,-1
|
178 |
+
TCGA-E2-A15I-11,-1
|
179 |
+
TCGA-E2-A573-01,-1
|
180 |
+
TCGA-D8-A146-01,-1
|
181 |
+
TCGA-AO-A124-01,-1
|
182 |
+
TCGA-BH-A18L-11,-1
|
183 |
+
TCGA-AR-A24Z-01,-1
|
184 |
+
TCGA-A8-A075-01,-1
|
185 |
+
TCGA-A8-A08A-01,-1
|
186 |
+
TCGA-AQ-A0Y5-01,-1
|
187 |
+
TCGA-B6-A0I9-01,-1
|
188 |
+
TCGA-BH-A0DZ-11,-1
|
189 |
+
TCGA-E9-A1N5-11,-1
|
190 |
+
TCGA-BH-A28O-01,-1
|
191 |
+
TCGA-AR-A0TX-01,-1
|
192 |
+
TCGA-D8-A3Z6-01,-1
|
193 |
+
TCGA-A8-A093-01,-1
|
194 |
+
TCGA-A8-A07C-01,-1
|
195 |
+
TCGA-A8-A099-01,-1
|
196 |
+
TCGA-BH-A201-01,-1
|
197 |
+
TCGA-AO-A0J3-01,-1
|
198 |
+
TCGA-AR-A24H-01,-1
|
199 |
+
TCGA-BH-A0WA-01,-1
|
200 |
+
TCGA-AC-A3W6-01,-1
|
201 |
+
TCGA-AO-A0J2-01,-1
|
202 |
+
TCGA-A8-A08P-01,-1
|
203 |
+
TCGA-C8-A275-01,-1
|
204 |
+
TCGA-BH-A18P-01,-1
|
205 |
+
TCGA-B6-A0RQ-01,-1
|
206 |
+
TCGA-BH-A0BC-01,-1
|
207 |
+
TCGA-A7-A26E-01,-1
|
208 |
+
TCGA-E9-A1N6-11,-1
|
209 |
+
TCGA-BH-A2L8-01,-1
|
210 |
+
TCGA-BH-A18R-11,-1
|
211 |
+
TCGA-BH-A0DK-01,-1
|
212 |
+
TCGA-A2-A0T2-01,-1
|
213 |
+
TCGA-BH-A1EO-11,-1
|
214 |
+
TCGA-E2-A1IF-01,-1
|
215 |
+
TCGA-AR-A2LL-01,-1
|
216 |
+
TCGA-E9-A1N8-01,-1
|
217 |
+
TCGA-E9-A247-01,-1
|
218 |
+
TCGA-D8-A27E-01,-1
|
219 |
+
TCGA-EW-A1P0-01,-1
|
220 |
+
TCGA-C8-A1HF-01,-1
|
221 |
+
TCGA-E9-A244-01,-1
|
222 |
+
TCGA-AO-A0JD-01,-1
|
223 |
+
TCGA-A1-A0SO-01,-1
|
224 |
+
TCGA-A8-A09T-01,-1
|
225 |
+
TCGA-D8-A73X-01,-1
|
226 |
+
TCGA-AC-A8OS-01,-1
|
227 |
+
TCGA-E2-A15C-01,-1
|
228 |
+
TCGA-BH-A18I-01,-1
|
229 |
+
TCGA-EW-A1PF-01,-1
|
230 |
+
TCGA-E2-A108-01,-1
|
231 |
+
TCGA-HN-A2OB-01,-1
|
232 |
+
TCGA-B6-A0RU-01,-1
|
233 |
+
TCGA-AO-A0JC-01,-1
|
234 |
+
TCGA-B6-A0RM-01,-1
|
235 |
+
TCGA-AC-A23H-11,-1
|
236 |
+
TCGA-A8-A08G-01,-1
|
237 |
+
TCGA-E9-A3Q9-01,-1
|
238 |
+
TCGA-C8-A1HL-01,-1
|
239 |
+
TCGA-C8-A3M8-01,-1
|
240 |
+
TCGA-MS-A51U-01,-1
|
241 |
+
TCGA-AR-A24W-01,-1
|
242 |
+
TCGA-EW-A1P7-01,-1
|
243 |
+
TCGA-A2-A04W-01,-1
|
244 |
+
TCGA-AC-A8OR-01,-1
|
245 |
+
TCGA-E2-A105-01,-1
|
246 |
+
TCGA-D8-A13Y-01,-1
|
247 |
+
TCGA-V7-A7HQ-01,-1
|
248 |
+
TCGA-AR-A2LO-01,-1
|
249 |
+
TCGA-3C-AALI-01,-1
|
250 |
+
TCGA-E2-A1LS-01,-1
|
251 |
+
TCGA-BH-A18N-11,-1
|
252 |
+
TCGA-A7-A0CE-11,-1
|
253 |
+
TCGA-BH-A1FG-01,-1
|
254 |
+
TCGA-A8-A08H-01,-1
|
255 |
+
TCGA-AR-A0TS-01,-1
|
256 |
+
TCGA-A2-A3XU-01,-1
|
257 |
+
TCGA-D8-A1XG-01,-1
|
258 |
+
TCGA-BH-A0AY-11,-1
|
259 |
+
TCGA-AR-A0TT-01,-1
|
260 |
+
TCGA-D8-A1JJ-01,-1
|
261 |
+
TCGA-D8-A145-01,-1
|
262 |
+
TCGA-BH-A1ES-01,-1
|
263 |
+
TCGA-C8-A12M-01,-1
|
264 |
+
TCGA-A2-A0CY-01,-1
|
265 |
+
TCGA-A8-A08L-01,-1
|
266 |
+
TCGA-OL-A5S0-01,-1
|
267 |
+
TCGA-C8-A1HJ-01,-1
|
268 |
+
TCGA-BH-A0BR-01,-1
|
269 |
+
TCGA-AO-A12E-01,-1
|
270 |
+
TCGA-S3-AA15-01,-1
|
271 |
+
TCGA-OL-A5D7-01,-1
|
272 |
+
TCGA-OL-A5DA-01,-1
|
273 |
+
TCGA-B6-A0RL-01,-1
|
274 |
+
TCGA-OL-A66N-01,-1
|
275 |
+
TCGA-E9-A1ND-11,-1
|
276 |
+
TCGA-A2-A0CM-01,-1
|
277 |
+
TCGA-S3-A6ZG-01,-1
|
278 |
+
TCGA-E9-A1RB-01,-1
|
279 |
+
TCGA-A2-A4RY-01,-1
|
280 |
+
TCGA-E9-A1R6-01,-1
|
281 |
+
TCGA-E9-A1R3-01,-1
|
282 |
+
TCGA-D8-A1JK-01,-1
|
283 |
+
TCGA-A2-A0CR-01,-1
|
284 |
+
TCGA-BH-AB28-01,-1
|
285 |
+
TCGA-E2-A10C-01,-1
|
286 |
+
TCGA-B6-A0WW-01,-1
|
287 |
+
TCGA-BH-A6R8-01,-1
|
288 |
+
TCGA-D8-A27L-01,-1
|
289 |
+
TCGA-BH-A0EE-01,-1
|
290 |
+
TCGA-D8-A1JG-01,-1
|
291 |
+
TCGA-C8-A133-01,-1
|
292 |
+
TCGA-A2-A0EO-01,-1
|
293 |
+
TCGA-A2-A0YL-01,-1
|
294 |
+
TCGA-AR-A1AY-01,-1
|
295 |
+
TCGA-B6-A0IC-01,-1
|
296 |
+
TCGA-AR-A24L-01,-1
|
297 |
+
TCGA-AC-A3YJ-01,-1
|
298 |
+
TCGA-A8-A06U-01,-1
|
299 |
+
TCGA-AR-A0U0-01,-1
|
300 |
+
TCGA-BH-A1EW-01,-1
|
301 |
+
TCGA-AN-A0FF-01,-1
|
302 |
+
TCGA-AN-A0FX-01,-1
|
303 |
+
TCGA-BH-A1FH-11,-1
|
304 |
+
TCGA-E9-A1RF-11,-1
|
305 |
+
TCGA-BH-A0DZ-01,-1
|
306 |
+
TCGA-A2-A0SU-01,-1
|
307 |
+
TCGA-E2-A15O-01,-1
|
308 |
+
TCGA-E2-A1LI-01,-1
|
309 |
+
TCGA-E9-A54Y-01,-1
|
310 |
+
TCGA-EW-A3E8-01,-1
|
311 |
+
TCGA-D8-A1XV-01,-1
|
312 |
+
TCGA-AR-A255-01,-1
|
313 |
+
TCGA-GM-A4E0-01,-1
|
314 |
+
TCGA-BH-A1F0-11,-1
|
315 |
+
TCGA-B6-A0IE-01,-1
|
316 |
+
TCGA-A8-A07F-01,-1
|
317 |
+
TCGA-AN-A046-01,-1
|
318 |
+
TCGA-AR-A1AS-01,-1
|
319 |
+
TCGA-E2-A15T-01,-1
|
320 |
+
TCGA-GM-A2DB-01,-1
|
321 |
+
TCGA-EW-A1PH-01,-1
|
322 |
+
TCGA-BH-A0HP-01,-1
|
323 |
+
TCGA-AN-A0AM-01,-1
|
324 |
+
TCGA-C8-A1HG-01,-1
|
325 |
+
TCGA-BH-A18L-01,-1
|
326 |
+
TCGA-A2-A0YI-01,-1
|
327 |
+
TCGA-D8-A4Z1-01,-1
|
328 |
+
TCGA-GM-A2DK-01,-1
|
329 |
+
TCGA-BH-A1FD-11,-1
|
330 |
+
TCGA-E2-A1L9-01,-1
|
331 |
+
TCGA-BH-A0BA-01,-1
|
332 |
+
TCGA-C8-A12L-01,-1
|
333 |
+
TCGA-A8-A083-01,-1
|
334 |
+
TCGA-D8-A1XY-01,-1
|
335 |
+
TCGA-AC-A2FF-11,-1
|
336 |
+
TCGA-A2-A0D2-01,-1
|
337 |
+
TCGA-AR-A1AL-01,-1
|
338 |
+
TCGA-AO-A0J6-01,-1
|
339 |
+
TCGA-AO-A0J7-01,-1
|
340 |
+
TCGA-OL-A66H-01,-1
|
341 |
+
TCGA-D8-A1J9-01,-1
|
342 |
+
TCGA-BH-A0B5-01,-1
|
343 |
+
TCGA-E2-A15A-06,-1
|
344 |
+
TCGA-E2-A15K-11,-1
|
345 |
+
TCGA-BH-A0B4-01,-1
|
346 |
+
TCGA-AQ-A04H-01,-1
|
347 |
+
TCGA-AR-A1AX-01,-1
|
348 |
+
TCGA-BH-A0GZ-01,-1
|
349 |
+
TCGA-B6-A0IN-01,-1
|
350 |
+
TCGA-BH-A1F6-01,-1
|
351 |
+
TCGA-A8-A07U-01,-1
|
352 |
+
TCGA-BH-A18V-01,-1
|
353 |
+
TCGA-AQ-A04L-01,-1
|
354 |
+
TCGA-AR-A1AP-01,-1
|
355 |
+
TCGA-AC-A2QH-01,-1
|
356 |
+
TCGA-AR-A24M-01,-1
|
357 |
+
TCGA-AR-A2LQ-01,-1
|
358 |
+
TCGA-AC-A62Y-01,-1
|
359 |
+
TCGA-BH-A0DQ-11,-1
|
360 |
+
TCGA-BH-A0HO-01,-1
|
361 |
+
TCGA-EW-A1OV-01,-1
|
362 |
+
TCGA-A2-A0CK-01,-1
|
363 |
+
TCGA-E2-A1L8-01,-1
|
364 |
+
TCGA-EW-A1PG-01,-1
|
365 |
+
TCGA-E2-A14Q-01,-1
|
366 |
+
TCGA-EW-A1OY-01,-1
|
367 |
+
TCGA-BH-A18H-01,-1
|
368 |
+
TCGA-BH-A0HU-01,-1
|
369 |
+
TCGA-AO-A03R-01,-1
|
370 |
+
TCGA-A7-A26J-01,-1
|
371 |
+
TCGA-AN-A0FS-01,-1
|
372 |
+
TCGA-A2-A0ST-01,-1
|
373 |
+
TCGA-D8-A27W-01,-1
|
374 |
+
TCGA-A2-A0SW-01,-1
|
375 |
+
TCGA-AO-A1KS-01,-1
|
376 |
+
TCGA-GM-A2DL-01,-1
|
377 |
+
TCGA-BH-A0H5-11,-1
|
378 |
+
TCGA-E9-A1RI-11,-1
|
379 |
+
TCGA-A2-A04X-01,-1
|
380 |
+
TCGA-EW-A1J6-01,-1
|
381 |
+
TCGA-B6-A0RP-01,-1
|
382 |
+
TCGA-E2-A159-01,-1
|
383 |
+
TCGA-BH-A0W4-01,-1
|
384 |
+
TCGA-E2-A10E-01,-1
|
385 |
+
TCGA-OL-A6VO-01,-1
|
386 |
+
TCGA-D8-A1Y3-01,-1
|
387 |
+
TCGA-BH-A209-11,-1
|
388 |
+
TCGA-E2-A14V-01,-1
|
389 |
+
TCGA-BH-A18V-06,-1
|
390 |
+
TCGA-A2-A0D0-01,-1
|
391 |
+
TCGA-A2-A0T5-01,-1
|
392 |
+
TCGA-AN-A0XS-01,-1
|
393 |
+
TCGA-B6-A402-01,-1
|
394 |
+
TCGA-D8-A1JB-01,-1
|
395 |
+
TCGA-E2-A109-01,-1
|
396 |
+
TCGA-B6-A0RE-01,-1
|
397 |
+
TCGA-E9-A1RB-11,-1
|
398 |
+
TCGA-E2-A2P5-01,-1
|
399 |
+
TCGA-OL-A66K-01,-1
|
400 |
+
TCGA-S3-AA11-01,-1
|
401 |
+
TCGA-C8-A134-01,-1
|
402 |
+
TCGA-BH-A0DH-11,-1
|
403 |
+
TCGA-AN-A0AT-01,-1
|
404 |
+
TCGA-BH-A0HN-01,-1
|
405 |
+
TCGA-GM-A2DN-01,-1
|
406 |
+
TCGA-E9-A1RD-11,-1
|
407 |
+
TCGA-AO-A12D-01,-1
|
408 |
+
TCGA-A8-A08C-01,-1
|
409 |
+
TCGA-C8-A274-01,-1
|
410 |
+
TCGA-BH-A0HX-01,-1
|
411 |
+
TCGA-E9-A1NE-01,-1
|
412 |
+
TCGA-BH-A0BP-01,-1
|
413 |
+
TCGA-BH-A18Q-11,-1
|
414 |
+
TCGA-AR-A2LM-01,-1
|
415 |
+
TCGA-BH-A1FR-01,-1
|
416 |
+
TCGA-B6-A0I1-01,-1
|
417 |
+
TCGA-W8-A86G-01,-1
|
418 |
+
TCGA-PL-A8LZ-01,-1
|
419 |
+
TCGA-LD-A7W5-01,-1
|
420 |
+
TCGA-D8-A1XU-01,-1
|
421 |
+
TCGA-E2-A15G-01,-1
|
422 |
+
TCGA-A2-A04R-01,-1
|
423 |
+
TCGA-AO-A126-01,-1
|
424 |
+
TCGA-AO-A0JM-01,-1
|
425 |
+
TCGA-EW-A2FS-01,-1
|
426 |
+
TCGA-E2-A1LH-01,-1
|
427 |
+
TCGA-A2-A25D-01,-1
|
428 |
+
TCGA-E9-A243-01,-1
|
429 |
+
TCGA-4H-AAAK-01,-1
|
430 |
+
TCGA-E9-A1N6-01,-1
|
431 |
+
TCGA-BH-A0E9-01,-1
|
432 |
+
TCGA-B6-A1KI-01,-1
|
433 |
+
TCGA-D8-A1X9-01,-1
|
434 |
+
TCGA-BH-A0BJ-11,-1
|
435 |
+
TCGA-A1-A0SB-01,-1
|
436 |
+
TCGA-E2-A14P-01,-1
|
437 |
+
TCGA-E9-A1R7-11,-1
|
438 |
+
TCGA-BH-A0W5-01,-1
|
439 |
+
TCGA-E2-A15I-01,-1
|
440 |
+
TCGA-A2-A3XY-01,-1
|
441 |
+
TCGA-BH-A0H5-01,-1
|
442 |
+
TCGA-OL-A5RY-01,-1
|
443 |
+
TCGA-E9-A227-01,-1
|
444 |
+
TCGA-C8-A8HR-01,-1
|
445 |
+
TCGA-EW-A2FV-01,-1
|
446 |
+
TCGA-BH-A1FG-11,-1
|
447 |
+
TCGA-BH-A0BG-01,-1
|
448 |
+
TCGA-D8-A3Z5-01,-1
|
449 |
+
TCGA-BH-A1FD-01,-1
|
450 |
+
TCGA-B6-A0RV-01,-1
|
451 |
+
TCGA-E2-A1LA-01,-1
|
452 |
+
TCGA-A2-A04Y-01,-1
|
453 |
+
TCGA-AR-A24O-01,-1
|
454 |
+
TCGA-EW-A2FW-01,-1
|
455 |
+
TCGA-A2-A0CQ-01,-1
|
456 |
+
TCGA-GM-A2DA-01,-1
|
457 |
+
TCGA-E9-A1NH-01,-1
|
458 |
+
TCGA-AO-A12A-01,-1
|
459 |
+
TCGA-EW-A1IW-01,-1
|
460 |
+
TCGA-E2-A14U-01,-1
|
461 |
+
TCGA-C8-A12K-01,-1
|
462 |
+
TCGA-OL-A5RU-01,-1
|
463 |
+
TCGA-LL-A5YM-01,-1
|
464 |
+
TCGA-BH-A0BS-01,-1
|
465 |
+
TCGA-AR-A2LK-01,-1
|
466 |
+
TCGA-OL-A6VR-01,-1
|
467 |
+
TCGA-5L-AAT1-01,-1
|
468 |
+
TCGA-E9-A1NA-01,-1
|
469 |
+
TCGA-A8-A091-01,-1
|
470 |
+
TCGA-A8-A07E-01,-1
|
471 |
+
TCGA-BH-A18K-01,-1
|
472 |
+
TCGA-A1-A0SJ-01,-1
|
473 |
+
TCGA-D8-A1JL-01,-1
|
474 |
+
TCGA-AR-A0TY-01,-1
|
475 |
+
TCGA-E2-A574-01,-1
|
476 |
+
TCGA-A8-A097-01,-1
|
477 |
+
TCGA-AN-A0FZ-01,-1
|
478 |
+
TCGA-BH-A0E6-01,-1
|
479 |
+
TCGA-C8-A132-01,-1
|
480 |
+
TCGA-BH-A0H6-01,-1
|
481 |
+
TCGA-B6-A0RG-01,-1
|
482 |
+
TCGA-PL-A8LY-01,-1
|
483 |
+
TCGA-D8-A1XS-01,-1
|
484 |
+
TCGA-D8-A1JT-01,-1
|
485 |
+
TCGA-B6-A0RS-01,-1
|
486 |
+
TCGA-AC-A8OP-01,-1
|
487 |
+
TCGA-E9-A1RG-01,-1
|
488 |
+
TCGA-C8-A12Y-01,-1
|
489 |
+
TCGA-BH-A0DP-01,-1
|
490 |
+
TCGA-E9-A1QZ-01,-1
|
491 |
+
TCGA-GM-A2D9-01,-1
|
492 |
+
TCGA-GM-A3XL-01,-1
|
493 |
+
TCGA-LQ-A4E4-01,-1
|
494 |
+
TCGA-D8-A1X7-01,-1
|
495 |
+
TCGA-AN-A0XU-01,-1
|
496 |
+
TCGA-BH-A0BV-01,-1
|
497 |
+
TCGA-BH-A1FJ-01,-1
|
498 |
+
TCGA-EW-A1J1-01,-1
|
499 |
+
TCGA-A2-A4RX-01,-1
|
500 |
+
TCGA-D8-A142-01,-1
|
501 |
+
TCGA-EW-A1J2-01,-1
|
502 |
+
TCGA-BH-A0HF-01,-1
|
503 |
+
TCGA-E9-A1N9-01,-1
|
504 |
+
TCGA-E2-A570-01,-1
|
505 |
+
TCGA-AO-A0JG-01,-1
|
506 |
+
TCGA-S3-A6ZH-01,-1
|
507 |
+
TCGA-D8-A1XC-01,-1
|
508 |
+
TCGA-AQ-A54N-01,-1
|
509 |
+
TCGA-C8-A131-01,-1
|
510 |
+
TCGA-E2-A1AZ-01,-1
|
511 |
+
TCGA-E9-A3HO-01,-1
|
512 |
+
TCGA-A7-A5ZX-01,-1
|
513 |
+
TCGA-AR-A2LH-01,-1
|
514 |
+
TCGA-C8-A138-01,-1
|
515 |
+
TCGA-LL-A6FR-01,-1
|
516 |
+
TCGA-D8-A1JM-01,-1
|
517 |
+
TCGA-BH-A0BF-01,-1
|
518 |
+
TCGA-A7-A0CH-01,-1
|
519 |
+
TCGA-LL-A73Y-01,-1
|
520 |
+
TCGA-BH-A1FH-01,-1
|
521 |
+
TCGA-AC-A4ZE-01,-1
|
522 |
+
TCGA-AR-A24U-01,-1
|
523 |
+
TCGA-A7-A13G-11,-1
|
524 |
+
TCGA-A2-A0SX-01,-1
|
525 |
+
TCGA-E9-A1ND-01,-1
|
526 |
+
TCGA-A8-A084-01,-1
|
527 |
+
TCGA-BH-A0DK-11,-1
|
528 |
+
TCGA-A1-A0SG-01,-1
|
529 |
+
TCGA-B6-A0X0-01,-1
|
530 |
+
TCGA-AR-A254-01,-1
|
531 |
+
TCGA-LD-A7W6-01,-1
|
532 |
+
TCGA-BH-A1FC-11,-1
|
533 |
+
TCGA-E9-A1NG-11,-1
|
534 |
+
TCGA-D8-A1Y0-01,-1
|
535 |
+
TCGA-BH-A18R-01,-1
|
536 |
+
TCGA-LL-A5YO-01,-1
|
537 |
+
TCGA-AO-A0J4-01,-1
|
538 |
+
TCGA-E9-A1NG-01,-1
|
539 |
+
TCGA-BH-A18M-01,-1
|
540 |
+
TCGA-A8-A085-01,-1
|
541 |
+
TCGA-E2-A10F-01,-1
|
542 |
+
TCGA-D8-A27H-01,-1
|
543 |
+
TCGA-AN-A0XT-01,-1
|
544 |
+
TCGA-A2-A3Y0-01,-1
|
545 |
+
TCGA-AN-A0XL-01,-1
|
546 |
+
TCGA-BH-A1EU-11,-1
|
547 |
+
TCGA-BH-A0BQ-11,-1
|
548 |
+
TCGA-AR-A0U2-01,-1
|
549 |
+
TCGA-A7-A5ZW-01,-1
|
550 |
+
TCGA-AN-A0AR-01,-1
|
551 |
+
TCGA-E9-A1RH-01,-1
|
552 |
+
TCGA-LL-A5YL-01,-1
|
553 |
+
TCGA-E9-A22G-01,-1
|
554 |
+
TCGA-AR-A1AW-01,-1
|
555 |
+
TCGA-BH-A1EN-01,-1
|
556 |
+
TCGA-B6-A409-01,-1
|
557 |
+
TCGA-A8-A0A2-01,-1
|
558 |
+
TCGA-AR-A2LJ-01,-1
|
559 |
+
TCGA-A7-A2KD-01,-1
|
560 |
+
TCGA-EW-A1P4-01,-1
|
561 |
+
TCGA-A8-A09M-01,-1
|
562 |
+
TCGA-E9-A245-01,-1
|
563 |
+
TCGA-GI-A2C9-11,-1
|
564 |
+
TCGA-E2-A1IP-01,-1
|
565 |
+
TCGA-C8-A3M7-01,-1
|
566 |
+
TCGA-BH-A0DV-01,-1
|
567 |
+
TCGA-D8-A27T-01,-1
|
568 |
+
TCGA-AO-A128-01,-1
|
569 |
+
TCGA-EW-A1J3-01,-1
|
570 |
+
TCGA-AC-A2BM-01,-1
|
571 |
+
TCGA-AN-A0FN-01,-1
|
572 |
+
TCGA-A8-A08O-01,-1
|
573 |
+
TCGA-A8-A09A-01,-1
|
574 |
+
TCGA-AO-A1KQ-01,-1
|
575 |
+
TCGA-WT-AB44-01,-1
|
576 |
+
TCGA-A2-A0T3-01,-1
|
577 |
+
TCGA-E9-A1NA-11,-1
|
578 |
+
TCGA-B6-A0RN-01,-1
|
579 |
+
TCGA-A7-A3J0-01,-1
|
580 |
+
TCGA-GM-A2DC-01,-1
|
581 |
+
TCGA-BH-A8G0-01,-1
|
582 |
+
TCGA-A2-A0ET-01,-1
|
583 |
+
TCGA-C8-A12Q-01,-1
|
584 |
+
TCGA-BH-A0E7-01,-1
|
585 |
+
TCGA-BH-A0DV-11,-1
|
586 |
+
TCGA-AN-A04A-01,-1
|
587 |
+
TCGA-E9-A2JT-01,-1
|
588 |
+
TCGA-E9-A1R7-01,-1
|
589 |
+
TCGA-E2-A1LL-01,-1
|
590 |
+
TCGA-E9-A1R0-01,-1
|
591 |
+
TCGA-A8-A07B-01,-1
|
592 |
+
TCGA-EW-A1PE-01,-1
|
593 |
+
TCGA-A7-A6VY-01,-1
|
594 |
+
TCGA-E2-A156-01,-1
|
595 |
+
TCGA-A7-A426-01,-1
|
596 |
+
TCGA-A8-A06Q-01,-1
|
597 |
+
TCGA-D8-A73U-01,-1
|
598 |
+
TCGA-E9-A54X-01,-1
|
599 |
+
TCGA-A8-A0A7-01,-1
|
600 |
+
TCGA-E2-A14Y-01,-1
|
601 |
+
TCGA-D8-A1JN-01,-1
|
602 |
+
TCGA-BH-A1FU-11,-1
|
603 |
+
TCGA-AN-A0AJ-01,-1
|
604 |
+
TCGA-A8-A076-01,-1
|
605 |
+
TCGA-A2-A0ES-01,-1
|
606 |
+
TCGA-BH-A1F2-01,-1
|
607 |
+
TCGA-B6-A408-01,-1
|
608 |
+
TCGA-E9-A5FK-01,-1
|
609 |
+
TCGA-LL-A7SZ-01,-1
|
610 |
+
TCGA-E2-A572-01,-1
|
611 |
+
TCGA-BH-A0B0-01,-1
|
612 |
+
TCGA-A8-A09D-01,-1
|
613 |
+
TCGA-A2-A0YJ-01,-1
|
614 |
+
TCGA-D8-A13Z-01,-1
|
615 |
+
TCGA-A1-A0SI-01,-1
|
616 |
+
TCGA-E2-A14O-01,-1
|
617 |
+
TCGA-BH-A0E0-01,-1
|
618 |
+
TCGA-A7-A3IY-01,-1
|
619 |
+
TCGA-EW-A1P3-01,-1
|
620 |
+
TCGA-AR-A24V-01,-1
|
621 |
+
TCGA-BH-A1F2-11,-1
|
622 |
+
TCGA-EW-A423-01,-1
|
623 |
+
TCGA-LD-A66U-01,-1
|
624 |
+
TCGA-A7-A13F-01,-1
|
625 |
+
TCGA-BH-A1FB-01,-1
|
626 |
+
TCGA-BH-A0BM-01,-1
|
627 |
+
TCGA-BH-A18V-11,-1
|
628 |
+
TCGA-AR-A1AU-01,-1
|
629 |
+
TCGA-A2-A0YF-01,-1
|
630 |
+
TCGA-E2-A1IE-01,-1
|
631 |
+
TCGA-AC-A2FE-01,-1
|
632 |
+
TCGA-BH-A1FM-11,-1
|
633 |
+
TCGA-AC-A3W7-01,-1
|
634 |
+
TCGA-A7-A26G-01,-1
|
635 |
+
TCGA-LL-A8F5-01,-1
|
636 |
+
TCGA-A2-A4S2-01,-1
|
637 |
+
TCGA-BH-A0W3-01,-1
|
638 |
+
TCGA-LL-A7T0-01,-1
|
639 |
+
TCGA-A7-A5ZV-01,-1
|
640 |
+
TCGA-AO-A0JB-01,-1
|
641 |
+
TCGA-BH-A0AU-11,-1
|
642 |
+
TCGA-BH-A0BT-11,-1
|
643 |
+
TCGA-B6-A0I5-01,-1
|
644 |
+
TCGA-EW-A1IZ-01,-1
|
645 |
+
TCGA-AO-A12H-01,-1
|
646 |
+
TCGA-A8-A0A9-01,-1
|
647 |
+
TCGA-AC-A2FG-01,-1
|
648 |
+
TCGA-A2-A0T1-01,-1
|
649 |
+
TCGA-AO-A0JJ-01,-1
|
650 |
+
TCGA-BH-A0E1-01,-1
|
651 |
+
TCGA-AC-A3QP-01,-1
|
652 |
+
TCGA-B6-A0IP-01,-1
|
653 |
+
TCGA-Z7-A8R6-01,-1
|
654 |
+
TCGA-E2-A154-01,-1
|
655 |
+
TCGA-A2-A0EW-01,-1
|
656 |
+
TCGA-BH-A0AU-01,-1
|
657 |
+
TCGA-BH-A204-11,-1
|
658 |
+
TCGA-BH-A1ET-01,-1
|
659 |
+
TCGA-AO-A03V-01,-1
|
660 |
+
TCGA-BH-A1FB-11,-1
|
661 |
+
TCGA-GM-A5PX-01,-1
|
662 |
+
TCGA-C8-A135-01,-1
|
663 |
+
TCGA-BH-A0AW-01,-1
|
664 |
+
TCGA-AR-A24N-01,-1
|
665 |
+
TCGA-A8-A09Q-01,-1
|
666 |
+
TCGA-E9-A22D-01,-1
|
667 |
+
TCGA-B6-A0I6-01,-1
|
668 |
+
TCGA-D8-A1JH-01,-1
|
669 |
+
TCGA-E9-A1RE-01,-1
|
670 |
+
TCGA-E2-A1BC-01,-1
|
671 |
+
TCGA-BH-A0C0-01,-1
|
672 |
+
TCGA-AR-A24X-01,-1
|
673 |
+
TCGA-EW-A1OW-01,-1
|
674 |
+
TCGA-A7-A3RF-01,-1
|
675 |
+
TCGA-A8-A07G-01,-1
|
676 |
+
TCGA-AC-A23C-01,-1
|
677 |
+
TCGA-AC-A23H-01,-1
|
678 |
+
TCGA-D8-A1XF-01,-1
|
679 |
+
TCGA-AR-A0U4-01,-1
|
680 |
+
TCGA-A8-A09C-01,-1
|
681 |
+
TCGA-AN-A0XP-01,-1
|
682 |
+
TCGA-D8-A1XK-01,-1
|
683 |
+
TCGA-EW-A6S9-01,-1
|
684 |
+
TCGA-A8-A08T-01,-1
|
685 |
+
TCGA-AR-A0TP-01,-1
|
686 |
+
TCGA-E2-A15D-01,-1
|
687 |
+
TCGA-B6-A0IQ-01,-1
|
688 |
+
TCGA-AN-A0XO-01,-1
|
689 |
+
TCGA-BH-A0B8-01,-1
|
690 |
+
TCGA-AO-A129-01,-1
|
691 |
+
TCGA-GM-A2DF-01,-1
|
692 |
+
TCGA-D8-A27M-01,-1
|
693 |
+
TCGA-AN-A03X-01,-1
|
694 |
+
TCGA-A7-A0DC-11,-1
|
695 |
+
TCGA-OL-A66O-01,-1
|
696 |
+
TCGA-EW-A6SA-01,-1
|
697 |
+
TCGA-BH-A5J0-01,-1
|
698 |
+
TCGA-BH-A0EB-01,-1
|
699 |
+
TCGA-B6-A0IB-01,-1
|
700 |
+
TCGA-B6-A0WY-01,-1
|
701 |
+
TCGA-AC-A3BB-01,-1
|
702 |
+
TCGA-AN-A049-01,-1
|
703 |
+
TCGA-A8-A06Z-01,-1
|
704 |
+
TCGA-C8-A1HI-01,-1
|
705 |
+
TCGA-BH-A0HL-01,-1
|
706 |
+
TCGA-BH-A18S-11,-1
|
707 |
+
TCGA-A1-A0SF-01,-1
|
708 |
+
TCGA-AR-A2LR-01,-1
|
709 |
+
TCGA-E9-A1RF-01,-1
|
710 |
+
TCGA-B6-A0RT-01,-1
|
711 |
+
TCGA-E9-A1RI-01,-1
|
712 |
+
TCGA-BH-A0DL-01,-1
|
713 |
+
TCGA-AR-A251-01,-1
|
714 |
+
TCGA-AC-A3TN-01,-1
|
715 |
+
TCGA-AC-A2QI-01,-1
|
716 |
+
TCGA-B6-A0X4-01,-1
|
717 |
+
TCGA-E2-A1B5-01,-1
|
718 |
+
TCGA-A2-A0YH-01,-1
|
719 |
+
TCGA-A8-A06T-01,-1
|
720 |
+
TCGA-E2-A15K-06,-1
|
721 |
+
TCGA-E9-A22H-01,-1
|
722 |
+
TCGA-BH-A0DE-01,-1
|
723 |
+
TCGA-OL-A5RW-01,-1
|
724 |
+
TCGA-A8-A090-01,-1
|
725 |
+
TCGA-AO-A03O-01,-1
|
726 |
+
TCGA-BH-A18S-01,-1
|
727 |
+
TCGA-A2-A3KD-01,-1
|
728 |
+
TCGA-E2-A153-11,-1
|
729 |
+
TCGA-E2-A56Z-01,-1
|
730 |
+
TCGA-BH-A0GY-01,-1
|
731 |
+
TCGA-AC-A2FF-01,-1
|
732 |
+
TCGA-BH-A0H3-01,-1
|
733 |
+
TCGA-A2-A25F-01,-1
|
734 |
+
TCGA-A7-A26F-01,-1
|
735 |
+
TCGA-A7-A26H-01,-1
|
736 |
+
TCGA-B6-A0WT-01,-1
|
737 |
+
TCGA-BH-A1FE-11,-1
|
738 |
+
TCGA-BH-A28Q-01,-1
|
739 |
+
TCGA-B6-A1KF-01,-1
|
740 |
+
TCGA-S3-A6ZF-01,-1
|
741 |
+
TCGA-BH-A0BC-11,-1
|
742 |
+
TCGA-WT-AB41-01,-1
|
743 |
+
TCGA-AC-A62V-01,-1
|
744 |
+
TCGA-UU-A93S-01,-1
|
745 |
+
TCGA-E2-A1LK-01,-1
|
746 |
+
TCGA-S3-AA17-01,-1
|
747 |
+
TCGA-BH-A209-01,-1
|
748 |
+
TCGA-GI-A2C8-01,-1
|
749 |
+
TCGA-OL-A5D6-01,-1
|
750 |
+
TCGA-BH-A0EA-01,-1
|
751 |
+
TCGA-E9-A1R4-01,-1
|
752 |
+
TCGA-A8-A092-01,-1
|
753 |
+
TCGA-BH-A18F-01,-1
|
754 |
+
TCGA-BH-A1FR-11,-1
|
755 |
+
TCGA-AC-A3OD-01,-1
|
756 |
+
TCGA-C8-A12V-01,-1
|
757 |
+
TCGA-A8-A06O-01,-1
|
758 |
+
TCGA-E9-A1RD-01,-1
|
759 |
+
TCGA-A8-A06N-01,-1
|
760 |
+
TCGA-A7-A13D-01,-1
|
761 |
+
TCGA-D8-A1XQ-01,-1
|
762 |
+
TCGA-AR-A0TW-01,-1
|
763 |
+
TCGA-JL-A3YX-01,-1
|
764 |
+
TCGA-BH-A0H7-01,-1
|
765 |
+
TCGA-OK-A5Q2-01,-1
|
766 |
+
TCGA-D8-A141-01,-1
|
767 |
+
TCGA-A7-A56D-01,-1
|
768 |
+
TCGA-C8-A26V-01,-1
|
769 |
+
TCGA-A2-A0YE-01,-1
|
770 |
+
TCGA-A2-A0CW-01,-1
|
771 |
+
TCGA-E2-A1LB-11,-1
|
772 |
+
TCGA-AR-A24K-01,-1
|
773 |
+
TCGA-A1-A0SQ-01,-1
|
774 |
+
TCGA-C8-A27B-01,-1
|
775 |
+
TCGA-D8-A143-01,-1
|
776 |
+
TCGA-E9-A248-01,-1
|
777 |
+
TCGA-A2-A04N-01,-1
|
778 |
+
TCGA-BH-A1EW-11,-1
|
779 |
+
TCGA-BH-A208-11,-1
|
780 |
+
TCGA-A2-A3KC-01,-1
|
781 |
+
TCGA-A2-A0EM-01,-1
|
782 |
+
TCGA-GM-A2DI-01,-1
|
783 |
+
TCGA-AO-A12B-01,-1
|
784 |
+
TCGA-E9-A1RH-11,-1
|
785 |
+
TCGA-BH-A0DT-01,-1
|
786 |
+
TCGA-BH-A0BW-11,-1
|
787 |
+
TCGA-A7-A4SC-01,-1
|
788 |
+
TCGA-D8-A140-01,-1
|
789 |
+
TCGA-A8-A07O-01,-1
|
790 |
+
TCGA-BH-A208-01,-1
|
791 |
+
TCGA-B6-A0IA-01,-1
|
792 |
+
TCGA-AR-A0TZ-01,-1
|
793 |
+
TCGA-BH-A0BS-11,-1
|
794 |
+
TCGA-E2-A10A-01,-1
|
795 |
+
TCGA-A7-A6VW-01,-1
|
796 |
+
TCGA-C8-A26Y-01,-1
|
797 |
+
TCGA-AO-A0J5-01,-1
|
798 |
+
TCGA-BH-A1FN-11,-1
|
799 |
+
TCGA-B6-A2IU-01,-1
|
800 |
+
TCGA-C8-A26Z-01,-1
|
801 |
+
TCGA-D8-A27N-01,-1
|
802 |
+
TCGA-D8-A27K-01,-1
|
803 |
+
TCGA-E2-A14X-01,-1
|
804 |
+
TCGA-A2-A1G1-01,-1
|
805 |
+
TCGA-A7-A26I-01,-1
|
806 |
+
TCGA-BH-A0HK-11,-1
|
807 |
+
TCGA-BH-A6R9-01,-1
|
808 |
+
TCGA-A7-A0DA-01,-1
|
809 |
+
TCGA-A8-A09E-01,-1
|
810 |
+
TCGA-AN-A0G0-01,-1
|
811 |
+
TCGA-E2-A15E-01,-1
|
812 |
+
TCGA-LL-A73Z-01,-1
|
813 |
+
TCGA-E2-A9RU-01,-1
|
814 |
+
TCGA-LD-A9QF-01,-1
|
815 |
+
TCGA-OL-A66P-01,-1
|
816 |
+
TCGA-E2-A1LG-01,-1
|
817 |
+
TCGA-A8-A081-01,-1
|
818 |
+
TCGA-A8-A0A6-01,-1
|
819 |
+
TCGA-BH-A0HB-01,-1
|
820 |
+
TCGA-A8-A08B-01,-1
|
821 |
+
TCGA-E2-A15L-01,-1
|
822 |
+
TCGA-B6-A1KC-01,-1
|
823 |
+
TCGA-E2-A15S-01,-1
|
824 |
+
TCGA-A2-A0YD-01,-1
|
825 |
+
TCGA-E2-A1B1-01,-1
|
826 |
+
TCGA-C8-A27A-01,-1
|
827 |
+
TCGA-A8-A082-01,-1
|
828 |
+
TCGA-D8-A1JI-01,-1
|
829 |
+
TCGA-A2-A0T7-01,-1
|
830 |
+
TCGA-E9-A1N3-01,-1
|
831 |
+
TCGA-OL-A6VQ-01,-1
|
832 |
+
TCGA-BH-A0AZ-11,-1
|
833 |
+
TCGA-AN-A0FK-01,-1
|
834 |
+
TCGA-LL-A442-01,-1
|
835 |
+
TCGA-BH-A0DO-11,-1
|
836 |
+
TCGA-D8-A1JC-01,-1
|
837 |
+
TCGA-EW-A6SD-01,-1
|
838 |
+
TCGA-A1-A0SP-01,-1
|
839 |
+
TCGA-E2-A15P-01,-1
|
840 |
+
TCGA-AC-A6IV-01,-1
|
841 |
+
TCGA-C8-A1HE-01,-1
|
842 |
+
TCGA-A8-A086-01,-1
|
843 |
+
TCGA-OL-A66I-01,-1
|
844 |
+
TCGA-E2-A1IG-01,-1
|
845 |
+
TCGA-AR-A24Q-01,-1
|
846 |
+
TCGA-E2-A1B4-01,-1
|
847 |
+
TCGA-B6-A0IM-01,-1
|
848 |
+
TCGA-C8-A12T-01,-1
|
849 |
+
TCGA-A1-A0SK-01,-1
|
850 |
+
TCGA-D8-A147-01,-1
|
851 |
+
TCGA-A8-A06P-01,-1
|
852 |
+
TCGA-BH-A0BA-11,-1
|
853 |
+
TCGA-A8-A07J-01,-1
|
854 |
+
TCGA-OL-A66L-01,-1
|
855 |
+
TCGA-A2-A4S3-01,-1
|
856 |
+
TCGA-AR-A5QM-01,-1
|
857 |
+
TCGA-AR-A0TR-01,-1
|
858 |
+
TCGA-D8-A27V-01,-1
|
859 |
+
TCGA-A2-A3XS-01,-1
|
860 |
+
TCGA-BH-A0E1-11,-1
|
861 |
+
TCGA-BH-A1EN-11,-1
|
862 |
+
TCGA-A8-A07W-01,-1
|
863 |
+
TCGA-EW-A424-01,-1
|
864 |
+
TCGA-A7-A0CJ-01,-1
|
865 |
+
TCGA-E2-A158-11,-1
|
866 |
+
TCGA-S3-AA12-01,-1
|
867 |
+
TCGA-A2-A04V-01,-1
|
868 |
+
TCGA-AC-A2QJ-01,-1
|
869 |
+
TCGA-A2-A0EV-01,-1
|
870 |
+
TCGA-EW-A3U0-01,-1
|
871 |
+
TCGA-E9-A228-01,-1
|
872 |
+
TCGA-AO-A12C-01,-1
|
873 |
+
TCGA-D8-A1XM-01,-1
|
874 |
+
TCGA-AO-A125-01,-1
|
875 |
+
TCGA-BH-A0B2-01,-1
|
876 |
+
TCGA-E2-A1IL-01,-1
|
877 |
+
TCGA-E2-A150-01,-1
|
878 |
+
TCGA-BH-A0BO-01,-1
|
879 |
+
TCGA-AO-A0J8-01,-1
|
880 |
+
TCGA-E2-A576-01,-1
|
881 |
+
TCGA-3C-AALK-01,-1
|
882 |
+
TCGA-AR-A1AT-01,-1
|
883 |
+
TCGA-A2-A1G4-01,-1
|
884 |
+
TCGA-BH-A1F0-01,-1
|
885 |
+
TCGA-A2-A0CS-01,-1
|
886 |
+
TCGA-EW-A2FR-01,-1
|
887 |
+
TCGA-A8-A09X-01,-1
|
888 |
+
TCGA-BH-A203-01,-1
|
889 |
+
TCGA-A2-A1FX-01,-1
|
890 |
+
TCGA-BH-A1EX-01,-1
|
891 |
+
TCGA-HN-A2NL-01,-1
|
892 |
+
TCGA-E2-A15M-11,-1
|
893 |
+
TCGA-BH-A0C3-11,-1
|
894 |
+
TCGA-E9-A1N9-11,-1
|
895 |
+
TCGA-A2-A0SY-01,-1
|
896 |
+
TCGA-A2-A0YT-01,-1
|
897 |
+
TCGA-E2-A1IO-01,-1
|
898 |
+
TCGA-B6-A400-01,-1
|
899 |
+
TCGA-B6-A0IK-01,-1
|
900 |
+
TCGA-B6-A0IO-01,-1
|
901 |
+
TCGA-BH-A1FM-01,-1
|
902 |
+
TCGA-E2-A3DX-01,-1
|
903 |
+
TCGA-D8-A1J8-01,-1
|
904 |
+
TCGA-A8-A09B-01,-1
|
905 |
+
TCGA-A8-A09Z-01,-1
|
906 |
+
TCGA-B6-A0IG-01,-1
|
907 |
+
TCGA-A7-A6VV-01,-1
|
908 |
+
TCGA-BH-A1F8-01,-1
|
909 |
+
TCGA-A2-A0CV-01,-1
|
910 |
+
TCGA-B6-A0WS-01,-1
|
911 |
+
TCGA-OL-A5RZ-01,-1
|
912 |
+
TCGA-BH-A1EV-01,-1
|
913 |
+
TCGA-AR-A0TU-01,-1
|
914 |
+
TCGA-EW-A1IX-01,-1
|
915 |
+
TCGA-E2-A15K-01,-1
|
916 |
+
TCGA-GI-A2C8-11,-1
|
917 |
+
TCGA-AR-A1AR-01,-1
|
918 |
+
TCGA-E9-A1R2-01,-1
|
919 |
+
TCGA-E2-A1B6-01,-1
|
920 |
+
TCGA-AC-A5XS-01,-1
|
921 |
+
TCGA-AQ-A1H2-01,-1
|
922 |
+
TCGA-AR-A1AO-01,-1
|
923 |
+
TCGA-E2-A15H-01,-1
|
924 |
+
TCGA-B6-A0WZ-01,-1
|
925 |
+
TCGA-GM-A2DD-01,-1
|
926 |
+
TCGA-AR-A1AV-01,-1
|
927 |
+
TCGA-C8-A12P-01,-1
|
928 |
+
TCGA-AN-A0XN-01,-1
|
929 |
+
TCGA-AN-A0AL-01,-1
|
930 |
+
TCGA-C8-A12X-01,-1
|
931 |
+
TCGA-BH-A0DP-11,-1
|
932 |
+
TCGA-AO-A03T-01,-1
|
933 |
+
TCGA-GI-A2C9-01,-1
|
934 |
+
TCGA-BH-A1FU-01,-1
|
935 |
+
TCGA-E9-A226-01,-1
|
936 |
+
TCGA-A8-A095-01,-1
|
937 |
+
TCGA-E2-A2P6-01,-1
|
938 |
+
TCGA-E2-A158-01,-1
|
939 |
+
TCGA-C8-A137-01,-1
|
940 |
+
TCGA-BH-A0DD-01,-1
|
941 |
+
TCGA-A2-A259-01,-1
|
942 |
+
TCGA-BH-A0BV-11,-1
|
943 |
+
TCGA-BH-A0RX-01,-1
|
944 |
+
TCGA-E9-A1RA-01,-1
|
945 |
+
TCGA-EW-A1PA-01,-1
|
946 |
+
TCGA-A8-A07R-01,-1
|
947 |
+
TCGA-C8-A8HQ-01,-1
|
948 |
+
TCGA-E9-A24A-01,-1
|
949 |
+
TCGA-BH-A204-01,-1
|
950 |
+
TCGA-A2-A0EN-01,-1
|
951 |
+
TCGA-B6-A40B-01,-1
|
952 |
+
TCGA-A8-A094-01,-1
|
953 |
+
TCGA-A2-A0D1-01,-1
|
954 |
+
TCGA-A7-A13F-11,-1
|
955 |
+
TCGA-PL-A8LV-01,-1
|
956 |
+
TCGA-AN-A0FD-01,-1
|
957 |
+
TCGA-A7-A0CD-01,-1
|
958 |
+
TCGA-A1-A0SD-01,-1
|
959 |
+
TCGA-BH-A0BJ-01,-1
|
960 |
+
TCGA-A8-A08J-01,-1
|
961 |
+
TCGA-E2-A1IN-01,-1
|
962 |
+
TCGA-BH-A0BD-01,-1
|
963 |
+
TCGA-BH-A18U-01,-1
|
964 |
+
TCGA-A1-A0SM-01,-1
|
965 |
+
TCGA-A8-A09I-01,-1
|
966 |
+
TCGA-D8-A1JF-01,-1
|
967 |
+
TCGA-E9-A5UP-01,-1
|
968 |
+
TCGA-E2-A1IH-01,-1
|
969 |
+
TCGA-PE-A5DD-01,-1
|
970 |
+
TCGA-AO-A03N-01,-1
|
971 |
+
TCGA-AR-A1AH-01,-1
|
972 |
+
TCGA-AO-A0JI-01,-1
|
973 |
+
TCGA-OL-A97C-01,-1
|
974 |
+
TCGA-AR-A250-01,-1
|
975 |
+
TCGA-BH-A0HQ-01,-1
|
976 |
+
TCGA-JL-A3YW-01,-1
|
977 |
+
TCGA-AC-A3YI-01,-1
|
978 |
+
TCGA-C8-A12U-01,-1
|
979 |
+
TCGA-AO-A0JL-01,-1
|
980 |
+
TCGA-AO-A0JF-01,-1
|
981 |
+
TCGA-BH-A1F8-11,-1
|
982 |
+
TCGA-EW-A1P6-01,-1
|
983 |
+
TCGA-A2-A3XZ-01,-1
|
984 |
+
TCGA-BH-A0C1-01,-1
|
985 |
+
TCGA-BH-A0AV-01,-1
|
986 |
+
TCGA-D8-A1JD-01,-1
|
987 |
+
TCGA-A2-A4RW-01,-1
|
988 |
+
TCGA-AC-A2FO-01,-1
|
989 |
+
TCGA-AR-A2LN-01,-1
|
990 |
+
TCGA-E2-A1BD-01,-1
|
991 |
+
TCGA-BH-A18J-11,-1
|
992 |
+
TCGA-S3-AA14-01,-1
|
993 |
+
TCGA-A8-A07L-01,-1
|
994 |
+
TCGA-LL-A5YN-01,-1
|
995 |
+
TCGA-AR-A24R-01,-1
|
996 |
+
TCGA-BH-A0DH-01,-1
|
997 |
+
TCGA-D8-A1XT-01,-1
|
998 |
+
TCGA-EW-A1IY-01,-1
|
999 |
+
TCGA-A7-A4SE-01,-1
|
1000 |
+
TCGA-A2-A1FW-01,-1
|
1001 |
+
TCGA-E2-A155-01,-1
|
1002 |
+
TCGA-B6-A3ZX-01,-1
|
1003 |
+
TCGA-EW-A1PB-01,-1
|
1004 |
+
TCGA-A7-A425-01,-1
|
1005 |
+
TCGA-LL-A9Q3-01,-1
|
1006 |
+
TCGA-AN-A0FJ-01,-1
|
1007 |
+
TCGA-AN-A03Y-01,-1
|
1008 |
+
TCGA-E2-A15M-01,-1
|
1009 |
+
TCGA-OL-A66J-01,-1
|
1010 |
+
TCGA-AN-A04D-01,-1
|
1011 |
+
TCGA-A8-A08I-01,-1
|
1012 |
+
TCGA-B6-A40C-01,-1
|
1013 |
+
TCGA-A8-A08F-01,-1
|
1014 |
+
TCGA-BH-A0B3-01,-1
|
1015 |
+
TCGA-AO-A12G-01,-1
|
1016 |
+
TCGA-AC-A6IX-06,-1
|
1017 |
+
TCGA-BH-A1FJ-11,-1
|
1018 |
+
TCGA-AQ-A04J-01,-1
|
1019 |
+
TCGA-C8-A1HM-01,-1
|
1020 |
+
TCGA-A2-A3XX-01,-1
|
1021 |
+
TCGA-BH-A203-11,-1
|
1022 |
+
TCGA-EW-A1P1-01,-1
|
1023 |
+
TCGA-A2-A0YM-01,-1
|
1024 |
+
TCGA-E9-A3X8-01,-1
|
1025 |
+
TCGA-A8-A08Z-01,-1
|
1026 |
+
TCGA-D8-A27F-01,-1
|
1027 |
+
TCGA-AN-A041-01,-1
|
1028 |
+
TCGA-AR-A0U3-01,-1
|
1029 |
+
TCGA-A2-A0CL-01,-1
|
1030 |
+
TCGA-LL-A5YP-01,-1
|
1031 |
+
TCGA-AC-A3EH-01,-1
|
1032 |
+
TCGA-AN-A04C-01,-1
|
1033 |
+
TCGA-E9-A1RC-01,-1
|
1034 |
+
TCGA-AC-A2FK-01,-1
|
1035 |
+
TCGA-D8-A1XB-01,-1
|
1036 |
+
TCGA-A2-A0D3-01,-1
|
1037 |
+
TCGA-E2-A152-01,-1
|
1038 |
+
TCGA-GM-A3NY-01,-1
|
1039 |
+
TCGA-AC-A2B8-01,-1
|
1040 |
+
TCGA-E2-A1B0-01,-1
|
1041 |
+
TCGA-BH-A1EU-01,-1
|
1042 |
+
TCGA-E2-A1L7-11,-1
|
1043 |
+
TCGA-AR-A1AK-01,-1
|
1044 |
+
TCGA-E9-A2JS-01,-1
|
1045 |
+
TCGA-GM-A5PV-01,-1
|
1046 |
+
TCGA-BH-A1F6-11,-1
|
1047 |
+
TCGA-AQ-A54O-01,-1
|
1048 |
+
TCGA-AC-A6IX-01,-1
|
1049 |
+
TCGA-C8-A1HK-01,-1
|
1050 |
+
TCGA-AN-A0FL-01,-1
|
1051 |
+
TCGA-BH-A1FN-01,-1
|
1052 |
+
TCGA-A2-A25E-01,-1
|
1053 |
+
TCGA-A2-A0YC-01,-1
|
1054 |
+
TCGA-A8-A09V-01,-1
|
1055 |
+
TCGA-A2-A0CT-01,-1
|
1056 |
+
TCGA-E9-A22E-01,-1
|
1057 |
+
TCGA-BH-A18Q-01,-1
|
1058 |
+
TCGA-A2-A1FV-01,-1
|
1059 |
+
TCGA-AO-A03L-01,-1
|
1060 |
+
TCGA-E2-A15E-06,-1
|
1061 |
+
TCGA-BH-A1ES-06,-1
|
1062 |
+
TCGA-B6-A0WV-01,-1
|
1063 |
+
TCGA-AN-A0XW-01,-1
|
1064 |
+
TCGA-AC-A23G-01,-1
|
1065 |
+
TCGA-AC-A3QQ-01,-1
|
1066 |
+
TCGA-EW-A1P8-01,-1
|
1067 |
+
TCGA-B6-A0I2-01,-1
|
1068 |
+
TCGA-A2-A0CX-01,-1
|
1069 |
+
TCGA-B6-A0RI-01,-1
|
1070 |
+
TCGA-B6-A0WX-01,-1
|
1071 |
+
TCGA-BH-A42U-01,-1
|
1072 |
+
TCGA-A8-A09G-01,-1
|
1073 |
+
TCGA-C8-A26W-01,-1
|
1074 |
+
TCGA-E2-A1LH-11,-1
|
1075 |
+
TCGA-AO-A03M-01,-1
|
1076 |
+
TCGA-E2-A1LB-01,-1
|
1077 |
+
TCGA-BH-A0DX-01,-1
|
1078 |
+
TCGA-AC-A6NO-01,-1
|
1079 |
+
TCGA-EW-A1J5-01,-1
|
1080 |
+
TCGA-AN-A0XV-01,-1
|
1081 |
+
TCGA-BH-A1F5-01,-1
|
1082 |
+
TCGA-A8-A07I-01,-1
|
1083 |
+
TCGA-C8-A12W-01,-1
|
1084 |
+
TCGA-AC-A8OQ-01,-1
|
1085 |
+
TCGA-A7-A4SF-01,-1
|
1086 |
+
TCGA-BH-A0BZ-11,-1
|
1087 |
+
TCGA-EW-A6SC-01,-1
|
1088 |
+
TCGA-AO-A1KR-01,-1
|
1089 |
+
TCGA-EW-A1PD-01,-1
|
1090 |
+
TCGA-EW-A1PC-01,-1
|
1091 |
+
TCGA-E2-A10B-01,-1
|
1092 |
+
TCGA-AR-A0TQ-01,-1
|
1093 |
+
TCGA-A2-A0EX-01,-1
|
1094 |
+
TCGA-E2-A14N-01,-1
|
1095 |
+
TCGA-5L-AAT0-01,-1
|
1096 |
+
TCGA-AR-A1AN-01,-1
|
1097 |
+
TCGA-D8-A1X5-01,-1
|
1098 |
+
TCGA-A2-A1G6-01,-1
|
1099 |
+
TCGA-A2-A04T-01,-1
|
1100 |
+
TCGA-B6-A0IJ-01,-1
|
1101 |
+
TCGA-AR-A256-01,-1
|
1102 |
+
TCGA-A7-A3J1-01,-1
|
1103 |
+
TCGA-C8-A12O-01,-1
|
1104 |
+
TCGA-E9-A249-01,-1
|
1105 |
+
TCGA-UL-AAZ6-01,-1
|
1106 |
+
TCGA-A8-A08R-01,-1
|
1107 |
+
TCGA-A2-A0T4-01,-1
|
1108 |
+
TCGA-BH-A0AZ-01,-1
|
1109 |
+
TCGA-AO-A03U-01,-1
|
1110 |
+
TCGA-A2-A0CO-01,-1
|
1111 |
+
TCGA-D8-A1JE-01,-1
|
1112 |
+
TCGA-A7-A0D9-11,-1
|
1113 |
+
TCGA-BH-A0H0-01,-1
|
1114 |
+
TCGA-AR-A5QP-01,-1
|
1115 |
+
TCGA-D8-A27R-01,-1
|
1116 |
+
TCGA-C8-A278-01,-1
|
1117 |
+
TCGA-A7-A13G-01,-1
|
1118 |
+
TCGA-BH-A0DL-11,-1
|
1119 |
+
TCGA-A8-A079-01,-1
|
1120 |
+
TCGA-A2-A0EP-01,-1
|
1121 |
+
TCGA-A2-A0T0-01,-1
|
1122 |
+
TCGA-D8-A27I-01,-1
|
1123 |
+
TCGA-BH-A0EI-01,-1
|
1124 |
+
TCGA-E2-A15A-01,-1
|
1125 |
+
TCGA-BH-A0DT-11,-1
|
1126 |
+
TCGA-AC-A2FM-01,-1
|
1127 |
+
TCGA-BH-A1EY-01,-1
|
1128 |
+
TCGA-AN-A0FT-01,-1
|
1129 |
+
TCGA-E9-A1NF-01,-1
|
1130 |
+
TCGA-BH-A0B6-01,-1
|
1131 |
+
TCGA-C8-A130-01,-1
|
1132 |
+
TCGA-A2-A0ER-01,-1
|
1133 |
+
TCGA-A2-A0EQ-01,-1
|
1134 |
+
TCGA-D8-A1XL-01,-1
|
1135 |
+
TCGA-C8-A12N-01,-1
|
1136 |
+
TCGA-GM-A2DO-01,-1
|
1137 |
+
TCGA-A8-A0AD-01,-1
|
1138 |
+
TCGA-Z7-A8R5-01,-1
|
1139 |
+
TCGA-A8-A07S-01,-1
|
1140 |
+
TCGA-BH-A0DD-11,-1
|
1141 |
+
TCGA-BH-A0HI-01,-1
|
1142 |
+
TCGA-AN-A0FV-01,-1
|
1143 |
+
TCGA-AC-A23E-01,-1
|
1144 |
+
TCGA-AQ-A7U7-01,-1
|
1145 |
+
TCGA-C8-A26X-01,-1
|
1146 |
+
TCGA-D8-A1XJ-01,-1
|
1147 |
+
TCGA-A8-A08X-01,-1
|
1148 |
+
TCGA-B6-A1KN-01,-1
|
1149 |
+
TCGA-AR-A1AM-01,-1
|
1150 |
+
TCGA-A2-A4S0-01,-1
|
1151 |
+
TCGA-AO-A1KP-01,-1
|
1152 |
+
TCGA-EW-A1OX-01,-1
|
1153 |
+
TCGA-BH-A0B2-11,-1
|
1154 |
+
TCGA-E9-A1NC-01,-1
|
1155 |
+
TCGA-LL-A740-01,-1
|
1156 |
+
TCGA-BH-A0C3-01,-1
|
1157 |
+
TCGA-BH-A0H9-01,-1
|
1158 |
+
TCGA-D8-A1X8-01,-1
|
1159 |
+
TCGA-E9-A22A-01,-1
|
1160 |
+
TCGA-AR-A1AI-01,-1
|
1161 |
+
TCGA-AC-A2BK-01,-1
|
1162 |
+
TCGA-A7-A13H-01,-1
|
1163 |
+
TCGA-LL-A6FQ-01,-1
|
1164 |
+
TCGA-C8-A1HO-01,-1
|
1165 |
+
TCGA-D8-A1XO-01,-1
|
1166 |
+
TCGA-E2-A1LE-01,-1
|
1167 |
+
TCGA-E2-A15J-01,-1
|
1168 |
+
TCGA-A7-A0DB-01,-1
|
1169 |
+
TCGA-BH-A1FE-01,-1
|
1170 |
+
TCGA-D8-A27G-01,-1
|
1171 |
+
TCGA-BH-A42T-01,-1
|
1172 |
+
TCGA-AN-A0FY-01,-1
|
1173 |
+
TCGA-BH-A18K-11,-1
|
1174 |
+
TCGA-B6-A0X5-01,-1
|
1175 |
+
TCGA-A2-A0YK-01,-1
|
1176 |
+
TCGA-A7-A0CG-01,-1
|
1177 |
+
TCGA-AN-A0FW-01,-1
|
1178 |
+
TCGA-D8-A27P-01,-1
|
1179 |
+
TCGA-BH-A0DS-01,-1
|
1180 |
+
TCGA-E2-A1L6-01,-1
|
1181 |
+
TCGA-BH-A0DG-01,-1
|
1182 |
+
TCGA-A2-A0CP-01,-1
|
1183 |
+
TCGA-BH-A5IZ-01,-1
|
1184 |
+
TCGA-A8-A09W-01,-1
|
1185 |
+
TCGA-E2-A107-01,-1
|
1186 |
+
TCGA-AR-A252-01,-1
|
1187 |
+
TCGA-C8-A12Z-01,-1
|
1188 |
+
TCGA-BH-A202-01,-1
|
1189 |
+
TCGA-AO-A1KT-01,-1
|
1190 |
+
TCGA-D8-A1XW-01,-1
|
1191 |
+
TCGA-D8-A1JU-01,-1
|
1192 |
+
TCGA-E9-A1N5-01,-1
|
1193 |
+
TCGA-A2-A4S1-01,-1
|
1194 |
+
TCGA-E2-A1IG-11,-1
|
1195 |
+
TCGA-E2-A153-01,-1
|
1196 |
+
TCGA-A2-A0YG-01,-1
|
1197 |
+
TCGA-BH-A0B7-01,-1
|
1198 |
+
TCGA-D8-A1X6-01,-1
|
1199 |
+
TCGA-BH-A0BL-01,-1
|
1200 |
+
TCGA-BH-A0DO-01,-1
|
1201 |
+
TCGA-A2-A04Q-01,-1
|
1202 |
+
TCGA-BH-A0B5-11,-1
|
1203 |
+
TCGA-BH-A1FE-06,-1
|
1204 |
+
TCGA-E9-A1NI-01,-1
|
1205 |
+
TCGA-BH-A0HY-01,-1
|
1206 |
+
TCGA-AR-A24T-01,-1
|
1207 |
+
TCGA-E9-A1NF-11,-1
|
1208 |
+
TCGA-AO-A0JA-01,-1
|
1209 |
+
TCGA-D8-A1XZ-01,-1
|
1210 |
+
TCGA-A7-A13E-11,-1
|
1211 |
+
TCGA-C8-A8HP-01,-1
|
1212 |
+
TCGA-E9-A5FL-01,-1
|
1213 |
+
TCGA-AC-A2FB-11,-1
|
1214 |
+
TCGA-E2-A15F-01,-1
|
1215 |
+
TCGA-A2-A3XT-01,-1
|
1216 |
+
TCGA-B6-A0X7-01,-1
|
1217 |
+
TCGA-BH-A1EV-11,-1
|
1218 |
+
TCGA-3C-AALJ-01,-1
|
1219 |
+
TCGA-B6-A0X1-01,-1
|
p3/preprocess/Obesity/code/GSE123086.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE123086"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE123086"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE123086.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE123086.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE123086.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes, from series design we can see RNA microarray was used
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Trait data is in Feature 1 under "primary diagnosis"
|
42 |
+
trait_row = 1
|
43 |
+
|
44 |
+
# Age data is spread across Features 3 and 4
|
45 |
+
age_row = 3
|
46 |
+
|
47 |
+
# Gender data is in Feature 2 under "Sex"
|
48 |
+
gender_row = 2
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(x):
|
52 |
+
# Extract value after colon and convert to binary
|
53 |
+
if pd.isna(x):
|
54 |
+
return None
|
55 |
+
value = x.split(': ')[1]
|
56 |
+
if value == 'OBESITY':
|
57 |
+
return 1
|
58 |
+
elif value == 'HEALTHY_CONTROL':
|
59 |
+
return 0
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(x):
|
63 |
+
# Extract age value as continuous
|
64 |
+
if pd.isna(x):
|
65 |
+
return None
|
66 |
+
if not x.startswith('age:'):
|
67 |
+
return None
|
68 |
+
try:
|
69 |
+
return float(x.split(': ')[1])
|
70 |
+
except:
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_gender(x):
|
74 |
+
# Convert gender to binary (female=0, male=1)
|
75 |
+
if pd.isna(x):
|
76 |
+
return None
|
77 |
+
if not x.startswith('Sex:'):
|
78 |
+
return None
|
79 |
+
value = x.split(': ')[1]
|
80 |
+
if value == 'Female':
|
81 |
+
return 0
|
82 |
+
elif value == 'Male':
|
83 |
+
return 1
|
84 |
+
return None
|
85 |
+
|
86 |
+
# 3. Initial Filtering and Save Metadata
|
87 |
+
is_trait_available = trait_row is not None
|
88 |
+
validate_and_save_cohort_info(is_final=False,
|
89 |
+
cohort=cohort,
|
90 |
+
info_path=json_path,
|
91 |
+
is_gene_available=is_gene_available,
|
92 |
+
is_trait_available=is_trait_available)
|
93 |
+
|
94 |
+
# 4. Clinical Feature Extraction
|
95 |
+
if trait_row is not None:
|
96 |
+
clinical_features = geo_select_clinical_features(
|
97 |
+
clinical_data,
|
98 |
+
trait=trait,
|
99 |
+
trait_row=trait_row,
|
100 |
+
convert_trait=convert_trait,
|
101 |
+
age_row=age_row,
|
102 |
+
convert_age=convert_age,
|
103 |
+
gender_row=gender_row,
|
104 |
+
convert_gender=convert_gender
|
105 |
+
)
|
106 |
+
print("Preview of extracted clinical features:")
|
107 |
+
print(preview_df(clinical_features))
|
108 |
+
clinical_features.to_csv(out_clinical_data_file)
|
109 |
+
# Extract gene expression data from matrix file
|
110 |
+
gene_data = get_genetic_data(matrix_file)
|
111 |
+
|
112 |
+
# Print first 20 row IDs and shape of data to help debug
|
113 |
+
print("Shape of gene expression data:", gene_data.shape)
|
114 |
+
print("\nFirst few rows of data:")
|
115 |
+
print(gene_data.head())
|
116 |
+
print("\nFirst 20 gene/probe identifiers:")
|
117 |
+
print(gene_data.index[:20])
|
118 |
+
|
119 |
+
# Inspect a snippet of raw file to verify identifier format
|
120 |
+
import gzip
|
121 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
122 |
+
lines = []
|
123 |
+
for i, line in enumerate(f):
|
124 |
+
if "!series_matrix_table_begin" in line:
|
125 |
+
# Get the next 5 lines after the marker
|
126 |
+
for _ in range(5):
|
127 |
+
lines.append(next(f).strip())
|
128 |
+
break
|
129 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
130 |
+
for line in lines:
|
131 |
+
print(line)
|
132 |
+
# Looking at the identifiers - they are numeric values (1,2,3,9,10 etc)
|
133 |
+
# These appear to be probe/feature IDs rather than gene symbols
|
134 |
+
# Therefore mapping to gene symbols will be required
|
135 |
+
requires_gene_mapping = True
|
136 |
+
# Get file paths using library function
|
137 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
138 |
+
|
139 |
+
# For SOFT files with platform annotations, we need to get rows not starting with '!'
|
140 |
+
# but also not containing just numeric IDs and entrez genes
|
141 |
+
gene_annotation = pd.read_csv(soft_file, compression='gzip', sep='\t', header=None,
|
142 |
+
comment='!', on_bad_lines='skip')
|
143 |
+
|
144 |
+
# Find rows with detailed platform annotations (containing gene symbols)
|
145 |
+
annotation_starts = False
|
146 |
+
annotation_lines = []
|
147 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
148 |
+
for line in f:
|
149 |
+
if "!platform_table_begin" in line:
|
150 |
+
annotation_starts = True
|
151 |
+
# Get the header line
|
152 |
+
header = next(f).strip()
|
153 |
+
annotation_lines.append(header)
|
154 |
+
continue
|
155 |
+
if annotation_starts:
|
156 |
+
if "!platform_table_end" in line:
|
157 |
+
break
|
158 |
+
annotation_lines.append(line.strip())
|
159 |
+
|
160 |
+
# Convert annotation lines to dataframe
|
161 |
+
annotation_content = '\n'.join(annotation_lines)
|
162 |
+
gene_annotation = pd.read_csv(io.StringIO(annotation_content), sep='\t')
|
163 |
+
|
164 |
+
# Preview annotation data
|
165 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
166 |
+
print("\nAll column names:")
|
167 |
+
print(gene_annotation.columns.tolist())
|
168 |
+
|
169 |
+
print("\nFirst few rows:")
|
170 |
+
print(gene_annotation.head().to_string())
|
171 |
+
|
172 |
+
print("\nNumber of non-null values in each column:")
|
173 |
+
print(gene_annotation.count())
|
174 |
+
|
175 |
+
# Print example rows showing ID and gene symbol columns
|
176 |
+
print("\nSample rows showing the ID and gene symbol mapping:")
|
177 |
+
symbol_col = [col for col in gene_annotation.columns if 'symbol' in col.lower()][0]
|
178 |
+
print(gene_annotation[['ID', symbol_col]].head(10))
|
179 |
+
# Extract complete platform annotation table from SOFT file
|
180 |
+
platform_lines = []
|
181 |
+
annotation_starts = False
|
182 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
183 |
+
for line in f:
|
184 |
+
if line.startswith('^PLATFORM'):
|
185 |
+
platform_lines.append(line)
|
186 |
+
elif line.startswith('!Platform_data_row_count'):
|
187 |
+
platform_lines.append(line)
|
188 |
+
elif line.startswith('!Platform_table_begin'):
|
189 |
+
annotation_starts = True
|
190 |
+
header = next(f).strip()
|
191 |
+
platform_lines.append(header)
|
192 |
+
continue
|
193 |
+
elif annotation_starts:
|
194 |
+
if line.startswith('!Platform_table_end'):
|
195 |
+
break
|
196 |
+
platform_lines.append(line.strip())
|
197 |
+
|
198 |
+
# Parse platform annotation content
|
199 |
+
platform_content = '\n'.join(platform_lines)
|
200 |
+
gene_annotation = pd.read_csv(io.StringIO(platform_content), sep='\t', comment='!', skiprows=2)
|
201 |
+
|
202 |
+
# Create mapping DataFrame using ID and gene symbol
|
203 |
+
mapping_df = gene_annotation[['ID', 'GB_ACC']].copy()
|
204 |
+
mapping_df = mapping_df.rename(columns={'GB_ACC': 'Gene'})
|
205 |
+
|
206 |
+
# Clean gene symbols - split on spaces/semicolons and take first value
|
207 |
+
mapping_df['Gene'] = mapping_df['Gene'].astype(str).apply(lambda x: x.split(';')[0].split()[0])
|
208 |
+
mapping_df = mapping_df.dropna()
|
209 |
+
|
210 |
+
# Apply gene mapping to convert probe expression to gene expression
|
211 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
212 |
+
|
213 |
+
# Normalize gene symbols using the provided function
|
214 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
215 |
+
|
216 |
+
# Save gene expression data
|
217 |
+
gene_data.to_csv(out_gene_data_file)
|
218 |
+
|
219 |
+
# Preview the mapped gene data
|
220 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
221 |
+
print("\nFirst few mapped genes and their expression values:")
|
222 |
+
print(gene_data.head())
|
223 |
+
# Get file paths using library function
|
224 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
225 |
+
|
226 |
+
# Try to peek at the SOFT file contents first
|
227 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
228 |
+
# Read first few lines to understand file structure
|
229 |
+
print("First 20 lines of SOFT file:")
|
230 |
+
for i, line in enumerate(f):
|
231 |
+
if i < 20:
|
232 |
+
print(line.strip())
|
233 |
+
else:
|
234 |
+
break
|
235 |
+
|
236 |
+
# Reset file pointer
|
237 |
+
f.seek(0)
|
238 |
+
|
239 |
+
# Look for the platform table section
|
240 |
+
print("\nPlatform table header:")
|
241 |
+
for line in f:
|
242 |
+
if "!Platform_table_begin" in line:
|
243 |
+
# Print the next line which should be the header
|
244 |
+
print(next(f).strip())
|
245 |
+
break
|
246 |
+
|
247 |
+
# Now extract annotation data using a simpler method - get lines between table markers
|
248 |
+
annotation_lines = []
|
249 |
+
table_started = False
|
250 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
251 |
+
for line in f:
|
252 |
+
if "!Platform_table_begin" in line:
|
253 |
+
header = next(f).strip()
|
254 |
+
annotation_lines.append(header)
|
255 |
+
table_started = True
|
256 |
+
continue
|
257 |
+
if table_started:
|
258 |
+
if "!Platform_table_end" in line:
|
259 |
+
break
|
260 |
+
annotation_lines.append(line.strip())
|
261 |
+
|
262 |
+
# Convert to dataframe
|
263 |
+
annotation_text = '\n'.join(annotation_lines)
|
264 |
+
gene_annotation = pd.read_csv(io.StringIO(annotation_text), sep='\t')
|
265 |
+
|
266 |
+
# Preview annotation data
|
267 |
+
print("\nAnnotation data shape:", gene_annotation.shape)
|
268 |
+
print("\nColumn names:")
|
269 |
+
print(gene_annotation.columns.tolist())
|
270 |
+
print("\nFirst few rows:")
|
271 |
+
print(gene_annotation.head())
|
272 |
+
# 1. Let's examine SOFT file content first to identify correct gene identifier columns
|
273 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
274 |
+
for line in f:
|
275 |
+
if '!Platform_table_begin' in line:
|
276 |
+
header = next(f).strip()
|
277 |
+
print("Platform table header:")
|
278 |
+
print(header)
|
279 |
+
print("\nFirst few data rows:")
|
280 |
+
for i in range(5):
|
281 |
+
print(next(f).strip())
|
282 |
+
break
|
283 |
+
|
284 |
+
# Extract gene metadata using library function
|
285 |
+
gene_metadata = get_gene_annotation(soft_file)
|
286 |
+
|
287 |
+
# Print available columns to identify gene symbol column
|
288 |
+
print("\nAvailable annotation columns:")
|
289 |
+
print(gene_metadata.columns.tolist())
|
290 |
+
|
291 |
+
print("\nPreview of gene metadata:")
|
292 |
+
print(gene_metadata.head())
|
293 |
+
|
294 |
+
# Get gene expression data
|
295 |
+
gene_data = get_genetic_data(matrix_file)
|
296 |
+
|
297 |
+
# Print shape and preview of expression data before mapping
|
298 |
+
print("\nShape of gene expression data before mapping:", gene_data.shape)
|
299 |
+
print("\nPreview of gene expression data before mapping:")
|
300 |
+
print(gene_data.head())
|
301 |
+
# Use library function to get gene annotation from SOFT file
|
302 |
+
gene_metadata = get_gene_annotation(soft_file)
|
303 |
+
|
304 |
+
# Create mapping DataFrame using ID and ENTREZ_GENE_ID
|
305 |
+
mapping_df = gene_metadata[['ID', 'ENTREZ_GENE_ID']].copy()
|
306 |
+
mapping_df = mapping_df.rename(columns={'ENTREZ_GENE_ID': 'Gene'})
|
307 |
+
|
308 |
+
# Clean and prepare mapping data
|
309 |
+
mapping_df['ID'] = mapping_df['ID'].astype(str)
|
310 |
+
mapping_df['Gene'] = mapping_df['Gene'].astype(str)
|
311 |
+
mapping_df = mapping_df.dropna()
|
312 |
+
|
313 |
+
# Apply gene mapping to convert probe expression to gene expression
|
314 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
315 |
+
|
316 |
+
# Normalize gene symbols
|
317 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
318 |
+
|
319 |
+
# Save processed gene expression data
|
320 |
+
gene_data.to_csv(out_gene_data_file)
|
321 |
+
|
322 |
+
print("\nShape of gene expression data after mapping:", gene_data.shape)
|
323 |
+
print("\nFirst few mapped genes and their expression values:")
|
324 |
+
print(gene_data.head())
|
325 |
+
# Get file paths using library function
|
326 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
327 |
+
|
328 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
329 |
+
gene_annotation = get_gene_annotation(soft_file)
|
330 |
+
|
331 |
+
# Preview gene annotation data
|
332 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
333 |
+
print("\nGene annotation preview:")
|
334 |
+
print(preview_df(gene_annotation))
|
335 |
+
|
336 |
+
print("\nNumber of non-null values in each column:")
|
337 |
+
print(gene_annotation.count())
|
338 |
+
|
339 |
+
# Print example rows showing the mapping information columns
|
340 |
+
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
|
341 |
+
print("\nFirst 5 rows:")
|
342 |
+
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
|
343 |
+
|
344 |
+
print("\nNote: Gene mapping will use:")
|
345 |
+
print("'ID' column: Probe identifiers")
|
346 |
+
print("'GENE_SYMBOL' column: Contains gene symbol information")
|
p3/preprocess/Obesity/code/GSE123088.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE123088"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE123088"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE123088.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE123088.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE123088.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
import pandas as pd
|
37 |
+
import numpy as np
|
38 |
+
|
39 |
+
# Check gene expression data availability
|
40 |
+
is_gene_available = True # CD4+ T cells expression data should be present
|
41 |
+
|
42 |
+
# Find trait, age and gender data rows and define conversion functions
|
43 |
+
trait_row = 1 # 'primary diagnosis' contains obesity info
|
44 |
+
age_row = 3 # 'age' info starts in row 3, continues in row 4
|
45 |
+
gender_row = 2 # 'Sex' information
|
46 |
+
|
47 |
+
def convert_trait(x):
|
48 |
+
if pd.isna(x):
|
49 |
+
return None
|
50 |
+
val = x.split(': ')[1] if ': ' in x else x
|
51 |
+
if val.upper() in ['OBESITY']:
|
52 |
+
return 1
|
53 |
+
elif 'CONTROL' in val.upper():
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(x):
|
58 |
+
if pd.isna(x):
|
59 |
+
return None
|
60 |
+
try:
|
61 |
+
val = x.split(': ')[1] if ': ' in x else x
|
62 |
+
return float(val)
|
63 |
+
except:
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_gender(x):
|
67 |
+
if pd.isna(x):
|
68 |
+
return None
|
69 |
+
val = x.split(': ')[1] if ': ' in x else x
|
70 |
+
if val.upper() == 'FEMALE':
|
71 |
+
return 0
|
72 |
+
elif val.upper() == 'MALE':
|
73 |
+
return 1
|
74 |
+
return None
|
75 |
+
|
76 |
+
# Validate and save initial cohort info
|
77 |
+
_ = validate_and_save_cohort_info(
|
78 |
+
is_final=False,
|
79 |
+
cohort=cohort,
|
80 |
+
info_path=json_path,
|
81 |
+
is_gene_available=is_gene_available,
|
82 |
+
is_trait_available=trait_row is not None
|
83 |
+
)
|
84 |
+
|
85 |
+
# Extract clinical features if trait data is available
|
86 |
+
if trait_row is not None:
|
87 |
+
selected_clinical_df = geo_select_clinical_features(
|
88 |
+
clinical_data,
|
89 |
+
trait=trait,
|
90 |
+
trait_row=trait_row,
|
91 |
+
convert_trait=convert_trait,
|
92 |
+
age_row=age_row,
|
93 |
+
convert_age=convert_age,
|
94 |
+
gender_row=gender_row,
|
95 |
+
convert_gender=convert_gender
|
96 |
+
)
|
97 |
+
|
98 |
+
# Preview the clinical features
|
99 |
+
preview = preview_df(selected_clinical_df)
|
100 |
+
print("Clinical features preview:")
|
101 |
+
print(preview)
|
102 |
+
|
103 |
+
# Save clinical features
|
104 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
105 |
+
# Extract gene expression data from matrix file
|
106 |
+
gene_data = get_genetic_data(matrix_file)
|
107 |
+
|
108 |
+
# Print first 20 row IDs and shape of data to help debug
|
109 |
+
print("Shape of gene expression data:", gene_data.shape)
|
110 |
+
print("\nFirst few rows of data:")
|
111 |
+
print(gene_data.head())
|
112 |
+
print("\nFirst 20 gene/probe identifiers:")
|
113 |
+
print(gene_data.index[:20])
|
114 |
+
|
115 |
+
# Inspect a snippet of raw file to verify identifier format
|
116 |
+
import gzip
|
117 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
118 |
+
lines = []
|
119 |
+
for i, line in enumerate(f):
|
120 |
+
if "!series_matrix_table_begin" in line:
|
121 |
+
# Get the next 5 lines after the marker
|
122 |
+
for _ in range(5):
|
123 |
+
lines.append(next(f).strip())
|
124 |
+
break
|
125 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
126 |
+
for line in lines:
|
127 |
+
print(line)
|
128 |
+
# Based on the gene expression data shown, the identifiers appear to be numerical indices (1, 2, 3, etc.)
|
129 |
+
# rather than human gene symbols. This indicates mapping to gene symbols will be required.
|
130 |
+
requires_gene_mapping = True
|
131 |
+
# Get file paths using library function
|
132 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
133 |
+
|
134 |
+
# First inspect a snippet of raw SOFT file to understand its structure
|
135 |
+
import gzip
|
136 |
+
print("Inspecting raw SOFT file structure:")
|
137 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
138 |
+
lines = []
|
139 |
+
for i, line in enumerate(f):
|
140 |
+
if i < 20: # Look at first 20 lines
|
141 |
+
lines.append(line.strip())
|
142 |
+
else:
|
143 |
+
break
|
144 |
+
print('\n'.join(lines))
|
145 |
+
print("\n" + "="*50 + "\n")
|
146 |
+
|
147 |
+
# Extract gene annotation from SOFT file, excluding header lines
|
148 |
+
gene_annotation = get_gene_annotation(soft_file)
|
149 |
+
|
150 |
+
# Preview gene annotation data
|
151 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
152 |
+
print("\nGene annotation columns:")
|
153 |
+
print(gene_annotation.columns.tolist())
|
154 |
+
print("\nGene annotation preview:")
|
155 |
+
print(preview_df(gene_annotation))
|
156 |
+
|
157 |
+
print("\nNumber of non-null values in each column:")
|
158 |
+
print(gene_annotation.count())
|
159 |
+
|
160 |
+
# Print first few rows of annotation data to verify structure
|
161 |
+
print("\nFirst 5 rows of annotation data:")
|
162 |
+
print(gene_annotation.head().to_string())
|
163 |
+
# First find the SubSeries ID from the SOFT file
|
164 |
+
import gzip
|
165 |
+
subseries_id = None
|
166 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
167 |
+
for line in f:
|
168 |
+
if line.startswith('!Series_relation'):
|
169 |
+
if 'SubSeries of:' not in line:
|
170 |
+
subseries_id = line.strip().split(' = ')[1].split(' ')[0]
|
171 |
+
break
|
172 |
+
|
173 |
+
# The correct subseries directory should be one level up
|
174 |
+
platform_soft_file = os.path.join(os.path.dirname(os.path.dirname(soft_file)),
|
175 |
+
subseries_id,
|
176 |
+
f"{subseries_id}_family.soft.gz")
|
177 |
+
|
178 |
+
# Extract platform annotation from the subseries SOFT file
|
179 |
+
platform_lines = []
|
180 |
+
with gzip.open(platform_soft_file, 'rt', encoding='utf-8') as f:
|
181 |
+
reading_platform = False
|
182 |
+
for line in f:
|
183 |
+
if line.startswith('!Platform_table_begin'):
|
184 |
+
reading_platform = True
|
185 |
+
# Skip the header line
|
186 |
+
header = next(f).strip().split('\t')
|
187 |
+
continue
|
188 |
+
elif line.startswith('!Platform_table_end'):
|
189 |
+
break
|
190 |
+
elif reading_platform:
|
191 |
+
platform_lines.append(line.strip())
|
192 |
+
|
193 |
+
# Create platform annotation dataframe
|
194 |
+
platform_data = [line.split('\t') for line in platform_lines]
|
195 |
+
df_platform = pd.DataFrame(platform_data, columns=header)
|
196 |
+
|
197 |
+
# Get mapping using ID and gene symbol columns
|
198 |
+
mapping_data = get_gene_mapping(df_platform, 'ID', 'Gene Symbol')
|
199 |
+
|
200 |
+
# Apply gene mapping to convert probe-level data to gene expression data
|
201 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
202 |
+
|
203 |
+
# Preview results
|
204 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
205 |
+
print("\nFirst few rows of mapped gene expression data:")
|
206 |
+
print(gene_data.head())
|
207 |
+
# Ensure index is string type for gene symbol mapping
|
208 |
+
gene_data.index = gene_data.index.astype(str)
|
209 |
+
|
210 |
+
# Convert Entrez IDs to gene symbols using the built-in mapping
|
211 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
212 |
+
|
213 |
+
# Print shape and preview results
|
214 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
215 |
+
print("\nFirst few rows of mapped gene expression data:")
|
216 |
+
print(gene_data.head())
|
217 |
+
|
218 |
+
# Save gene expression data
|
219 |
+
gene_data.to_csv(out_gene_data_file)
|
220 |
+
# 1. First get platform annotation with gene symbols
|
221 |
+
import gzip
|
222 |
+
|
223 |
+
with gzip.open(soft_file, 'rt') as f:
|
224 |
+
platform_section = False
|
225 |
+
platform_lines = []
|
226 |
+
for line in f:
|
227 |
+
if line.startswith('^PLATFORM'):
|
228 |
+
platform_section = True
|
229 |
+
elif platform_section and line.startswith('!Platform_table_begin'):
|
230 |
+
header = next(f).strip().split('\t')
|
231 |
+
for l in f:
|
232 |
+
if l.startswith('!Platform_table_end'):
|
233 |
+
break
|
234 |
+
platform_lines.append(l.strip())
|
235 |
+
|
236 |
+
# Create platform annotation dataframe
|
237 |
+
platform_data = [line.split('\t') for line in platform_lines]
|
238 |
+
platform_df = pd.DataFrame(platform_data, columns=header)
|
239 |
+
mapping_df = get_gene_mapping(platform_df, 'ID', 'Gene Symbol')
|
240 |
+
|
241 |
+
# Apply mapping to convert probe-level data to gene expression data
|
242 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
243 |
+
|
244 |
+
# 2. Load clinical data and normalize gene symbols
|
245 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
246 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
247 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
248 |
+
gene_data.to_csv(out_gene_data_file)
|
249 |
+
|
250 |
+
# 3. Link clinical and genetic data
|
251 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
252 |
+
|
253 |
+
# 4. Handle missing values
|
254 |
+
linked_data = handle_missing_values(linked_data, trait)
|
255 |
+
|
256 |
+
# 5. Check for biased features and remove them if needed
|
257 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
258 |
+
|
259 |
+
# 6. Validate and save cohort info
|
260 |
+
is_usable = validate_and_save_cohort_info(
|
261 |
+
is_final=True,
|
262 |
+
cohort=cohort,
|
263 |
+
info_path=json_path,
|
264 |
+
is_gene_available=True,
|
265 |
+
is_trait_available=True,
|
266 |
+
is_biased=is_biased,
|
267 |
+
df=linked_data,
|
268 |
+
note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity"
|
269 |
+
)
|
270 |
+
|
271 |
+
# 7. Save linked data if usable
|
272 |
+
if is_usable:
|
273 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
274 |
+
linked_data.to_csv(out_data_file)
|
275 |
+
# 1. Since we have Entrez IDs in the gene expression data index,
|
276 |
+
# we can directly normalize them to gene symbols
|
277 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
278 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
279 |
+
gene_data.to_csv(out_gene_data_file)
|
280 |
+
|
281 |
+
# 2. Load clinical data and link with genetic data
|
282 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
283 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
284 |
+
|
285 |
+
# 3. Handle missing values
|
286 |
+
linked_data = handle_missing_values(linked_data, trait)
|
287 |
+
|
288 |
+
# 4. Check for biased features and remove them if needed
|
289 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
290 |
+
|
291 |
+
# 5. Validate and save cohort info
|
292 |
+
is_usable = validate_and_save_cohort_info(
|
293 |
+
is_final=True,
|
294 |
+
cohort=cohort,
|
295 |
+
info_path=json_path,
|
296 |
+
is_gene_available=True,
|
297 |
+
is_trait_available=True,
|
298 |
+
is_biased=is_biased,
|
299 |
+
df=linked_data,
|
300 |
+
note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity"
|
301 |
+
)
|
302 |
+
|
303 |
+
# 6. Save linked data if usable
|
304 |
+
if is_usable:
|
305 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
306 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Obesity/code/GSE158237.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE158237"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE158237"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE158237.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE158237.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE158237.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on series title and summary mentioning RNA extraction and transcriptomics,
|
38 |
+
# this dataset likely contains gene expression data
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2. Variable Availability and Data Type Conversion
|
42 |
+
# 2.1 Data Availability
|
43 |
+
trait_row = 10 # BMI data in Feature 10
|
44 |
+
age_row = 1 # Age data in Feature 1
|
45 |
+
gender_row = 2 # Sex data in Feature 2
|
46 |
+
|
47 |
+
# 2.2 Data Type Conversion Functions
|
48 |
+
def convert_trait(value):
|
49 |
+
# Convert BMI value to binary (0 for non-obese, 1 for obese)
|
50 |
+
if pd.isna(value):
|
51 |
+
return None
|
52 |
+
try:
|
53 |
+
bmi = float(value.split(': ')[1])
|
54 |
+
return 1 if bmi >= 30 else 0 # Standard obesity threshold
|
55 |
+
except:
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(value):
|
59 |
+
# Convert age to continuous value
|
60 |
+
if pd.isna(value):
|
61 |
+
return None
|
62 |
+
try:
|
63 |
+
age = float(value.split(': ')[1])
|
64 |
+
return age
|
65 |
+
except:
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(value):
|
69 |
+
# Convert sex to binary (0 for female, 1 for male)
|
70 |
+
if pd.isna(value):
|
71 |
+
return None
|
72 |
+
try:
|
73 |
+
sex = int(value.split(': ')[1])
|
74 |
+
return 1 if sex == 1 else 0 # Assuming Sex:1 is male and Sex:2 is female
|
75 |
+
except:
|
76 |
+
return None
|
77 |
+
|
78 |
+
# 3. Save Metadata
|
79 |
+
# Conduct initial filtering
|
80 |
+
validate_and_save_cohort_info(is_final=False,
|
81 |
+
cohort=cohort,
|
82 |
+
info_path=json_path,
|
83 |
+
is_gene_available=is_gene_available,
|
84 |
+
is_trait_available=(trait_row is not None))
|
85 |
+
|
86 |
+
# 4. Clinical Feature Extraction
|
87 |
+
# Since trait_row is not None, extract clinical features
|
88 |
+
if trait_row is not None:
|
89 |
+
clinical_features = geo_select_clinical_features(clinical_data,
|
90 |
+
trait=trait,
|
91 |
+
trait_row=trait_row,
|
92 |
+
convert_trait=convert_trait,
|
93 |
+
age_row=age_row,
|
94 |
+
convert_age=convert_age,
|
95 |
+
gender_row=gender_row,
|
96 |
+
convert_gender=convert_gender)
|
97 |
+
|
98 |
+
# Preview the extracted features
|
99 |
+
preview = preview_df(clinical_features)
|
100 |
+
print("Preview of clinical features:", preview)
|
101 |
+
|
102 |
+
# Save to CSV
|
103 |
+
clinical_features.to_csv(out_clinical_data_file)
|
104 |
+
# Extract gene expression data from matrix file
|
105 |
+
gene_data = get_genetic_data(matrix_file)
|
106 |
+
|
107 |
+
# Print first 20 row IDs and shape of data to help debug
|
108 |
+
print("Shape of gene expression data:", gene_data.shape)
|
109 |
+
print("\nFirst few rows of data:")
|
110 |
+
print(gene_data.head())
|
111 |
+
print("\nFirst 20 gene/probe identifiers:")
|
112 |
+
print(gene_data.index[:20])
|
113 |
+
|
114 |
+
# Inspect a snippet of raw file to verify identifier format
|
115 |
+
import gzip
|
116 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
117 |
+
lines = []
|
118 |
+
for i, line in enumerate(f):
|
119 |
+
if "!series_matrix_table_begin" in line:
|
120 |
+
# Get the next 5 lines after the marker
|
121 |
+
for _ in range(5):
|
122 |
+
lines.append(next(f).strip())
|
123 |
+
break
|
124 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
125 |
+
for line in lines:
|
126 |
+
print(line)
|
127 |
+
# From the output, we can see the identifiers appear to be numeric probe IDs (e.g. 16657436)
|
128 |
+
# rather than human gene symbols (which would look like BRCA1, TP53 etc)
|
129 |
+
# These need to be mapped to gene symbols for biological interpretation
|
130 |
+
requires_gene_mapping = True
|
131 |
+
# Get file paths using library function
|
132 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
133 |
+
|
134 |
+
# Extract gene annotation from SOFT file
|
135 |
+
# Use different prefix filters to capture platform annotation with gene symbols
|
136 |
+
gene_annotation = filter_content_by_prefix(soft_file,
|
137 |
+
prefixes_a=['!Platform_table_begin'],
|
138 |
+
unselect=False,
|
139 |
+
source_type='file',
|
140 |
+
return_df_a=True)[0]
|
141 |
+
|
142 |
+
# Preview gene annotation data
|
143 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
144 |
+
print("\nGene annotation columns:", list(gene_annotation.columns))
|
145 |
+
print("\nGene annotation preview:")
|
146 |
+
print(preview_df(gene_annotation))
|
147 |
+
|
148 |
+
# Print non-null values for each column to help identify useful columns
|
149 |
+
print("\nNumber of non-null values in each column:")
|
150 |
+
print(gene_annotation.count())
|
151 |
+
|
152 |
+
# Print example rows showing ID and gene symbol columns
|
153 |
+
print("\nExample rows with ID and gene symbol information:")
|
154 |
+
print(gene_annotation[['ID', 'Symbol']].head(10).to_string())
|
155 |
+
# Get file paths using library function
|
156 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
157 |
+
|
158 |
+
# First examine the raw SOFT file content to locate platform annotation section
|
159 |
+
import gzip
|
160 |
+
platform_start = False
|
161 |
+
header_line = None
|
162 |
+
first_data_line = None
|
163 |
+
|
164 |
+
with gzip.open(soft_file, 'rt') as f:
|
165 |
+
for line in f:
|
166 |
+
if '!Platform_table_begin' in line:
|
167 |
+
platform_start = True
|
168 |
+
# Get the next two lines (header and first data)
|
169 |
+
header_line = next(f).strip()
|
170 |
+
first_data_line = next(f).strip()
|
171 |
+
break
|
172 |
+
|
173 |
+
print("Header line found:")
|
174 |
+
print(header_line)
|
175 |
+
print("\nFirst data line example:")
|
176 |
+
print(first_data_line)
|
177 |
+
|
178 |
+
# Extract platform annotation data
|
179 |
+
from io import StringIO
|
180 |
+
platform_data = []
|
181 |
+
platform_start = False
|
182 |
+
|
183 |
+
with gzip.open(soft_file, 'rt') as f:
|
184 |
+
for line in f:
|
185 |
+
if '!Platform_table_begin' in line:
|
186 |
+
platform_start = True
|
187 |
+
continue
|
188 |
+
elif '!Platform_table_end' in line:
|
189 |
+
break
|
190 |
+
elif platform_start:
|
191 |
+
platform_data.append(line.strip())
|
192 |
+
|
193 |
+
# Convert to dataframe
|
194 |
+
gene_annotation = pd.read_csv(StringIO('\n'.join(platform_data)), sep='\t')
|
195 |
+
|
196 |
+
# Preview gene annotation data
|
197 |
+
print("\nGene annotation shape:", gene_annotation.shape)
|
198 |
+
print("\nGene annotation columns:", gene_annotation.columns.tolist())
|
199 |
+
print("\nFirst few rows preview:")
|
200 |
+
print(gene_annotation.head().to_string())
|
201 |
+
|
202 |
+
# Look for columns that might contain gene symbols
|
203 |
+
symbol_candidates = [col for col in gene_annotation.columns
|
204 |
+
if any(term in col.lower()
|
205 |
+
for term in ['gene', 'symbol', 'entrez', 'refseq'])]
|
206 |
+
print("\nPotential gene symbol columns:", symbol_candidates)
|
207 |
+
from io import StringIO
|
208 |
+
|
209 |
+
# First inspect the SOFT file content to understand structure
|
210 |
+
import gzip
|
211 |
+
print("Examining SOFT file content...")
|
212 |
+
with gzip.open(soft_file, 'rt') as f:
|
213 |
+
for line in f:
|
214 |
+
# Look for platform annotation sections that might contain gene info
|
215 |
+
if "!Platform_table_begin" in line:
|
216 |
+
header = next(f).strip()
|
217 |
+
print("\nFound platform table with header:")
|
218 |
+
print(header)
|
219 |
+
print("\nFirst few data lines:")
|
220 |
+
for _ in range(5):
|
221 |
+
print(next(f).strip())
|
222 |
+
break
|
223 |
+
|
224 |
+
# Try extracting gene annotation using different prefix patterns
|
225 |
+
gene_metadata_str = filter_content_by_prefix(soft_file,
|
226 |
+
prefixes_a=['^', '#'],
|
227 |
+
unselect=True,
|
228 |
+
source_type='file',
|
229 |
+
return_df_a=False)[0]
|
230 |
+
|
231 |
+
# Process the metadata string to find the section with gene annotations
|
232 |
+
annotation_lines = []
|
233 |
+
capture = False
|
234 |
+
for line in gene_metadata_str.split('\n'):
|
235 |
+
if 'Reporter Database Entry [gene symbol]' in line:
|
236 |
+
# Found the start of gene symbol annotations
|
237 |
+
capture = True
|
238 |
+
continue
|
239 |
+
if capture and line.strip():
|
240 |
+
if line.startswith('!'): # End of section
|
241 |
+
break
|
242 |
+
annotation_lines.append(line)
|
243 |
+
|
244 |
+
if annotation_lines:
|
245 |
+
# Convert captured lines to DataFrame
|
246 |
+
gene_metadata = pd.read_csv(StringIO('\n'.join(annotation_lines)), sep='\t')
|
247 |
+
|
248 |
+
print("\nAvailable columns in gene annotation data:")
|
249 |
+
print(gene_metadata.columns.tolist())
|
250 |
+
|
251 |
+
# Create mapping dataframe using ID and gene symbol columns
|
252 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
253 |
+
|
254 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
255 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
256 |
+
|
257 |
+
# Print shape information to confirm successful mapping
|
258 |
+
print(f"\nShape of mapped gene expression data: {gene_data.shape}")
|
259 |
+
print("\nFirst few gene symbols:")
|
260 |
+
print(gene_data.index[:10])
|
261 |
+
else:
|
262 |
+
print("\nNo gene symbol annotation section found in the SOFT file.")
|
263 |
+
# Load the clinical data that was successfully saved earlier
|
264 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
265 |
+
|
266 |
+
# Create minimal df with just clinical features for validation
|
267 |
+
minimal_df = selected_clinical.copy()
|
268 |
+
|
269 |
+
# Check for biased features with just clinical data
|
270 |
+
is_biased, minimal_df = judge_and_remove_biased_features(minimal_df, trait)
|
271 |
+
|
272 |
+
# Save validation info with minimal df
|
273 |
+
is_usable = validate_and_save_cohort_info(
|
274 |
+
is_final=True,
|
275 |
+
cohort=cohort,
|
276 |
+
info_path=json_path,
|
277 |
+
is_gene_available=False, # Gene mapping failed
|
278 |
+
is_trait_available=True,
|
279 |
+
is_biased=is_biased,
|
280 |
+
df=minimal_df,
|
281 |
+
note="Failed to extract gene symbol annotations from SOFT file"
|
282 |
+
)
|
283 |
+
|
284 |
+
# Do not save linked data since processing was unsuccessful
|
p3/preprocess/Obesity/code/GSE158850.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE158850"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE158850"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE158850.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE158850.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE158850.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on series title and design, this appears to be skeletal muscle transcriptome data
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Trait: No specific obesity measurement values are provided
|
42 |
+
trait_row = None
|
43 |
+
|
44 |
+
# Age: Background info indicates having young and elderly groups, but not specific ages
|
45 |
+
age_row = None
|
46 |
+
|
47 |
+
# Gender: Feature 1 shows mix of male/female
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(x):
|
52 |
+
# Not used since trait data not available
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(x):
|
56 |
+
# Not used since age data not available
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_gender(x):
|
60 |
+
# Not used since gender data not available
|
61 |
+
return None
|
62 |
+
|
63 |
+
# 3. Save metadata
|
64 |
+
is_trait_available = trait_row is not None
|
65 |
+
validate_and_save_cohort_info(
|
66 |
+
is_final=False,
|
67 |
+
cohort=cohort,
|
68 |
+
info_path=json_path,
|
69 |
+
is_gene_available=is_gene_available,
|
70 |
+
is_trait_available=is_trait_available
|
71 |
+
)
|
72 |
+
|
73 |
+
# 4. Skip clinical feature extraction since trait_row is None
|
74 |
+
# Extract gene expression data from matrix file
|
75 |
+
gene_data = get_genetic_data(matrix_file)
|
76 |
+
|
77 |
+
# Print first 20 row IDs and shape of data to help debug
|
78 |
+
print("Shape of gene expression data:", gene_data.shape)
|
79 |
+
print("\nFirst few rows of data:")
|
80 |
+
print(gene_data.head())
|
81 |
+
print("\nFirst 20 gene/probe identifiers:")
|
82 |
+
print(gene_data.index[:20])
|
83 |
+
|
84 |
+
# Inspect a snippet of raw file to verify identifier format
|
85 |
+
import gzip
|
86 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
87 |
+
lines = []
|
88 |
+
for i, line in enumerate(f):
|
89 |
+
if "!series_matrix_table_begin" in line:
|
90 |
+
# Get the next 5 lines after the marker
|
91 |
+
for _ in range(5):
|
92 |
+
lines.append(next(f).strip())
|
93 |
+
break
|
94 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
95 |
+
for line in lines:
|
96 |
+
print(line)
|
97 |
+
requires_gene_mapping = True
|
98 |
+
# Get file paths using library function
|
99 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
100 |
+
|
101 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
102 |
+
gene_annotation = get_gene_annotation(soft_file)
|
103 |
+
|
104 |
+
# Preview gene annotation data
|
105 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
106 |
+
print("\nGene annotation preview:")
|
107 |
+
print(preview_df(gene_annotation))
|
108 |
+
|
109 |
+
print("\nNumber of non-null values in each column:")
|
110 |
+
print(gene_annotation.count())
|
111 |
+
|
112 |
+
# Print example rows showing the mapping information columns
|
113 |
+
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
|
114 |
+
print("\nFirst 5 rows:")
|
115 |
+
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
|
116 |
+
|
117 |
+
print("\nNote: Gene mapping will use:")
|
118 |
+
print("'ID' column: Probe identifiers")
|
119 |
+
print("'GENE_SYMBOL' column: Contains gene symbol information")
|
120 |
+
# Create mapping between probe IDs and gene symbols
|
121 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
122 |
+
|
123 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
124 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
125 |
+
|
126 |
+
# Verify the result
|
127 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
128 |
+
print("\nFirst few rows after mapping:")
|
129 |
+
print(gene_data.head())
|
130 |
+
print("\nFirst 20 gene symbols:")
|
131 |
+
print(gene_data.index[:20])
|
132 |
+
# 1. Normalize and save gene data
|
133 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
134 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
135 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
136 |
+
gene_data.to_csv(out_gene_data_file)
|
137 |
+
|
138 |
+
# Create empty DataFrame for validation since we lack clinical data
|
139 |
+
empty_df = pd.DataFrame()
|
140 |
+
|
141 |
+
# Validate and save cohort info, marking as biased due to lack of trait data
|
142 |
+
validate_and_save_cohort_info(
|
143 |
+
is_final=True,
|
144 |
+
cohort=cohort,
|
145 |
+
info_path=json_path,
|
146 |
+
is_gene_available=True,
|
147 |
+
is_trait_available=False,
|
148 |
+
is_biased=True,
|
149 |
+
df=empty_df,
|
150 |
+
note="Study has gene expression data but lacks usable clinical trait information for obesity analysis"
|
151 |
+
)
|
p3/preprocess/Obesity/code/GSE159809.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE159809"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE159809"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE159809.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE159809.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE159809.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on series description, this dataset studies transcriptomes, so gene expression data is available
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# From study background, all subjects are obese men, with age categories of young/elderly
|
42 |
+
trait_row = 0 # First characteristic row contains subject info
|
43 |
+
age_row = 0 # Age category (young/elderly) can be inferred from the same row
|
44 |
+
gender_row = 0 # Gender (all male) can be inferred from the same row
|
45 |
+
|
46 |
+
def convert_trait(x):
|
47 |
+
if pd.isna(x) or not isinstance(x, str):
|
48 |
+
return None
|
49 |
+
# All subjects are obese according to background
|
50 |
+
return 1
|
51 |
+
|
52 |
+
def convert_age(x):
|
53 |
+
if pd.isna(x) or not isinstance(x, str):
|
54 |
+
return None
|
55 |
+
val = x.lower()
|
56 |
+
# Convert young/elderly categories to binary
|
57 |
+
if "young" in val:
|
58 |
+
return 0
|
59 |
+
elif "elderly" in val:
|
60 |
+
return 1
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_gender(x):
|
64 |
+
if pd.isna(x) or not isinstance(x, str):
|
65 |
+
return None
|
66 |
+
# All subjects are men according to background
|
67 |
+
return 1
|
68 |
+
|
69 |
+
# 3. Save metadata
|
70 |
+
# Initial validation based on gene and trait data availability
|
71 |
+
_ = validate_and_save_cohort_info(
|
72 |
+
is_final=False,
|
73 |
+
cohort=cohort,
|
74 |
+
info_path=json_path,
|
75 |
+
is_gene_available=is_gene_available,
|
76 |
+
is_trait_available=trait_row is not None
|
77 |
+
)
|
78 |
+
|
79 |
+
# 4. Clinical Feature Extraction
|
80 |
+
if trait_row is not None:
|
81 |
+
clinical_features = geo_select_clinical_features(
|
82 |
+
clinical_df=clinical_data,
|
83 |
+
trait=trait,
|
84 |
+
trait_row=trait_row,
|
85 |
+
convert_trait=convert_trait,
|
86 |
+
age_row=age_row,
|
87 |
+
convert_age=convert_age,
|
88 |
+
gender_row=gender_row,
|
89 |
+
convert_gender=convert_gender
|
90 |
+
)
|
91 |
+
|
92 |
+
print("Preview of extracted clinical features:")
|
93 |
+
print(preview_df(clinical_features))
|
94 |
+
|
95 |
+
# Save clinical data
|
96 |
+
clinical_features.to_csv(out_clinical_data_file)
|
97 |
+
# Extract gene expression data from matrix file
|
98 |
+
gene_data = get_genetic_data(matrix_file)
|
99 |
+
|
100 |
+
# Print first 20 row IDs and shape of data to help debug
|
101 |
+
print("Shape of gene expression data:", gene_data.shape)
|
102 |
+
print("\nFirst few rows of data:")
|
103 |
+
print(gene_data.head())
|
104 |
+
print("\nFirst 20 gene/probe identifiers:")
|
105 |
+
print(gene_data.index[:20])
|
106 |
+
|
107 |
+
# Inspect a snippet of raw file to verify identifier format
|
108 |
+
import gzip
|
109 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
110 |
+
lines = []
|
111 |
+
for i, line in enumerate(f):
|
112 |
+
if "!series_matrix_table_begin" in line:
|
113 |
+
# Get the next 5 lines after the marker
|
114 |
+
for _ in range(5):
|
115 |
+
lines.append(next(f).strip())
|
116 |
+
break
|
117 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
118 |
+
for line in lines:
|
119 |
+
print(line)
|
120 |
+
"""
|
121 |
+
Looking at the identifiers ('A_23_P100001', 'A_23_P100022' etc), these are Agilent probe IDs
|
122 |
+
rather than human gene symbols. They need to be mapped to standard HGNC gene symbols.
|
123 |
+
"""
|
124 |
+
requires_gene_mapping = True
|
125 |
+
# Get file paths using library function
|
126 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
127 |
+
|
128 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
129 |
+
gene_annotation = get_gene_annotation(soft_file)
|
130 |
+
|
131 |
+
# Preview gene annotation data
|
132 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
133 |
+
print("\nGene annotation preview:")
|
134 |
+
print(preview_df(gene_annotation))
|
135 |
+
|
136 |
+
print("\nNumber of non-null values in each column:")
|
137 |
+
print(gene_annotation.count())
|
138 |
+
|
139 |
+
# Print example rows showing the mapping information columns
|
140 |
+
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
|
141 |
+
print("\nFirst 5 rows:")
|
142 |
+
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
|
143 |
+
|
144 |
+
print("\nNote: Gene mapping will use:")
|
145 |
+
print("'ID' column: Probe identifiers")
|
146 |
+
print("'GENE_SYMBOL' column: Contains gene symbol information")
|
147 |
+
# Based on observation: gene_data uses probe IDs like A_23_P100001, matching 'ID' column in gene_annotation
|
148 |
+
# Get gene mapping dataframe from annotation data
|
149 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
150 |
+
|
151 |
+
# Apply gene mapping to get gene expression data
|
152 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
153 |
+
|
154 |
+
# Save the gene expression data
|
155 |
+
gene_data.to_csv(out_gene_data_file)
|
156 |
+
|
157 |
+
# Print preview of mapped gene data
|
158 |
+
print("Gene data after mapping, shape:", gene_data.shape)
|
159 |
+
print("\nFirst few rows:")
|
160 |
+
print(gene_data.head())
|
161 |
+
print("\nFirst 20 gene symbols:")
|
162 |
+
print(gene_data.index[:20])
|
163 |
+
# 1. Load clinical data and save normalized gene data
|
164 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
165 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
166 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
167 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
168 |
+
gene_data.to_csv(out_gene_data_file)
|
169 |
+
|
170 |
+
# 2. Link clinical and genetic data
|
171 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
172 |
+
|
173 |
+
# 3. Handle missing values
|
174 |
+
linked_data = handle_missing_values(linked_data, trait)
|
175 |
+
|
176 |
+
# 4. Check for biased features and remove them if needed
|
177 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
178 |
+
|
179 |
+
# 5. Validate and save cohort info
|
180 |
+
is_usable = validate_and_save_cohort_info(
|
181 |
+
is_final=True,
|
182 |
+
cohort=cohort,
|
183 |
+
info_path=json_path,
|
184 |
+
is_gene_available=True,
|
185 |
+
is_trait_available=True,
|
186 |
+
is_biased=is_biased,
|
187 |
+
df=linked_data,
|
188 |
+
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
|
189 |
+
)
|
190 |
+
|
191 |
+
# 6. Save linked data if usable
|
192 |
+
if is_usable:
|
193 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
194 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Obesity/code/GSE181339.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE181339"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE181339"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE181339.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE181339.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE181339.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes - this is a microarray experiment with PBMC RNA samples
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# The trait (obesity) can be inferred from group field (row 1)
|
42 |
+
trait_row = 1
|
43 |
+
|
44 |
+
# Age data is available in row 2
|
45 |
+
age_row = 2
|
46 |
+
|
47 |
+
# Gender data is available in row 0
|
48 |
+
gender_row = 0
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(value: str) -> Optional[int]:
|
52 |
+
"""Convert obesity status to binary (0: Normal weight, 1: Overweight/Obese)"""
|
53 |
+
if not value or ':' not in value:
|
54 |
+
return None
|
55 |
+
group = value.split(':')[1].strip()
|
56 |
+
if group == 'NW':
|
57 |
+
return 0
|
58 |
+
elif group == 'OW/OB':
|
59 |
+
return 1
|
60 |
+
elif group == 'MONW': # Metabolically obese normal-weight should be labeled as obese
|
61 |
+
return 1
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_age(value: str) -> Optional[float]:
|
65 |
+
"""Convert age to continuous values"""
|
66 |
+
if not value or ':' not in value:
|
67 |
+
return None
|
68 |
+
try:
|
69 |
+
return float(value.split(':')[1].strip())
|
70 |
+
except:
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_gender(value: str) -> Optional[int]:
|
74 |
+
"""Convert gender to binary (0: Female, 1: Male)"""
|
75 |
+
if not value or ':' not in value:
|
76 |
+
return None
|
77 |
+
gender = value.split(':')[1].strip().lower()
|
78 |
+
if gender == 'woman':
|
79 |
+
return 0
|
80 |
+
elif gender == 'man':
|
81 |
+
return 1
|
82 |
+
return None
|
83 |
+
|
84 |
+
# 3. Save Metadata
|
85 |
+
is_trait_available = trait_row is not None
|
86 |
+
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
|
87 |
+
is_gene_available=is_gene_available,
|
88 |
+
is_trait_available=is_trait_available)
|
89 |
+
|
90 |
+
# 4. Clinical Feature Extraction
|
91 |
+
if trait_row is not None:
|
92 |
+
# Extract clinical features
|
93 |
+
clinical_features = geo_select_clinical_features(
|
94 |
+
clinical_df=clinical_data,
|
95 |
+
trait=trait,
|
96 |
+
trait_row=trait_row,
|
97 |
+
convert_trait=convert_trait,
|
98 |
+
age_row=age_row,
|
99 |
+
convert_age=convert_age,
|
100 |
+
gender_row=gender_row,
|
101 |
+
convert_gender=convert_gender
|
102 |
+
)
|
103 |
+
|
104 |
+
# Preview extracted features
|
105 |
+
preview = preview_df(clinical_features)
|
106 |
+
print("Preview of extracted clinical features:")
|
107 |
+
print(preview)
|
108 |
+
|
109 |
+
# Save to CSV
|
110 |
+
clinical_features.to_csv(out_clinical_data_file)
|
111 |
+
# Extract gene expression data from matrix file
|
112 |
+
gene_data = get_genetic_data(matrix_file)
|
113 |
+
|
114 |
+
# Print first 20 row IDs and shape of data to help debug
|
115 |
+
print("Shape of gene expression data:", gene_data.shape)
|
116 |
+
print("\nFirst few rows of data:")
|
117 |
+
print(gene_data.head())
|
118 |
+
print("\nFirst 20 gene/probe identifiers:")
|
119 |
+
print(gene_data.index[:20])
|
120 |
+
|
121 |
+
# Inspect a snippet of raw file to verify identifier format
|
122 |
+
import gzip
|
123 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
124 |
+
lines = []
|
125 |
+
for i, line in enumerate(f):
|
126 |
+
if "!series_matrix_table_begin" in line:
|
127 |
+
# Get the next 5 lines after the marker
|
128 |
+
for _ in range(5):
|
129 |
+
lines.append(next(f).strip())
|
130 |
+
break
|
131 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
132 |
+
for line in lines:
|
133 |
+
print(line)
|
134 |
+
# Based on the output shown, the gene identifiers are numeric IDs (e.g. '7', '8', '15', etc)
|
135 |
+
# These are not standard human gene symbols and will need to be mapped
|
136 |
+
requires_gene_mapping = True
|
137 |
+
# Get file paths using library function
|
138 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
139 |
+
|
140 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
141 |
+
gene_annotation = get_gene_annotation(soft_file)
|
142 |
+
|
143 |
+
# Preview gene annotation data
|
144 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
145 |
+
print("\nGene annotation preview:")
|
146 |
+
print(preview_df(gene_annotation))
|
147 |
+
|
148 |
+
print("\nNumber of non-null values in each column:")
|
149 |
+
print(gene_annotation.count())
|
150 |
+
|
151 |
+
# Print example rows showing the mapping information columns
|
152 |
+
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
|
153 |
+
print("\nFirst 5 rows:")
|
154 |
+
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
|
155 |
+
|
156 |
+
print("\nNote: Gene mapping will use:")
|
157 |
+
print("'ID' column: Probe identifiers")
|
158 |
+
print("'GENE_SYMBOL' column: Contains gene symbol information")
|
159 |
+
# 1. Get probe-to-gene mapping from annotation data
|
160 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
161 |
+
|
162 |
+
# 2. Apply mapping to get gene expression values
|
163 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
164 |
+
|
165 |
+
# 3. Preview the result
|
166 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
167 |
+
print("\nPreview of gene expression data:")
|
168 |
+
print(gene_data.head())
|
169 |
+
# 1. Load clinical data and save normalized gene data
|
170 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
171 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
172 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
173 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
174 |
+
gene_data.to_csv(out_gene_data_file)
|
175 |
+
|
176 |
+
# 2. Link clinical and genetic data
|
177 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
178 |
+
|
179 |
+
# 3. Handle missing values
|
180 |
+
linked_data = handle_missing_values(linked_data, trait)
|
181 |
+
|
182 |
+
# 4. Check for biased features and remove them if needed
|
183 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
184 |
+
|
185 |
+
# 5. Validate and save cohort info
|
186 |
+
is_usable = validate_and_save_cohort_info(
|
187 |
+
is_final=True,
|
188 |
+
cohort=cohort,
|
189 |
+
info_path=json_path,
|
190 |
+
is_gene_available=True,
|
191 |
+
is_trait_available=True,
|
192 |
+
is_biased=is_biased,
|
193 |
+
df=linked_data,
|
194 |
+
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
|
195 |
+
)
|
196 |
+
|
197 |
+
# 6. Save linked data if usable
|
198 |
+
if is_usable:
|
199 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
200 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Obesity/code/GSE271700.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE271700"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE271700"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE271700.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE271700.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE271700.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# This is whole-genome microarray data, so gene expression data should be available
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# 2.1 Data Availability
|
42 |
+
trait_row = 3 # phenotype indicates diabetes remission response
|
43 |
+
age_row = 1 # age data available
|
44 |
+
gender_row = 0 # gender data available
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(x):
|
48 |
+
if not isinstance(x, str):
|
49 |
+
return None
|
50 |
+
value = x.split(': ')[-1].strip()
|
51 |
+
if value == 'Responder':
|
52 |
+
return 1
|
53 |
+
elif value == 'Non-Responder':
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(x):
|
58 |
+
if not isinstance(x, str):
|
59 |
+
return None
|
60 |
+
try:
|
61 |
+
return float(x.split(': ')[-1].strip())
|
62 |
+
except:
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_gender(x):
|
66 |
+
if not isinstance(x, str):
|
67 |
+
return None
|
68 |
+
value = x.split(': ')[-1].strip()
|
69 |
+
if value.lower() == 'female':
|
70 |
+
return 0
|
71 |
+
elif value.lower() == 'male':
|
72 |
+
return 1
|
73 |
+
return None
|
74 |
+
|
75 |
+
# 3. Save Metadata
|
76 |
+
validate_and_save_cohort_info(is_final=False,
|
77 |
+
cohort=cohort,
|
78 |
+
info_path=json_path,
|
79 |
+
is_gene_available=is_gene_available,
|
80 |
+
is_trait_available=trait_row is not None)
|
81 |
+
|
82 |
+
# 4. Clinical Feature Extraction
|
83 |
+
# Since trait_row is not None, we extract clinical features
|
84 |
+
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender)
|
92 |
+
|
93 |
+
# Preview the extracted features
|
94 |
+
print("Preview of selected clinical features:")
|
95 |
+
print(preview_df(selected_clinical))
|
96 |
+
|
97 |
+
# Save to CSV
|
98 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
99 |
+
# Extract gene expression data from matrix file
|
100 |
+
gene_data = get_genetic_data(matrix_file)
|
101 |
+
|
102 |
+
# Print first 20 row IDs and shape of data to help debug
|
103 |
+
print("Shape of gene expression data:", gene_data.shape)
|
104 |
+
print("\nFirst few rows of data:")
|
105 |
+
print(gene_data.head())
|
106 |
+
print("\nFirst 20 gene/probe identifiers:")
|
107 |
+
print(gene_data.index[:20])
|
108 |
+
|
109 |
+
# Inspect a snippet of raw file to verify identifier format
|
110 |
+
import gzip
|
111 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
112 |
+
lines = []
|
113 |
+
for i, line in enumerate(f):
|
114 |
+
if "!series_matrix_table_begin" in line:
|
115 |
+
# Get the next 5 lines after the marker
|
116 |
+
for _ in range(5):
|
117 |
+
lines.append(next(f).strip())
|
118 |
+
break
|
119 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
120 |
+
for line in lines:
|
121 |
+
print(line)
|
122 |
+
# Based on the observance of gene identifiers like "100009676_at", "10000_at", etc,
|
123 |
+
# these are probe IDs from an Affymetrix microarray platform, not human gene symbols.
|
124 |
+
# The "_at" suffix is a characteristic identifier format used by Affymetrix arrays.
|
125 |
+
# These probe IDs need to be mapped to their corresponding gene symbols.
|
126 |
+
|
127 |
+
requires_gene_mapping = True
|
128 |
+
# Get file paths using library function
|
129 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
130 |
+
|
131 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
132 |
+
# Read first 100 lines to inspect structure
|
133 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
134 |
+
print("First 100 lines from SOFT file to inspect structure:")
|
135 |
+
for i, line in enumerate(f):
|
136 |
+
if i < 100: # Preview structure
|
137 |
+
print(line.strip())
|
138 |
+
else:
|
139 |
+
break
|
140 |
+
# Extract gene annotation from SOFT file
|
141 |
+
gene_annotation = get_gene_annotation(soft_file)
|
142 |
+
|
143 |
+
# Get platform ID from SOFT file
|
144 |
+
platform_id = None
|
145 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
146 |
+
for line in f:
|
147 |
+
if line.startswith('!Platform_geo_accession'):
|
148 |
+
platform_id = line.split('=')[1].strip()
|
149 |
+
break
|
150 |
+
|
151 |
+
print(f"Dataset uses platform: {platform_id}")
|
152 |
+
print("Warning: Gene symbol mapping information is not available in the SOFT file or pre-compiled GPL mappings.")
|
153 |
+
print("Saving probe-level expression data for future mapping when platform annotation becomes available.")
|
154 |
+
|
155 |
+
# Save probe-level expression data
|
156 |
+
gene_data.to_csv(out_gene_data_file)
|
157 |
+
|
158 |
+
raise ValueError(
|
159 |
+
f"Cannot complete preprocessing: Platform {platform_id} annotation data is required for mapping "
|
160 |
+
"probe IDs to gene symbols, but the mapping information is not available. "
|
161 |
+
"Please obtain the platform annotation data and rerun preprocessing."
|
162 |
+
)
|
p3/preprocess/Obesity/code/GSE281144.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE281144"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE281144"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE281144.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE281144.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE281144.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on the series summary mentioning "gene expression (GE) determined by microarray"
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Row Identifiers
|
41 |
+
# Trait (diabetes status) is in row 1
|
42 |
+
trait_row = 1
|
43 |
+
# No age data available
|
44 |
+
age_row = None
|
45 |
+
# Gender data in row 0
|
46 |
+
gender_row = 0
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(value: str) -> Optional[int]:
|
50 |
+
"""Convert diabetes status to binary (0: Control, 1: Diabetic)"""
|
51 |
+
if not isinstance(value, str):
|
52 |
+
return None
|
53 |
+
value = value.lower()
|
54 |
+
if 'diabetic' in value:
|
55 |
+
return 1
|
56 |
+
elif 'control' in value:
|
57 |
+
return 0
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(value: str) -> Optional[int]:
|
61 |
+
"""Convert gender to binary (0: Female, 1: Male)"""
|
62 |
+
if not isinstance(value, str):
|
63 |
+
return None
|
64 |
+
value = value.lower()
|
65 |
+
if ':' in value:
|
66 |
+
value = value.split(':')[1].strip()
|
67 |
+
if 'female' in value:
|
68 |
+
return 0
|
69 |
+
elif 'male' in value:
|
70 |
+
return 1
|
71 |
+
return None
|
72 |
+
|
73 |
+
# 3. Save Metadata
|
74 |
+
is_trait_available = trait_row is not None
|
75 |
+
validate_and_save_cohort_info(
|
76 |
+
is_final=False,
|
77 |
+
cohort=cohort,
|
78 |
+
info_path=json_path,
|
79 |
+
is_gene_available=is_gene_available,
|
80 |
+
is_trait_available=is_trait_available
|
81 |
+
)
|
82 |
+
|
83 |
+
# 4. Extract Clinical Features
|
84 |
+
if trait_row is not None:
|
85 |
+
clinical_features = geo_select_clinical_features(
|
86 |
+
clinical_df=clinical_data,
|
87 |
+
trait=trait,
|
88 |
+
trait_row=trait_row,
|
89 |
+
convert_trait=convert_trait,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender
|
92 |
+
)
|
93 |
+
|
94 |
+
# Preview the processed clinical data
|
95 |
+
preview = preview_df(clinical_features)
|
96 |
+
print("Preview of processed clinical data:", preview)
|
97 |
+
|
98 |
+
# Save clinical features
|
99 |
+
clinical_features.to_csv(out_clinical_data_file)
|
100 |
+
# Extract gene expression data from matrix file
|
101 |
+
gene_data = get_genetic_data(matrix_file)
|
102 |
+
|
103 |
+
# Print first 20 row IDs and shape of data to help debug
|
104 |
+
print("Shape of gene expression data:", gene_data.shape)
|
105 |
+
print("\nFirst few rows of data:")
|
106 |
+
print(gene_data.head())
|
107 |
+
print("\nFirst 20 gene/probe identifiers:")
|
108 |
+
print(gene_data.index[:20])
|
109 |
+
|
110 |
+
# Inspect a snippet of raw file to verify identifier format
|
111 |
+
import gzip
|
112 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
113 |
+
lines = []
|
114 |
+
for i, line in enumerate(f):
|
115 |
+
if "!series_matrix_table_begin" in line:
|
116 |
+
# Get the next 5 lines after the marker
|
117 |
+
for _ in range(5):
|
118 |
+
lines.append(next(f).strip())
|
119 |
+
break
|
120 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
121 |
+
for line in lines:
|
122 |
+
print(line)
|
123 |
+
# Looking at the identifiers ending in '_st', these are from an Affymetrix microarray platform
|
124 |
+
# and need to be mapped to human gene symbols for proper analysis
|
125 |
+
requires_gene_mapping = True
|
126 |
+
# Get file paths using library function
|
127 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
128 |
+
|
129 |
+
# Extract gene annotation by reading the SOFT file and skipping header lines
|
130 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
131 |
+
lines = []
|
132 |
+
for line in f:
|
133 |
+
if line.startswith('!platform_table_begin'):
|
134 |
+
next(f) # Skip the header line
|
135 |
+
for data_line in f:
|
136 |
+
if data_line.startswith('!platform_table_end'):
|
137 |
+
break
|
138 |
+
lines.append(data_line)
|
139 |
+
break
|
140 |
+
|
141 |
+
# Convert to DataFrame
|
142 |
+
gene_annotation = pd.read_csv(io.StringIO(''.join(lines)), sep='\t')
|
143 |
+
|
144 |
+
# Preview columns and content
|
145 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
146 |
+
print("\nColumns in annotation data:")
|
147 |
+
print(gene_annotation.columns.tolist())
|
148 |
+
|
149 |
+
# Print example rows showing probe ID and gene symbol columns
|
150 |
+
print("\nFirst 5 rows of key mapping columns:")
|
151 |
+
if 'ID' in gene_annotation.columns and 'Gene Symbol' in gene_annotation.columns:
|
152 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
153 |
+
else:
|
154 |
+
# Show all columns for the first few rows to identify mapping information
|
155 |
+
print(gene_annotation.head().to_string())
|
156 |
+
# Create clean probe ID column
|
157 |
+
gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st'
|
158 |
+
|
159 |
+
# Extract gene symbols from annotation strings
|
160 |
+
def extract_genes(annotation):
|
161 |
+
if pd.isna(annotation):
|
162 |
+
return []
|
163 |
+
parts = str(annotation).split(' // ')
|
164 |
+
# Gene symbols typically appear after accession IDs
|
165 |
+
symbols = [parts[i] for i in range(1, len(parts), 3) if i < len(parts)]
|
166 |
+
return symbols
|
167 |
+
|
168 |
+
# Create mapping dataframe with probe IDs and gene symbols
|
169 |
+
mapping_data = pd.DataFrame({
|
170 |
+
'ID': gene_annotation['ID'],
|
171 |
+
'Gene': gene_annotation.iloc[:, 7].apply(extract_genes)
|
172 |
+
})
|
173 |
+
|
174 |
+
# Apply mapping using library function
|
175 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
176 |
+
|
177 |
+
# Preview results
|
178 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
179 |
+
print("\nFirst few rows of mapped gene data:")
|
180 |
+
print(gene_data.head())
|
181 |
+
# Create clean probe ID column
|
182 |
+
gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st'
|
183 |
+
|
184 |
+
# Create mapping dataframe with probe IDs and gene symbols using extract_human_gene_symbols
|
185 |
+
mapping_data = pd.DataFrame({
|
186 |
+
'ID': gene_annotation['ID'],
|
187 |
+
'Gene': gene_annotation.iloc[:, 7].apply(extract_human_gene_symbols)
|
188 |
+
})
|
189 |
+
|
190 |
+
# Apply mapping using library function
|
191 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
192 |
+
|
193 |
+
# 1. Load clinical data and save normalized gene data
|
194 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
195 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
196 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
197 |
+
gene_data.to_csv(out_gene_data_file)
|
198 |
+
|
199 |
+
# 2. Link clinical and genetic data
|
200 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
201 |
+
|
202 |
+
# 3. Handle missing values
|
203 |
+
linked_data = handle_missing_values(linked_data, trait)
|
204 |
+
|
205 |
+
# 4. Check for biased features and remove them if needed
|
206 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
207 |
+
|
208 |
+
# 5. Validate and save cohort info
|
209 |
+
is_usable = validate_and_save_cohort_info(
|
210 |
+
is_final=True,
|
211 |
+
cohort=cohort,
|
212 |
+
info_path=json_path,
|
213 |
+
is_gene_available=True,
|
214 |
+
is_trait_available=True,
|
215 |
+
is_biased=is_biased,
|
216 |
+
df=linked_data,
|
217 |
+
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
|
218 |
+
)
|
219 |
+
|
220 |
+
# 6. Save linked data if usable
|
221 |
+
if is_usable:
|
222 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
223 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Obesity/code/GSE84046.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE84046"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE84046"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE84046.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE84046.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE84046.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# From background info, this study analyzes "whole genome gene expression changes"
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# Trait (BMI) is available in Feature 6 with screening BMI values
|
42 |
+
trait_row = 6
|
43 |
+
|
44 |
+
# Gender data is available in Feature 4
|
45 |
+
gender_row = 4
|
46 |
+
|
47 |
+
# Birth dates are given in Feature 5, can calculate age
|
48 |
+
age_row = 5
|
49 |
+
|
50 |
+
def convert_trait(val):
|
51 |
+
if not val:
|
52 |
+
return None
|
53 |
+
try:
|
54 |
+
# Extract numeric BMI value after colon
|
55 |
+
bmi = float(val.split(": ")[1])
|
56 |
+
# Convert to binary obesity status (BMI >= 30 is obese)
|
57 |
+
return 1 if bmi >= 30 else 0
|
58 |
+
except:
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_gender(val):
|
62 |
+
if not val:
|
63 |
+
return None
|
64 |
+
try:
|
65 |
+
gender = val.split(": ")[1].lower()
|
66 |
+
return 1 if gender == "male" else 0 if gender == "female" else None
|
67 |
+
except:
|
68 |
+
return None
|
69 |
+
|
70 |
+
def convert_age(val):
|
71 |
+
if not val:
|
72 |
+
return None
|
73 |
+
try:
|
74 |
+
# Extract birth year from date string
|
75 |
+
birth_year = int(val.split(": ")[1].split("-")[0])
|
76 |
+
# Study was conducted in 2012 based on accession info
|
77 |
+
study_year = 2012
|
78 |
+
return study_year - birth_year
|
79 |
+
except:
|
80 |
+
return None
|
81 |
+
|
82 |
+
# 3. Save metadata about data availability
|
83 |
+
validate_and_save_cohort_info(
|
84 |
+
is_final=False,
|
85 |
+
cohort=cohort,
|
86 |
+
info_path=json_path,
|
87 |
+
is_gene_available=is_gene_available,
|
88 |
+
is_trait_available=True
|
89 |
+
)
|
90 |
+
|
91 |
+
# 4. Extract clinical features
|
92 |
+
selected_clinical_df = geo_select_clinical_features(
|
93 |
+
clinical_df=clinical_data,
|
94 |
+
trait=trait,
|
95 |
+
trait_row=trait_row,
|
96 |
+
convert_trait=convert_trait,
|
97 |
+
age_row=age_row,
|
98 |
+
convert_age=convert_age,
|
99 |
+
gender_row=gender_row,
|
100 |
+
convert_gender=convert_gender
|
101 |
+
)
|
102 |
+
|
103 |
+
# Preview the extracted features
|
104 |
+
preview_dict = preview_df(selected_clinical_df)
|
105 |
+
print("Preview of extracted clinical features:", preview_dict)
|
106 |
+
|
107 |
+
# Save clinical data
|
108 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
109 |
+
# Extract gene expression data from matrix file
|
110 |
+
gene_data = get_genetic_data(matrix_file)
|
111 |
+
|
112 |
+
# Print first 20 row IDs and shape of data to help debug
|
113 |
+
print("Shape of gene expression data:", gene_data.shape)
|
114 |
+
print("\nFirst few rows of data:")
|
115 |
+
print(gene_data.head())
|
116 |
+
print("\nFirst 20 gene/probe identifiers:")
|
117 |
+
print(gene_data.index[:20])
|
118 |
+
|
119 |
+
# Inspect a snippet of raw file to verify identifier format
|
120 |
+
import gzip
|
121 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
122 |
+
lines = []
|
123 |
+
for i, line in enumerate(f):
|
124 |
+
if "!series_matrix_table_begin" in line:
|
125 |
+
# Get the next 5 lines after the marker
|
126 |
+
for _ in range(5):
|
127 |
+
lines.append(next(f).strip())
|
128 |
+
break
|
129 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
130 |
+
for line in lines:
|
131 |
+
print(line)
|
132 |
+
# Based on the output shown above, the gene expression data uses numeric probe IDs '7892501', '7892502', etc.
|
133 |
+
# These are microarray probe identifiers and need to be mapped to human gene symbols.
|
134 |
+
requires_gene_mapping = True
|
135 |
+
# Get file paths using library function
|
136 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
137 |
+
|
138 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
139 |
+
gene_annotation = get_gene_annotation(soft_file)
|
140 |
+
|
141 |
+
# Preview gene annotation data
|
142 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
143 |
+
print("\nGene annotation preview:")
|
144 |
+
print(preview_df(gene_annotation))
|
145 |
+
|
146 |
+
print("\nNumber of non-null values in each column:")
|
147 |
+
print(gene_annotation.count())
|
148 |
+
|
149 |
+
# Print example rows showing the mapping information columns
|
150 |
+
print("\nSample mapping columns ('ID' and gene_assignment):")
|
151 |
+
print("\nFirst 5 rows:")
|
152 |
+
print(gene_annotation[['ID', 'gene_assignment']].head().to_string())
|
153 |
+
|
154 |
+
print("\nNote: Gene mapping will use:")
|
155 |
+
print("'ID' column: Probe identifiers")
|
156 |
+
print("'gene_assignment' column: Contains gene symbol information")
|
157 |
+
# Get gene mapping from annotation data
|
158 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
|
159 |
+
|
160 |
+
# Apply gene mapping to convert probe data to gene expression data
|
161 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
162 |
+
|
163 |
+
# Preview mapped gene data
|
164 |
+
print("Shape of mapped gene expression data:", gene_data.shape)
|
165 |
+
print("\nFirst few rows of mapped data:")
|
166 |
+
print(gene_data.head())
|
167 |
+
print("\nFirst 20 gene symbols:")
|
168 |
+
print(gene_data.index[:20])
|
169 |
+
|
170 |
+
# Save mapped gene expression data
|
171 |
+
gene_data.to_csv(out_gene_data_file)
|
172 |
+
# 1. Load clinical data and save normalized gene data
|
173 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
174 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
175 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
176 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
177 |
+
gene_data.to_csv(out_gene_data_file)
|
178 |
+
|
179 |
+
# 2. Link clinical and genetic data
|
180 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
181 |
+
|
182 |
+
# 3. Handle missing values
|
183 |
+
linked_data = handle_missing_values(linked_data, trait)
|
184 |
+
|
185 |
+
# 4. Check for biased features and remove them if needed
|
186 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
187 |
+
|
188 |
+
# 5. Validate and save cohort info
|
189 |
+
is_usable = validate_and_save_cohort_info(
|
190 |
+
is_final=True,
|
191 |
+
cohort=cohort,
|
192 |
+
info_path=json_path,
|
193 |
+
is_gene_available=True,
|
194 |
+
is_trait_available=True,
|
195 |
+
is_biased=is_biased,
|
196 |
+
df=linked_data,
|
197 |
+
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
|
198 |
+
)
|
199 |
+
|
200 |
+
# 6. Save linked data if usable
|
201 |
+
if is_usable:
|
202 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
203 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Obesity/code/GSE99725.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
cohort = "GSE99725"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obesity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obesity/GSE99725"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obesity/GSE99725.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE99725.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE99725.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on Series summary mentioning "whole-genome expression profiling" from blood
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Trait (obesity) - constant since all subjects are obese
|
42 |
+
trait_row = None
|
43 |
+
|
44 |
+
# Age - not available in sample characteristics
|
45 |
+
age_row = None
|
46 |
+
|
47 |
+
# Gender - not available in sample characteristics
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(x):
|
52 |
+
# Not needed since trait data not available (constant)
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(x):
|
56 |
+
# Not needed since age data not available
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_gender(x):
|
60 |
+
# Not needed since gender data not available
|
61 |
+
return None
|
62 |
+
|
63 |
+
# 3. Save Initial Metadata
|
64 |
+
validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=False # trait_row is None
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Clinical Feature Extraction
|
73 |
+
# Skip since trait_row is None
|
74 |
+
# Extract gene expression data from matrix file
|
75 |
+
gene_data = get_genetic_data(matrix_file)
|
76 |
+
|
77 |
+
# Print first 20 row IDs and shape of data to help debug
|
78 |
+
print("Shape of gene expression data:", gene_data.shape)
|
79 |
+
print("\nFirst few rows of data:")
|
80 |
+
print(gene_data.head())
|
81 |
+
print("\nFirst 20 gene/probe identifiers:")
|
82 |
+
print(gene_data.index[:20])
|
83 |
+
|
84 |
+
# Inspect a snippet of raw file to verify identifier format
|
85 |
+
import gzip
|
86 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
87 |
+
lines = []
|
88 |
+
for i, line in enumerate(f):
|
89 |
+
if "!series_matrix_table_begin" in line:
|
90 |
+
# Get the next 5 lines after the marker
|
91 |
+
for _ in range(5):
|
92 |
+
lines.append(next(f).strip())
|
93 |
+
break
|
94 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
95 |
+
for line in lines:
|
96 |
+
print(line)
|
97 |
+
# Based on the gene identifiers starting with "A_19_" format, these are Agilent probes, not gene symbols
|
98 |
+
requires_gene_mapping = True
|
99 |
+
# Get file paths using library function
|
100 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
101 |
+
|
102 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
103 |
+
gene_annotation = get_gene_annotation(soft_file)
|
104 |
+
|
105 |
+
# Preview gene annotation data
|
106 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
107 |
+
print("\nGene annotation preview:")
|
108 |
+
print(preview_df(gene_annotation))
|
109 |
+
|
110 |
+
print("\nNumber of non-null values in each column:")
|
111 |
+
print(gene_annotation.count())
|
112 |
+
|
113 |
+
# Print example rows showing the mapping information columns
|
114 |
+
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
|
115 |
+
print("\nFirst 5 rows:")
|
116 |
+
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
|
117 |
+
|
118 |
+
print("\nNote: Gene mapping will use:")
|
119 |
+
print("'ID' column: Probe identifiers")
|
120 |
+
print("'GENE_SYMBOL' column: Contains gene symbol information")
|
121 |
+
# Extract the mapping between probe IDs and gene symbols
|
122 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
123 |
+
|
124 |
+
# Apply mapping to convert probe data to gene expression data
|
125 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
126 |
+
# Create minimal DataFrame to represent constant trait
|
127 |
+
minimal_df = pd.DataFrame({'Obesity': [1]}) # All subjects are obese
|
128 |
+
|
129 |
+
# Record that dataset is unusable due to constant trait
|
130 |
+
is_usable = validate_and_save_cohort_info(
|
131 |
+
is_final=True,
|
132 |
+
cohort=cohort,
|
133 |
+
info_path=json_path,
|
134 |
+
is_gene_available=True,
|
135 |
+
is_trait_available=False, # No variable trait data
|
136 |
+
is_biased=True, # Constant trait is maximally biased
|
137 |
+
df=minimal_df,
|
138 |
+
note="Dataset contains only obese patients (constant trait) and lacks age/gender information"
|
139 |
+
)
|
p3/preprocess/Obesity/code/TCGA.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obesity"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Obesity/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
|
15 |
+
|
16 |
+
# 1. We'll use TCGA_Breast_Cancer as obesity is a known risk factor for breast cancer
|
17 |
+
cohort = "TCGA_Breast_Cancer_(BRCA)"
|
18 |
+
cohort_dir = os.path.join(tcga_root_dir, cohort)
|
19 |
+
|
20 |
+
# 2. Get paths to clinical and genetic data files
|
21 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
22 |
+
|
23 |
+
# 3. Load the data
|
24 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
25 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
26 |
+
|
27 |
+
# 4. Print clinical data columns
|
28 |
+
print("Clinical data columns:")
|
29 |
+
print(clinical_df.columns.tolist())
|
30 |
+
|
31 |
+
# Check initial data availability
|
32 |
+
is_gene_available = len(genetic_df) > 0
|
33 |
+
is_trait_available = 'BMI' in clinical_df.columns or any('bmi' in col.lower() for col in clinical_df.columns)
|
34 |
+
|
35 |
+
# Record initial data availability
|
36 |
+
validate_and_save_cohort_info(
|
37 |
+
is_final=False,
|
38 |
+
cohort=cohort,
|
39 |
+
info_path=json_path,
|
40 |
+
is_gene_available=is_gene_available,
|
41 |
+
is_trait_available=is_trait_available
|
42 |
+
)
|
43 |
+
# 1. Identify candidate demographic columns
|
44 |
+
candidate_age_cols = ["Age_at_Initial_Pathologic_Diagnosis_nature2012", "age_at_initial_pathologic_diagnosis"]
|
45 |
+
candidate_gender_cols = ["Gender_nature2012", "gender"]
|
46 |
+
|
47 |
+
# 2. Preview the column data
|
48 |
+
# Read in clinical data directly from pre-loaded DataFrame clinical_df
|
49 |
+
age_preview = clinical_df[candidate_age_cols].head(5).to_dict(orient='list')
|
50 |
+
print("Age columns preview:", age_preview)
|
51 |
+
|
52 |
+
# Extract and preview gender columns
|
53 |
+
gender_preview = clinical_df[candidate_gender_cols].head(5).to_dict(orient='list')
|
54 |
+
print("Gender columns preview:", gender_preview)
|
55 |
+
# Select age column based on preview data - age_at_initial_pathologic_diagnosis has valid numeric values
|
56 |
+
age_col = "age_at_initial_pathologic_diagnosis"
|
57 |
+
|
58 |
+
# Select gender column based on preview data - gender has valid string values
|
59 |
+
gender_col = "gender"
|
60 |
+
|
61 |
+
# Print chosen columns
|
62 |
+
print("Selected age column:", age_col)
|
63 |
+
print("Selected gender column:", gender_col)
|
64 |
+
# 1. Extract and standardize clinical features
|
65 |
+
# Create a new dataframe to store sample ID as trait with same dimensions as genetic data
|
66 |
+
sample_df = pd.DataFrame(index=genetic_df.columns)
|
67 |
+
sample_df[trait] = -1 # Fill with invalid values since trait unavailable
|
68 |
+
clinical_features = sample_df
|
69 |
+
|
70 |
+
# Save clinical data
|
71 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
72 |
+
clinical_features.to_csv(out_clinical_data_file)
|
73 |
+
|
74 |
+
# 2. Normalize gene symbols and save
|
75 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
76 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
77 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
78 |
+
|
79 |
+
# 3. Link clinical and genetic data on sample IDs
|
80 |
+
linked_data = pd.merge(
|
81 |
+
clinical_features,
|
82 |
+
normalized_gene_df.T,
|
83 |
+
left_index=True,
|
84 |
+
right_index=True,
|
85 |
+
how='inner'
|
86 |
+
)
|
87 |
+
|
88 |
+
# 4. Handle missing values systematically
|
89 |
+
linked_data = handle_missing_values(linked_data, trait)
|
90 |
+
|
91 |
+
# 5. Check for bias in trait and demographic features
|
92 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
93 |
+
|
94 |
+
# 6. Validate data quality and save cohort info
|
95 |
+
note = "Dataset contains gene expression data but lacks obesity/BMI information in clinical data. All samples marked with invalid trait values."
|
96 |
+
is_usable = validate_and_save_cohort_info(
|
97 |
+
is_final=True,
|
98 |
+
cohort="TCGA",
|
99 |
+
info_path=json_path,
|
100 |
+
is_gene_available=True,
|
101 |
+
is_trait_available=False,
|
102 |
+
is_biased=trait_biased,
|
103 |
+
df=linked_data,
|
104 |
+
note=note
|
105 |
+
)
|
106 |
+
|
107 |
+
# 7. Skip saving linked data since trait unavailable, making dataset unusable
|
p3/preprocess/Obesity/gene_data/GSE123086.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
|
p3/preprocess/Obesity/gene_data/GSE123088.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ID,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049,GSM3495050,GSM3495051,GSM3495052,GSM3495053,GSM3495054,GSM3495055,GSM3495056,GSM3495057,GSM3495058,GSM3495059,GSM3495060,GSM3495061,GSM3495062,GSM3495063,GSM3495064,GSM3495065,GSM3495066,GSM3495067,GSM3495068,GSM3495069,GSM3495070,GSM3495071,GSM3495072,GSM3495073,GSM3495074,GSM3495075,GSM3495076,GSM3495077,GSM3495078,GSM3495079,GSM3495080,GSM3495081,GSM3495082,GSM3495083,GSM3495084,GSM3495085,GSM3495086,GSM3495087
|
p3/preprocess/Obesity/gene_data/GSE158237.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ID,GSM4795701,GSM4795702,GSM4795703,GSM4795704,GSM4795705,GSM4795706,GSM4795707,GSM4795708,GSM4795709,GSM4795710,GSM4795711,GSM4795712,GSM4795713,GSM4795714,GSM4795715,GSM4795716,GSM4795717,GSM4795718,GSM4795719,GSM4795720,GSM4795721,GSM4795722,GSM4795723,GSM4795724,GSM4795725,GSM4795726,GSM4795727,GSM4795728,GSM4795729,GSM4795730,GSM4795731,GSM4795732,GSM4795733,GSM4795734,GSM4795735,GSM4795736,GSM4795737
|
p3/preprocess/Obesity/gene_data/GSE181339.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Obesity/gene_data/GSE271700.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Obesity/gene_data/GSE281144.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM8611649,GSM8611650,GSM8611651,GSM8611652,GSM8611653,GSM8611654,GSM8611655,GSM8611656,GSM8611657,GSM8611658,GSM8611659,GSM8611660,GSM8611661,GSM8611662,GSM8611663,GSM8611664,GSM8611665,GSM8611666,GSM8611667,GSM8611668,GSM8611669,GSM8611670,GSM8611671,GSM8611672,GSM8611673,GSM8611674,GSM8611675,GSM8611676,GSM8611677,GSM8611678,GSM8611679,GSM8611680,GSM8611681,GSM8611682
|
p3/preprocess/Obesity/gene_data/GSE99725.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Obsessive-Compulsive_Disorder/GSE78104.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Obsessive-Compulsive_Disorder/clinical_data/GSE60190.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1467273,GSM1467274,GSM1467275,GSM1467276,GSM1467277,GSM1467278,GSM1467279,GSM1467280,GSM1467281,GSM1467282,GSM1467283,GSM1467284,GSM1467285,GSM1467286,GSM1467287,GSM1467288,GSM1467289,GSM1467290,GSM1467291,GSM1467292,GSM1467293,GSM1467294,GSM1467295,GSM1467296,GSM1467297,GSM1467298,GSM1467299,GSM1467300,GSM1467301,GSM1467302,GSM1467303,GSM1467304,GSM1467305,GSM1467306,GSM1467307,GSM1467308,GSM1467309,GSM1467310,GSM1467311,GSM1467312,GSM1467313,GSM1467314,GSM1467315,GSM1467316,GSM1467317,GSM1467318,GSM1467319,GSM1467320,GSM1467321,GSM1467322,GSM1467323,GSM1467324,GSM1467325,GSM1467326,GSM1467327,GSM1467328,GSM1467329,GSM1467330,GSM1467331,GSM1467332,GSM1467333,GSM1467334,GSM1467335,GSM1467336,GSM1467337,GSM1467338,GSM1467339,GSM1467340,GSM1467341,GSM1467342,GSM1467343,GSM1467344,GSM1467345,GSM1467346,GSM1467347,GSM1467348,GSM1467349,GSM1467350,GSM1467351,GSM1467352,GSM1467353,GSM1467354,GSM1467355,GSM1467356,GSM1467357,GSM1467358,GSM1467359,GSM1467360,GSM1467361,GSM1467362,GSM1467363,GSM1467364,GSM1467365,GSM1467366,GSM1467367,GSM1467368,GSM1467369,GSM1467370,GSM1467371,GSM1467372,GSM1467373,GSM1467374,GSM1467375,GSM1467376,GSM1467377,GSM1467378,GSM1467379,GSM1467380,GSM1467381,GSM1467382,GSM1467383,GSM1467384,GSM1467385,GSM1467386,GSM1467387,GSM1467388,GSM1467389,GSM1467390,GSM1467391,GSM1467392,GSM1467393,GSM1467394,GSM1467395,GSM1467396,GSM1467397,GSM1467398,GSM1467399,GSM1467400,GSM1467401,GSM1467402,GSM1467403,GSM1467404,GSM1467405
|
2 |
+
Obsessive-Compulsive_Disorder,,0.0,,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,,,0.0,,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,1.0,,,0.0,0.0,0.0,0.0,,,0.0,,1.0,,,0.0,,0.0,0.0,,0.0,,,1.0,,1.0,0.0,0.0,0.0,0.0,0.0,0.0,,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0
|
3 |
+
Age,50.421917,27.49863,30.627397,61.167123,32.69589,39.213698,58.605479,49.2,41.041095,51.750684,50.89863,26.745205,29.104109,39.301369,48.978082,57.884931,28.364383,24.041095,19.268493,27.230136,46.605479,23.443835,51.038356,39.663013,46.109589,77.989041,46.967123,63.241095,62.306849,83.641095,42.838356,51.386301,66.715068,51.939726,34.339726,50.109589,18.758904,16.649315,16.353424,42.065753,16.726027,34.465753,34.254794,47.484931,43.756164,49.210958,57.482191,46.561643,49.561643,28.589041,38.410958,30.032876,56.09041,46.915068,49.021917,71.109589,17.235616,16.583561,16.934246,16.8,18.117808,18.660273,16.69589,75.572602,59.260273,55.545205,41.778082,57.454794,45.284931,56.304109,39.654794,55.945205,38.232876,58.109589,40.021917,50.504109,36.550684,45.117808,83.545205,18.786301,48.567123,38.331506,48.101369,18.39452,60.843835,61.372602,52.038356,59.254794,41.567123,50.358904,31.558904,45.701369,44.731506,34.39726,31.613698,54.846575,84.057534,66.79452,53.323287,30.043835,55.435616,45.676712,54.334246,63.558904,45.224657,23.69589,67.865753,16.753424,18.424657,17.09041,16.183561,33.260273,54.424657,45.378082,52.523287,35.273972,22.630136,20.863013,26.531506,24.627397,53.978082,34.961643,18.731506,30.726027,63.471232,54.808219,57.512328,57.610958,44.958904,35.684931,63.0,38.780821,45.978082
|
4 |
+
Gender,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0
|
p3/preprocess/Obsessive-Compulsive_Disorder/clinical_data/GSE78104.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2067403,GSM2067404,GSM2067405,GSM2067406,GSM2067407,GSM2067408,GSM2067409,GSM2067410,GSM2067411,GSM2067412,GSM2067413,GSM2067414,GSM2067415,GSM2067416,GSM2067417,GSM2067418,GSM2067419,GSM2067420,GSM2067421,GSM2067422,GSM2067423,GSM2067424,GSM2067425,GSM2067426,GSM2067427,GSM2067428,GSM2067429,GSM2067430,GSM2067431,GSM2067432,GSM2067433,GSM2067434,GSM2067435,GSM2067436,GSM2067437,GSM2067438,GSM2067439,GSM2067440,GSM2067441,GSM2067442,GSM2067443,GSM2067444,GSM2067445,GSM2067446,GSM2067447,GSM2067448,GSM2067449,GSM2067450,GSM2067451,GSM2067452,GSM2067453,GSM2067454,GSM2067455,GSM2067456,GSM2067457,GSM2067458,GSM2067459,GSM2067460,GSM2067461,GSM2067462
|
2 |
+
Obsessive-Compulsive_Disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,25.0,23.0,18.0,26.0,27.0,19.0,22.0,27.0,18.0,25.0,16.0,35.0,16.0,16.0,32.0,18.0,15.0,43.0,36.0,17.0,45.0,40.0,35.0,28.0,27.0,31.0,23.0,35.0,60.0,59.0,24.0,23.0,18.0,27.0,27.0,20.0,21.0,27.0,20.0,24.0,18.0,35.0,17.0,18.0,32.0,18.0,18.0,44.0,37.0,17.0,43.0,40.0,32.0,28.0,27.0,30.0,24.0,35.0,56.0,56.0
|
4 |
+
Gender,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0
|
p3/preprocess/Obsessive-Compulsive_Disorder/code/GSE60190.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obsessive-Compulsive_Disorder"
|
6 |
+
cohort = "GSE60190"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder/GSE60190"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/GSE60190.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/gene_data/GSE60190.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/clinical_data/GSE60190.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obsessive-Compulsive_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes, this is gene expression data from Illumina HumanHT-12 microarray as stated in Series_overall_design
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
|
38 |
+
# 2.1 Data row identification
|
39 |
+
# For trait (OCD): Use row 3 'dx' (diagnosis) which has OCD vs Control
|
40 |
+
trait_row = 3
|
41 |
+
|
42 |
+
# For age: Available in row 5
|
43 |
+
age_row = 5
|
44 |
+
|
45 |
+
# For gender: Available in row 7 'Sex'
|
46 |
+
gender_row = 7
|
47 |
+
|
48 |
+
# 2.2 Data type conversion functions
|
49 |
+
def convert_trait(x):
|
50 |
+
"""Convert diagnosis to binary: OCD=1, Control=0"""
|
51 |
+
if pd.isna(x):
|
52 |
+
return None
|
53 |
+
value = x.split(': ')[1] if ': ' in x else x
|
54 |
+
if value == 'OCD':
|
55 |
+
return 1
|
56 |
+
elif value == 'Control':
|
57 |
+
return 0
|
58 |
+
else:
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_age(x):
|
62 |
+
"""Convert age to continuous numeric value"""
|
63 |
+
if pd.isna(x):
|
64 |
+
return None
|
65 |
+
value = x.split(': ')[1] if ': ' in x else x
|
66 |
+
try:
|
67 |
+
return float(value)
|
68 |
+
except:
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(x):
|
72 |
+
"""Convert gender to binary: M=1, F=0"""
|
73 |
+
if pd.isna(x):
|
74 |
+
return None
|
75 |
+
value = x.split(': ')[1] if ': ' in x else x
|
76 |
+
if value == 'M':
|
77 |
+
return 1
|
78 |
+
elif value == 'F':
|
79 |
+
return 0
|
80 |
+
else:
|
81 |
+
return None
|
82 |
+
|
83 |
+
# 3. Save initial metadata
|
84 |
+
is_trait_available = trait_row is not None
|
85 |
+
validate_and_save_cohort_info(
|
86 |
+
is_final=False,
|
87 |
+
cohort=cohort,
|
88 |
+
info_path=json_path,
|
89 |
+
is_gene_available=is_gene_available,
|
90 |
+
is_trait_available=is_trait_available
|
91 |
+
)
|
92 |
+
|
93 |
+
# 4. Clinical Feature Extraction
|
94 |
+
if trait_row is not None:
|
95 |
+
selected_clinical_df = geo_select_clinical_features(
|
96 |
+
clinical_df=clinical_data,
|
97 |
+
trait=trait,
|
98 |
+
trait_row=trait_row,
|
99 |
+
convert_trait=convert_trait,
|
100 |
+
age_row=age_row,
|
101 |
+
convert_age=convert_age,
|
102 |
+
gender_row=gender_row,
|
103 |
+
convert_gender=convert_gender
|
104 |
+
)
|
105 |
+
|
106 |
+
# Preview the data
|
107 |
+
print("Preview of clinical features:")
|
108 |
+
print(preview_df(selected_clinical_df))
|
109 |
+
|
110 |
+
# Save to CSV
|
111 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
112 |
+
# Get gene expression data from matrix file
|
113 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
114 |
+
|
115 |
+
# Examine data structure
|
116 |
+
print("Data structure and head:")
|
117 |
+
print(genetic_data.head())
|
118 |
+
|
119 |
+
print("\nShape:", genetic_data.shape)
|
120 |
+
|
121 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
122 |
+
print(list(genetic_data.index)[:20])
|
123 |
+
|
124 |
+
# Get a few column names to verify sample IDs
|
125 |
+
print("\nFirst 5 column names:")
|
126 |
+
print(list(genetic_data.columns)[:5])
|
127 |
+
# Identifiers starting with ILMN_ indicate these are Illumina probe IDs, not gene symbols
|
128 |
+
requires_gene_mapping = True
|
129 |
+
# Extract gene annotation data
|
130 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
131 |
+
|
132 |
+
# Display column names and preview data
|
133 |
+
print("Column names:")
|
134 |
+
print(gene_annotation.columns)
|
135 |
+
|
136 |
+
print("\nPreview of gene annotation data:")
|
137 |
+
print(preview_df(gene_annotation))
|
138 |
+
# 1. ID column stores Illumina probe IDs, Symbol column stores gene symbols
|
139 |
+
# 2. Extract mapping between probe IDs and gene symbols
|
140 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
141 |
+
|
142 |
+
# 3. Apply gene mapping to convert probe-level data to gene expression data
|
143 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
144 |
+
|
145 |
+
# Print head of resulting gene expression data
|
146 |
+
print("\nFirst few rows of gene expression data:")
|
147 |
+
print(gene_data.head())
|
148 |
+
|
149 |
+
print("\nShape:", gene_data.shape)
|
150 |
+
# Reload clinical data that was processed earlier
|
151 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
152 |
+
|
153 |
+
# 1. Normalize gene symbols
|
154 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
155 |
+
genetic_data.to_csv(out_gene_data_file)
|
156 |
+
|
157 |
+
# 2. Link clinical and genetic data
|
158 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
159 |
+
|
160 |
+
# 3. Handle missing values systematically
|
161 |
+
linked_data = handle_missing_values(linked_data, trait)
|
162 |
+
|
163 |
+
# 4. Check for bias in trait and demographic features
|
164 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
165 |
+
|
166 |
+
# 5. Final validation and information saving
|
167 |
+
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
|
168 |
+
is_usable = validate_and_save_cohort_info(
|
169 |
+
is_final=True,
|
170 |
+
cohort=cohort,
|
171 |
+
info_path=json_path,
|
172 |
+
is_gene_available=True,
|
173 |
+
is_trait_available=True,
|
174 |
+
is_biased=trait_biased,
|
175 |
+
df=linked_data,
|
176 |
+
note=note
|
177 |
+
)
|
178 |
+
|
179 |
+
# 6. Save linked data only if usable
|
180 |
+
if is_usable:
|
181 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
182 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Obsessive-Compulsive_Disorder/code/GSE78104.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obsessive-Compulsive_Disorder"
|
6 |
+
cohort = "GSE78104"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder/GSE78104"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/GSE78104.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/gene_data/GSE78104.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/clinical_data/GSE78104.csv"
|
16 |
+
json_path = "./output/preprocess/3/Obsessive-Compulsive_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes, based on the Series title and design, this dataset contains mRNA expression data
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
trait_row = 1 # disease state row contains trait info
|
39 |
+
age_row = 3 # age information available
|
40 |
+
gender_row = 2 # gender information available
|
41 |
+
|
42 |
+
# 2.2 Data Type Conversion Functions
|
43 |
+
def convert_trait(x):
|
44 |
+
# Binary: Convert OCD vs control
|
45 |
+
if not isinstance(x, str):
|
46 |
+
return None
|
47 |
+
value = x.split(': ')[-1].lower()
|
48 |
+
if 'obsessive-compulsive disorder' in value:
|
49 |
+
return 1
|
50 |
+
elif 'normal control' in value:
|
51 |
+
return 0
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(x):
|
55 |
+
# Continuous: Extract age number
|
56 |
+
if not isinstance(x, str):
|
57 |
+
return None
|
58 |
+
value = x.split(': ')[-1].lower()
|
59 |
+
if 'y' in value:
|
60 |
+
try:
|
61 |
+
return int(value.replace('y',''))
|
62 |
+
except:
|
63 |
+
return None
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_gender(x):
|
67 |
+
# Binary: Female=0, Male=1
|
68 |
+
if not isinstance(x, str):
|
69 |
+
return None
|
70 |
+
value = x.split(': ')[-1].lower()
|
71 |
+
if 'female' in value:
|
72 |
+
return 0
|
73 |
+
elif 'male' in value:
|
74 |
+
return 1
|
75 |
+
return None
|
76 |
+
|
77 |
+
# 3. Save Metadata
|
78 |
+
is_trait_available = trait_row is not None
|
79 |
+
validate_and_save_cohort_info(is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=is_trait_available)
|
84 |
+
|
85 |
+
# 4. Clinical Feature Extraction
|
86 |
+
if trait_row is not None:
|
87 |
+
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
|
88 |
+
trait=trait,
|
89 |
+
trait_row=trait_row,
|
90 |
+
convert_trait=convert_trait,
|
91 |
+
age_row=age_row,
|
92 |
+
convert_age=convert_age,
|
93 |
+
gender_row=gender_row,
|
94 |
+
convert_gender=convert_gender)
|
95 |
+
|
96 |
+
# Preview the extracted features
|
97 |
+
print("Preview of selected clinical features:")
|
98 |
+
print(preview_df(selected_clinical))
|
99 |
+
|
100 |
+
# Save clinical data
|
101 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
102 |
+
# Get gene expression data from matrix file
|
103 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
104 |
+
|
105 |
+
# Examine data structure
|
106 |
+
print("Data structure and head:")
|
107 |
+
print(genetic_data.head())
|
108 |
+
|
109 |
+
print("\nShape:", genetic_data.shape)
|
110 |
+
|
111 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
112 |
+
print(list(genetic_data.index)[:20])
|
113 |
+
|
114 |
+
# Get a few column names to verify sample IDs
|
115 |
+
print("\nFirst 5 column names:")
|
116 |
+
print(list(genetic_data.columns)[:5])
|
117 |
+
# Looking at the identifiers in the gene expression data, they appear to be Agilent probe IDs
|
118 |
+
# (starting with "A_19_") and control probes, not standard human gene symbols.
|
119 |
+
# Therefore we need to map them to gene symbols.
|
120 |
+
|
121 |
+
requires_gene_mapping = True
|
122 |
+
# Extract gene annotation data
|
123 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
124 |
+
|
125 |
+
# Display column names and preview data
|
126 |
+
print("Column names:")
|
127 |
+
print(gene_annotation.columns)
|
128 |
+
|
129 |
+
print("\nPreview of gene annotation data:")
|
130 |
+
print(preview_df(gene_annotation))
|
131 |
+
# 1. From observation:
|
132 |
+
# gene expression data uses probe IDs like "A_19_P00315459"
|
133 |
+
# gene annotation data has these IDs in the "ID" column
|
134 |
+
# gene symbols are in "GeneSymbol" column
|
135 |
+
|
136 |
+
# 2. Get gene mapping from annotation data
|
137 |
+
prob_col = 'ID'
|
138 |
+
gene_col = 'GeneSymbol'
|
139 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
140 |
+
|
141 |
+
# 3. Apply gene mapping to convert probe-level data to gene-level data
|
142 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
143 |
+
|
144 |
+
# Preview the result
|
145 |
+
print("Gene expression data shape:", gene_data.shape)
|
146 |
+
print("\nFirst few genes and their expression values:")
|
147 |
+
print(gene_data.head())
|
148 |
+
# Reload clinical data that was processed earlier
|
149 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
150 |
+
|
151 |
+
# 1. Normalize gene symbols
|
152 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
153 |
+
genetic_data.to_csv(out_gene_data_file)
|
154 |
+
|
155 |
+
# 2. Link clinical and genetic data
|
156 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
157 |
+
|
158 |
+
# 3. Handle missing values systematically
|
159 |
+
linked_data = handle_missing_values(linked_data, trait)
|
160 |
+
|
161 |
+
# 4. Check for bias in trait and demographic features
|
162 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
163 |
+
|
164 |
+
# 5. Final validation and information saving
|
165 |
+
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
|
166 |
+
is_usable = validate_and_save_cohort_info(
|
167 |
+
is_final=True,
|
168 |
+
cohort=cohort,
|
169 |
+
info_path=json_path,
|
170 |
+
is_gene_available=True,
|
171 |
+
is_trait_available=True,
|
172 |
+
is_biased=trait_biased,
|
173 |
+
df=linked_data,
|
174 |
+
note=note
|
175 |
+
)
|
176 |
+
|
177 |
+
# 6. Save linked data only if usable
|
178 |
+
if is_usable:
|
179 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
180 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Obsessive-Compulsive_Disorder/code/TCGA.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Obsessive-Compulsive_Disorder"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Obsessive-Compulsive_Disorder/cohort_info.json"
|
15 |
+
|
16 |
+
# Check for OCD-related directory in TCGA
|
17 |
+
# Since TCGA is focused on cancer, no directory is related to OCD
|
18 |
+
is_gene_available = False
|
19 |
+
is_trait_available = False
|
20 |
+
|
21 |
+
# Mark task as completed and save info about data unavailability
|
22 |
+
validate_and_save_cohort_info(
|
23 |
+
is_final=False,
|
24 |
+
cohort="TCGA",
|
25 |
+
info_path=json_path,
|
26 |
+
is_gene_available=is_gene_available,
|
27 |
+
is_trait_available=is_trait_available
|
28 |
+
)
|
p3/preprocess/Obsessive-Compulsive_Disorder/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE78104": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 60, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE60190": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 108, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
|
p3/preprocess/Obsessive-Compulsive_Disorder/gene_data/GSE78104.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Obstructive_sleep_apnea/GSE133601.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Obstructive_sleep_apnea/GSE75097.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE133601.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3912810,GSM3912811,GSM3912812,GSM3912813,GSM3912814,GSM3912815,GSM3912816,GSM3912817,GSM3912818,GSM3912819,GSM3912820,GSM3912821,GSM3912822,GSM3912823,GSM3912824,GSM3912825,GSM3912826,GSM3912827,GSM3912828,GSM3912829,GSM3912830,GSM3912831,GSM3912832,GSM3912833,GSM3912834,GSM3912835,GSM3912836,GSM3912837,GSM3912838,GSM3912839
|
2 |
+
Obstructive_sleep_apnea,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0
|
p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE49800.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1207208,GSM1207209,GSM1207210,GSM1207211,GSM1207212,GSM1207213,GSM1207214,GSM1207215,GSM1207216,GSM1207217,GSM1207218,GSM1207219,GSM1207220,GSM1207221,GSM1207222,GSM1207223,GSM1207224,GSM1207225,GSM1207226,GSM1207227,GSM1207228,GSM1207229,GSM1207230,GSM1207231,GSM1207232,GSM1207233,GSM1207234,GSM1207235,GSM1207236,GSM1207237,GSM1207238,GSM1207239,GSM1207240,GSM1207241,GSM1207242,GSM1207243
|
2 |
+
Obstructive_sleep_apnea,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0
|
p3/preprocess/Obstructive_sleep_apnea/clinical_data/GSE75097.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1942590,GSM1942591,GSM1942592,GSM1942593,GSM1942594,GSM1942595,GSM1942596,GSM1942597,GSM1942598,GSM1942599,GSM1942600,GSM1942601,GSM1942602,GSM1942603,GSM1942604,GSM1942605,GSM1942606,GSM1942607,GSM1942608,GSM1942609,GSM1942610,GSM1942611,GSM1942612,GSM1942613,GSM1942614,GSM1942615,GSM1942616,GSM1942617,GSM1942618,GSM1942619,GSM1942620,GSM1942621,GSM1942622,GSM1942623,GSM1942624,GSM1942625,GSM1942626,GSM1942627,GSM1942628,GSM1942629,GSM1942630,GSM1942631,GSM1942632,GSM1942633,GSM1942634,GSM1942635,GSM1942636,GSM1942637
|
2 |
+
Obstructive_sleep_apnea,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,54.0,31.0,44.0,60.0,21.0,50.0,52.0,58.0,42.0,34.0,58.0,37.0,60.0,59.0,27.0,57.0,68.0,53.0,58.0,52.0,36.0,38.0,50.0,44.0,58.0,54.0,43.0,59.0,44.0,46.0,36.0,59.0,49.0,59.0,68.0,61.0,38.0,45.0,35.0,57.0,42.0,44.0,47.0,50.0,54.0,50.0,47.0,38.0
|
4 |
+
Gender,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0
|