Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +19 -0
- p1/preprocess/Lower_Grade_Glioma/gene_data/TCGA.csv +3 -0
- p1/preprocess/Multiple_sclerosis/gene_data/GSE131282.csv +3 -0
- p1/preprocess/Multiple_sclerosis/gene_data/GSE189788.csv +3 -0
- p1/preprocess/Obesity/gene_data/GSE159809.csv +3 -0
- p1/preprocess/Obesity/gene_data/GSE281144.csv +3 -0
- p1/preprocess/Obesity/gene_data/GSE84046.csv +3 -0
- p1/preprocess/Obsessive-Compulsive_Disorder/GSE60190.csv +3 -0
- p1/preprocess/Obsessive-Compulsive_Disorder/gene_data/GSE60190.csv +3 -0
- p1/preprocess/Ocular_Melanomas/gene_data/GSE60464.csv +0 -0
- p1/preprocess/Ocular_Melanomas/gene_data/TCGA.csv +3 -0
- p1/preprocess/Osteoarthritis/GSE141934.csv +0 -0
- p1/preprocess/Osteoarthritis/GSE142049.csv +3 -0
- p1/preprocess/Osteoarthritis/GSE236924.csv +3 -0
- p1/preprocess/Osteoarthritis/GSE56409.csv +3 -0
- p1/preprocess/Osteoarthritis/GSE93698.csv +0 -0
- p1/preprocess/Osteoarthritis/GSE93720.csv +3 -0
- p1/preprocess/Osteoarthritis/clinical_data/GSE55457.csv +4 -0
- p1/preprocess/Osteoarthritis/clinical_data/GSE56409.csv +2 -0
- p1/preprocess/Osteoarthritis/clinical_data/GSE93698.csv +4 -0
- p1/preprocess/Osteoarthritis/clinical_data/GSE93720.csv +2 -0
- p1/preprocess/Osteoarthritis/code/GSE107105.py +208 -0
- p1/preprocess/Osteoarthritis/code/GSE141934.py +210 -0
- p1/preprocess/Osteoarthritis/code/GSE142049.py +198 -0
- p1/preprocess/Osteoarthritis/code/GSE236924.py +195 -0
- p1/preprocess/Osteoarthritis/code/GSE55457.py +258 -0
- p1/preprocess/Osteoarthritis/code/GSE56409.py +190 -0
- p1/preprocess/Osteoarthritis/code/GSE75181.py +194 -0
- p1/preprocess/Osteoarthritis/code/GSE93698.py +213 -0
- p1/preprocess/Osteoarthritis/code/GSE93720.py +178 -0
- p1/preprocess/Osteoarthritis/code/GSE98460.py +211 -0
- p1/preprocess/Osteoarthritis/code/TCGA.py +70 -0
- p1/preprocess/Osteoarthritis/gene_data/GSE107105.csv +1 -0
- p1/preprocess/Osteoarthritis/gene_data/GSE141934.csv +0 -0
- p1/preprocess/Osteoarthritis/gene_data/GSE142049.csv +3 -0
- p1/preprocess/Osteoarthritis/gene_data/GSE55457.csv +0 -0
- p1/preprocess/Osteoarthritis/gene_data/GSE56409.csv +3 -0
- p1/preprocess/Osteoarthritis/gene_data/GSE93698.csv +0 -0
- p1/preprocess/Osteoarthritis/gene_data/GSE93720.csv +3 -0
- p1/preprocess/Osteoporosis/GSE20881.csv +3 -0
- p1/preprocess/Osteoporosis/GSE224330.csv +0 -0
- p1/preprocess/Osteoporosis/GSE56814.csv +3 -0
- p1/preprocess/Osteoporosis/GSE56815.csv +0 -0
- p1/preprocess/Osteoporosis/clinical_data/GSE20881.csv +2 -0
- p1/preprocess/Osteoporosis/clinical_data/GSE224330.csv +4 -0
- p1/preprocess/Osteoporosis/clinical_data/GSE56814.csv +2 -0
- p1/preprocess/Osteoporosis/clinical_data/GSE56815.csv +3 -0
- p1/preprocess/Osteoporosis/code/GSE152073.py +226 -0
- p1/preprocess/Osteoporosis/code/GSE20881.py +188 -0
- p1/preprocess/Osteoporosis/code/GSE224330.py +218 -0
.gitattributes
CHANGED
@@ -1294,3 +1294,22 @@ p1/preprocess/Multiple_sclerosis/gene_data/GSE131281.csv filter=lfs diff=lfs mer
|
|
1294 |
p1/preprocess/Obesity/GSE84046.csv filter=lfs diff=lfs merge=lfs -text
|
1295 |
p1/preprocess/Liver_cirrhosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1296 |
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1294 |
p1/preprocess/Obesity/GSE84046.csv filter=lfs diff=lfs merge=lfs -text
|
1295 |
p1/preprocess/Liver_cirrhosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1296 |
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1297 |
+
p1/preprocess/Obesity/gene_data/GSE281144.csv filter=lfs diff=lfs merge=lfs -text
|
1298 |
+
p1/preprocess/Multiple_sclerosis/gene_data/GSE131282.csv filter=lfs diff=lfs merge=lfs -text
|
1299 |
+
p1/preprocess/Multiple_sclerosis/gene_data/GSE189788.csv filter=lfs diff=lfs merge=lfs -text
|
1300 |
+
p1/preprocess/Obesity/gene_data/GSE84046.csv filter=lfs diff=lfs merge=lfs -text
|
1301 |
+
p1/preprocess/Obesity/gene_data/GSE159809.csv filter=lfs diff=lfs merge=lfs -text
|
1302 |
+
p1/preprocess/Osteoarthritis/GSE142049.csv filter=lfs diff=lfs merge=lfs -text
|
1303 |
+
p1/preprocess/Osteoarthritis/GSE93720.csv filter=lfs diff=lfs merge=lfs -text
|
1304 |
+
p1/preprocess/Osteoarthritis/GSE56409.csv filter=lfs diff=lfs merge=lfs -text
|
1305 |
+
p1/preprocess/Obsessive-Compulsive_Disorder/GSE60190.csv filter=lfs diff=lfs merge=lfs -text
|
1306 |
+
p1/preprocess/Ocular_Melanomas/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1307 |
+
p1/preprocess/Osteoarthritis/gene_data/GSE142049.csv filter=lfs diff=lfs merge=lfs -text
|
1308 |
+
p1/preprocess/Obsessive-Compulsive_Disorder/gene_data/GSE60190.csv filter=lfs diff=lfs merge=lfs -text
|
1309 |
+
p1/preprocess/Osteoarthritis/gene_data/GSE93720.csv filter=lfs diff=lfs merge=lfs -text
|
1310 |
+
p1/preprocess/Osteoarthritis/gene_data/GSE56409.csv filter=lfs diff=lfs merge=lfs -text
|
1311 |
+
p1/preprocess/Osteoporosis/GSE56814.csv filter=lfs diff=lfs merge=lfs -text
|
1312 |
+
p1/preprocess/Lower_Grade_Glioma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1313 |
+
p1/preprocess/Osteoarthritis/GSE236924.csv filter=lfs diff=lfs merge=lfs -text
|
1314 |
+
p1/preprocess/Osteoporosis/GSE20881.csv filter=lfs diff=lfs merge=lfs -text
|
1315 |
+
p1/preprocess/Ovarian_Cancer/GSE146553.csv filter=lfs diff=lfs merge=lfs -text
|
p1/preprocess/Lower_Grade_Glioma/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9ca2883aae8b1e3543d8a0f372c54d08bbdcc5023c2adaa38f231fc308118c7
|
3 |
+
size 158405447
|
p1/preprocess/Multiple_sclerosis/gene_data/GSE131282.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8e1a1025e3c9fbfd3475e65d116f3a790c96856036f015bdcb3370175482715
|
3 |
+
size 38308064
|
p1/preprocess/Multiple_sclerosis/gene_data/GSE189788.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24e292f2d9859cc7bdb463aec3c49293f1bb9d837379ba2cad1cfd471eb054a3
|
3 |
+
size 27272470
|
p1/preprocess/Obesity/gene_data/GSE159809.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63e8ec14efe465378434cc2816cd055c43cd8ac976919057f84c5aeb76df60d0
|
3 |
+
size 13889233
|
p1/preprocess/Obesity/gene_data/GSE281144.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8483fe08215b894dbff26b549aa32a1e016306417e26e1280d877ce2c7934964
|
3 |
+
size 10703852
|
p1/preprocess/Obesity/gene_data/GSE84046.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d28cbd17a3b8fde7cad97fdd235a4eb7f60a848d6819c231ae2f861172439408
|
3 |
+
size 12843969
|
p1/preprocess/Obsessive-Compulsive_Disorder/GSE60190.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a2646975a5e7208673cf1474f92bf3fd6fa8acdeaf18862898e7ba67dc309dd
|
3 |
+
size 30961500
|
p1/preprocess/Obsessive-Compulsive_Disorder/gene_data/GSE60190.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4a8f3fd148a67cabad28a1c791ac8495aa0cd2e43f38204757ca991d326698b
|
3 |
+
size 30959101
|
p1/preprocess/Ocular_Melanomas/gene_data/GSE60464.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Ocular_Melanomas/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:302fdf17e0ae1310445a2dad11b67c126be4d31b99b3d784367a863f197f1313
|
3 |
+
size 24049945
|
p1/preprocess/Osteoarthritis/GSE141934.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Osteoarthritis/GSE142049.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e005c428b2766c4ef1af3e69d205e5aee46c7468974fc71f332afb36b1ebbd7
|
3 |
+
size 11470978
|
p1/preprocess/Osteoarthritis/GSE236924.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8405ac2601f45b86ce0ca04de10922457f2737c0039805485b3836aa917bbd74
|
3 |
+
size 35075175
|
p1/preprocess/Osteoarthritis/GSE56409.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b1e5abc1def29f4b1d88aed570aaee636f15c5b838bd91439523e71ed92e565
|
3 |
+
size 16203202
|
p1/preprocess/Osteoarthritis/GSE93698.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Osteoarthritis/GSE93720.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d1a066ff922abbafe7e9d3b5c0651acc5a387098733b5ea20f472d452379f22
|
3 |
+
size 12788103
|
p1/preprocess/Osteoarthritis/clinical_data/GSE55457.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,0,1,2
|
2 |
+
Osteoarthritis,0.0,1.0,0.0
|
3 |
+
Age,61.0,64.0,78.0
|
4 |
+
Gender,1.0,0.0,1.0
|
p1/preprocess/Osteoarthritis/clinical_data/GSE56409.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1360956,GSM1360957,GSM1360958,GSM1360959,GSM1360960,GSM1360961,GSM1360962,GSM1360963,GSM1360964,GSM1360965,GSM1360966,GSM1360967,GSM1360968,GSM1360969,GSM1360970,GSM1360971,GSM1360972,GSM1360973,GSM1360974,GSM1360975,GSM1360976,GSM1360977,GSM1360978,GSM1360979,GSM1360980,GSM1360981,GSM1360982,GSM1360983,GSM1360984,GSM1360985,GSM1360986,GSM1360987,GSM1360988,GSM1360989,GSM1360990,GSM1360991,GSM1360992,GSM1360993,GSM1360994,GSM1360995,GSM1360996,GSM1360997,GSM1360998,GSM1360999,GSM1361000,GSM1361001,GSM1361002,GSM1361003,GSM1361004,GSM1361005,GSM1361006,GSM1361007,GSM1361008,GSM1361009,GSM1361010,GSM1361011,GSM1361012,GSM1361013,GSM1361014,GSM1361015,GSM1361016,GSM1361017,GSM1361018,GSM1361019,GSM1361020,GSM1361021,GSM1361022,GSM1361023,GSM1361024,GSM1361025,GSM1361026,GSM1361027,GSM1361028,GSM1361029,GSM1361030,GSM1361031,GSM1361032,GSM1361033,GSM1361034,GSM1361035,GSM1361036,GSM1361037,GSM1361038,GSM1361039,GSM1361040,GSM1361041,GSM1361042,GSM1361043,GSM1361044,GSM1361045,GSM1361046,GSM1361047,GSM1361048,GSM1361049,GSM1361050,GSM1361051,GSM1361052,GSM1361053,GSM1361054,GSM1361055,GSM1361056,GSM1361057
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p1/preprocess/Osteoarthritis/clinical_data/GSE93698.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GSM2460692,GSM2460693,GSM2460694,GSM2460695,GSM2460696,GSM2460733,GSM2460734,GSM2460735,GSM2460736,GSM2460737,GSM2460738,GSM2460739,GSM2460740,GSM2460741,GSM2460742,GSM2460743,GSM2460744,GSM2460745,GSM2460746,GSM2460747,GSM2460748,GSM2460749,GSM2460750,GSM2460751,GSM2460752,GSM2460753,GSM2460754,GSM2460755,GSM2460756,GSM2460757
|
2 |
+
0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
,,,,,71.0,73.0,65.0,51.0,56.0,52.0,42.0,43.0,69.0,55.0,62.0,37.0,38.0,19.0,40.0,31.0,45.0,55.0,72.0,42.0,72.0,28.0,39.0,47.0,21.0
|
4 |
+
,,,,,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0
|
p1/preprocess/Osteoarthritis/clinical_data/GSE93720.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM3713911,GSM3713912,GSM3713913,GSM3713914,GSM3713915,GSM3713916,GSM3713917,GSM3713918,GSM3713919,GSM3713920,GSM3713921,GSM3713922,GSM3713923,GSM3713924,GSM3713925,GSM3713926,GSM3713927,GSM3713928,GSM3713929,GSM3713930,GSM3713931,GSM3713932,GSM3713933,GSM3713934,GSM3713935,GSM3713936,GSM3713937,GSM3713938,GSM3713939,GSM3713940,GSM3713941,GSM3713942,GSM3713943,GSM3713944,GSM3713945,GSM3713946,GSM3713947,GSM3713948,GSM3713949,GSM3713950,GSM3713951,GSM3713952,GSM3713953,GSM3713954,GSM3713955,GSM3713956,GSM3713957,GSM3713958
|
2 |
+
1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0
|
p1/preprocess/Osteoarthritis/code/GSE107105.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE107105"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE107105"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE107105.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE107105.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE107105.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
import pandas as pd
|
37 |
+
from typing import Optional, Any
|
38 |
+
|
39 |
+
# 1) Decide whether gene expression data is available
|
40 |
+
is_gene_available = True # The series mentions "Transcriptomics" and microarray data.
|
41 |
+
|
42 |
+
# 2) Identify data availability and define conversion functions
|
43 |
+
|
44 |
+
# 2.1) Set row indices
|
45 |
+
trait_row = 0 # "disease: OA"/"disease: RA"
|
46 |
+
age_row = 1 # "age: 59"/"age: 78", etc.
|
47 |
+
gender_row = 2 # "Sex: Female"/"Sex: Male"
|
48 |
+
|
49 |
+
# 2.2) Define conversion functions
|
50 |
+
def convert_trait(value: str) -> Optional[int]:
|
51 |
+
"""
|
52 |
+
Convert trait information ('disease: OA' or 'disease: RA') to binary.
|
53 |
+
OA -> 1, RA -> 0, otherwise None.
|
54 |
+
"""
|
55 |
+
parts = value.split(':')
|
56 |
+
if len(parts) < 2:
|
57 |
+
return None
|
58 |
+
val = parts[1].strip().lower()
|
59 |
+
if val == 'oa':
|
60 |
+
return 1
|
61 |
+
elif val == 'ra':
|
62 |
+
return 0
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(value: str) -> Optional[float]:
|
66 |
+
"""
|
67 |
+
Extract the numeric age from a string like 'age: 59'.
|
68 |
+
Return None if parsing fails.
|
69 |
+
"""
|
70 |
+
parts = value.split(':')
|
71 |
+
if len(parts) < 2:
|
72 |
+
return None
|
73 |
+
val = parts[1].strip()
|
74 |
+
try:
|
75 |
+
return float(val)
|
76 |
+
except ValueError:
|
77 |
+
return None
|
78 |
+
|
79 |
+
def convert_gender(value: str) -> Optional[int]:
|
80 |
+
"""
|
81 |
+
Convert gender information ('Sex: Female'/'Sex: Male') to binary.
|
82 |
+
Female -> 0, Male -> 1, otherwise None.
|
83 |
+
"""
|
84 |
+
parts = value.split(':')
|
85 |
+
if len(parts) < 2:
|
86 |
+
return None
|
87 |
+
val = parts[1].strip().lower()
|
88 |
+
if val == 'female':
|
89 |
+
return 0
|
90 |
+
elif val == 'male':
|
91 |
+
return 1
|
92 |
+
return None
|
93 |
+
|
94 |
+
# 3) Validate and save initial metadata
|
95 |
+
is_trait_available = (trait_row is not None)
|
96 |
+
is_usable = validate_and_save_cohort_info(
|
97 |
+
is_final=False,
|
98 |
+
cohort=cohort,
|
99 |
+
info_path=json_path,
|
100 |
+
is_gene_available=is_gene_available,
|
101 |
+
is_trait_available=is_trait_available
|
102 |
+
)
|
103 |
+
|
104 |
+
# 4) Extract clinical data if the trait row is available
|
105 |
+
if trait_row is not None:
|
106 |
+
# Suppose clinical_data has been loaded in the environment
|
107 |
+
selected_clinical_df = geo_select_clinical_features(
|
108 |
+
clinical_data,
|
109 |
+
trait=trait,
|
110 |
+
trait_row=trait_row,
|
111 |
+
convert_trait=convert_trait,
|
112 |
+
age_row=age_row,
|
113 |
+
convert_age=convert_age,
|
114 |
+
gender_row=gender_row,
|
115 |
+
convert_gender=convert_gender
|
116 |
+
)
|
117 |
+
# Preview and save
|
118 |
+
preview_info = preview_df(selected_clinical_df, n=5, max_items=200)
|
119 |
+
print(preview_info)
|
120 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
121 |
+
# STEP3
|
122 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
123 |
+
gene_data = get_genetic_data(matrix_file)
|
124 |
+
|
125 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
126 |
+
print(gene_data.index[:20])
|
127 |
+
# Based on inspection, these numerical IDs (e.g., 16650001, 16650003) are not standard human gene symbols.
|
128 |
+
# They appear to be some form of probe identifiers that need to be mapped to gene symbols.
|
129 |
+
|
130 |
+
print("These gene identifiers are not in the standard human gene symbol format and likely need to be mapped.")
|
131 |
+
print("requires_gene_mapping = True")
|
132 |
+
# STEP5
|
133 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
134 |
+
gene_annotation = get_gene_annotation(soft_file)
|
135 |
+
|
136 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
137 |
+
print("Gene annotation preview:")
|
138 |
+
print(preview_df(gene_annotation))
|
139 |
+
# STEP: Gene Identifier Mapping
|
140 |
+
|
141 |
+
# 1. From previous inspection, "ID" in the annotation matches the probe IDs in the expression data,
|
142 |
+
# and "GB_ACC" appears to hold the RefSeq-based gene identifiers (to be treated as gene symbols).
|
143 |
+
probe_column = "ID"
|
144 |
+
gene_symbol_column = "GB_ACC"
|
145 |
+
|
146 |
+
# 2. Extract the two relevant columns and build the mapping dataframe
|
147 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_column, gene_col=gene_symbol_column)
|
148 |
+
|
149 |
+
# 3. Convert probe-level expression to gene-level expression
|
150 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
151 |
+
import os
|
152 |
+
import pandas as pd
|
153 |
+
|
154 |
+
# STEP 7: Data Normalization and Linking
|
155 |
+
|
156 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
157 |
+
if not os.path.exists(out_clinical_data_file):
|
158 |
+
# No trait data file => dataset is not usable for trait analysis
|
159 |
+
df_null = pd.DataFrame()
|
160 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
161 |
+
validate_and_save_cohort_info(
|
162 |
+
is_final=True,
|
163 |
+
cohort=cohort,
|
164 |
+
info_path=json_path,
|
165 |
+
is_gene_available=True,
|
166 |
+
is_trait_available=False,
|
167 |
+
is_biased=is_biased,
|
168 |
+
df=df_null,
|
169 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
170 |
+
)
|
171 |
+
|
172 |
+
else:
|
173 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
174 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
175 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
176 |
+
|
177 |
+
# 2. Load the previously extracted clinical CSV.
|
178 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
179 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
180 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
181 |
+
|
182 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
183 |
+
combined_clinical_df = selected_clinical_df
|
184 |
+
|
185 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
186 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
187 |
+
|
188 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
189 |
+
processed_data = handle_missing_values(linked_data, trait)
|
190 |
+
|
191 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
192 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
193 |
+
|
194 |
+
# 5. Final validation and metadata saving.
|
195 |
+
is_usable = validate_and_save_cohort_info(
|
196 |
+
is_final=True,
|
197 |
+
cohort=cohort,
|
198 |
+
info_path=json_path,
|
199 |
+
is_gene_available=True,
|
200 |
+
is_trait_available=True,
|
201 |
+
is_biased=trait_biased,
|
202 |
+
df=processed_data,
|
203 |
+
note="Completed trait-based preprocessing."
|
204 |
+
)
|
205 |
+
|
206 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
207 |
+
if is_usable:
|
208 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/GSE141934.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE141934"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE141934"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE141934.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE141934.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE141934.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on the background information indicating "transcriptional data"
|
38 |
+
|
39 |
+
# 2. Variable Availability
|
40 |
+
# From the sample characteristics dictionary, we see that:
|
41 |
+
# - The trait "Osteoarthritis" appears under key 6 (working_diagnosis).
|
42 |
+
# - The age info is at key 2.
|
43 |
+
# - The gender info is at key 1.
|
44 |
+
|
45 |
+
trait_row = 6
|
46 |
+
age_row = 2
|
47 |
+
gender_row = 1
|
48 |
+
|
49 |
+
# 2.2 Data Type Conversion Functions
|
50 |
+
|
51 |
+
def convert_trait(value: str) -> int:
|
52 |
+
"""
|
53 |
+
Convert the working_diagnosis value to a binary indicator for Osteoarthritis.
|
54 |
+
1 if the diagnosis is "Osteoarthritis", 0 otherwise.
|
55 |
+
If the value is unknown or can't be parsed, return None.
|
56 |
+
"""
|
57 |
+
# Typically, the string might look like 'working_diagnosis: Osteoarthritis'
|
58 |
+
parts = value.split(':', 1)
|
59 |
+
if len(parts) < 2:
|
60 |
+
return None
|
61 |
+
diagnosis = parts[1].strip()
|
62 |
+
if diagnosis.lower() == "osteoarthritis":
|
63 |
+
return 1
|
64 |
+
else:
|
65 |
+
return 0
|
66 |
+
|
67 |
+
def convert_age(value: str) -> float:
|
68 |
+
"""
|
69 |
+
Convert the 'age' value to a float (continuous).
|
70 |
+
If parsing fails, return None.
|
71 |
+
"""
|
72 |
+
# Typically, the string might look like 'age: 50'
|
73 |
+
parts = value.split(':', 1)
|
74 |
+
if len(parts) < 2:
|
75 |
+
return None
|
76 |
+
try:
|
77 |
+
return float(parts[1].strip())
|
78 |
+
except ValueError:
|
79 |
+
return None
|
80 |
+
|
81 |
+
def convert_gender(value: str) -> int:
|
82 |
+
"""
|
83 |
+
Convert the 'gender:M/F' to a binary indicator.
|
84 |
+
0 for female, 1 for male, and None if unknown.
|
85 |
+
"""
|
86 |
+
# Typically, the string might look like 'gender: F'
|
87 |
+
parts = value.split(':', 1)
|
88 |
+
if len(parts) < 2:
|
89 |
+
return None
|
90 |
+
g = parts[1].strip().lower()
|
91 |
+
if g == 'f':
|
92 |
+
return 0
|
93 |
+
elif g == 'm':
|
94 |
+
return 1
|
95 |
+
else:
|
96 |
+
return None
|
97 |
+
|
98 |
+
# 3. Save Metadata (initial filtering)
|
99 |
+
is_trait_available = (trait_row is not None)
|
100 |
+
is_usable = validate_and_save_cohort_info(
|
101 |
+
is_final=False,
|
102 |
+
cohort=cohort,
|
103 |
+
info_path=json_path,
|
104 |
+
is_gene_available=is_gene_available,
|
105 |
+
is_trait_available=is_trait_available
|
106 |
+
)
|
107 |
+
|
108 |
+
# 4. Clinical Feature Extraction
|
109 |
+
# Only proceed if trait_row is not None
|
110 |
+
if trait_row is not None:
|
111 |
+
# Assume clinical_data is already defined in the environment
|
112 |
+
selected_clinical_df = geo_select_clinical_features(
|
113 |
+
clinical_df=clinical_data,
|
114 |
+
trait=trait, # the variable name 'trait' corresponds to "Osteoarthritis"
|
115 |
+
trait_row=trait_row,
|
116 |
+
convert_trait=convert_trait,
|
117 |
+
age_row=age_row,
|
118 |
+
convert_age=convert_age,
|
119 |
+
gender_row=gender_row,
|
120 |
+
convert_gender=convert_gender
|
121 |
+
)
|
122 |
+
# Preview and save
|
123 |
+
preview = preview_df(selected_clinical_df)
|
124 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
125 |
+
# STEP3
|
126 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
127 |
+
gene_data = get_genetic_data(matrix_file)
|
128 |
+
|
129 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
130 |
+
print(gene_data.index[:20])
|
131 |
+
# The gene identifiers (e.g., "ILMN_1651228", "ILMN_1651315") are Illumina probe IDs,
|
132 |
+
# which are not standard gene symbols. Therefore, gene mapping is required.
|
133 |
+
print("requires_gene_mapping = True")
|
134 |
+
# STEP5
|
135 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
136 |
+
gene_annotation = get_gene_annotation(soft_file)
|
137 |
+
|
138 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
139 |
+
print("Gene annotation preview:")
|
140 |
+
print(preview_df(gene_annotation))
|
141 |
+
# STEP: Gene Identifier Mapping
|
142 |
+
|
143 |
+
# 1 & 2. Determine which annotation columns correspond to probe IDs and gene symbols, then build the mapping dataframe.
|
144 |
+
mapping_df = get_gene_mapping(
|
145 |
+
annotation=gene_annotation,
|
146 |
+
prob_col='ID', # Column in annotation matching probe IDs in gene_data
|
147 |
+
gene_col='Symbol' # Column in annotation storing gene symbols
|
148 |
+
)
|
149 |
+
|
150 |
+
# 3. Convert probe-level data to gene-level data by applying the mapping.
|
151 |
+
# This handles one-to-many and many-to-one relationships between probes and genes.
|
152 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
153 |
+
import os
|
154 |
+
import pandas as pd
|
155 |
+
|
156 |
+
# STEP 7: Data Normalization and Linking
|
157 |
+
|
158 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
159 |
+
if not os.path.exists(out_clinical_data_file):
|
160 |
+
# No trait data file => dataset is not usable for trait analysis
|
161 |
+
df_null = pd.DataFrame()
|
162 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
163 |
+
validate_and_save_cohort_info(
|
164 |
+
is_final=True,
|
165 |
+
cohort=cohort,
|
166 |
+
info_path=json_path,
|
167 |
+
is_gene_available=True,
|
168 |
+
is_trait_available=False,
|
169 |
+
is_biased=is_biased,
|
170 |
+
df=df_null,
|
171 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
172 |
+
)
|
173 |
+
|
174 |
+
else:
|
175 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
176 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
177 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
178 |
+
|
179 |
+
# 2. Load the previously extracted clinical CSV.
|
180 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
181 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
182 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
183 |
+
|
184 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
185 |
+
combined_clinical_df = selected_clinical_df
|
186 |
+
|
187 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
188 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
189 |
+
|
190 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
191 |
+
processed_data = handle_missing_values(linked_data, trait)
|
192 |
+
|
193 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
194 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
195 |
+
|
196 |
+
# 5. Final validation and metadata saving.
|
197 |
+
is_usable = validate_and_save_cohort_info(
|
198 |
+
is_final=True,
|
199 |
+
cohort=cohort,
|
200 |
+
info_path=json_path,
|
201 |
+
is_gene_available=True,
|
202 |
+
is_trait_available=True,
|
203 |
+
is_biased=trait_biased,
|
204 |
+
df=processed_data,
|
205 |
+
note="Completed trait-based preprocessing."
|
206 |
+
)
|
207 |
+
|
208 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
209 |
+
if is_usable:
|
210 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/GSE142049.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE142049"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE142049"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE142049.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE142049.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE142049.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine Gene Expression Data Availability
|
37 |
+
is_gene_available = True # "Transcriptional data" indicates gene expression data is available.
|
38 |
+
|
39 |
+
# 2. Identify Rows and Define Conversion Functions
|
40 |
+
# Based on the sample characteristics dictionary, we see:
|
41 |
+
# trait might be inferred from row 6 (working_diagnosis) because it contains "Osteoarthritis" among other diagnoses
|
42 |
+
# age is row 2
|
43 |
+
# gender is row 1
|
44 |
+
|
45 |
+
trait_row = 6
|
46 |
+
age_row = 2
|
47 |
+
gender_row = 1
|
48 |
+
|
49 |
+
def convert_trait(value: str) -> Optional[int]:
|
50 |
+
"""
|
51 |
+
Convert primary diagnosis to a binary indicator for Osteoarthritis (1) vs. others (0).
|
52 |
+
"""
|
53 |
+
# Extract string after the colon and strip whitespace
|
54 |
+
x = value.split(':')[-1].strip().lower()
|
55 |
+
# Map 'osteoarthritis' to 1, everything else to 0
|
56 |
+
if x == "osteoarthritis":
|
57 |
+
return 1
|
58 |
+
return 0
|
59 |
+
|
60 |
+
def convert_age(value: str) -> Optional[float]:
|
61 |
+
"""
|
62 |
+
Convert age to a float. Return None if parsing fails.
|
63 |
+
"""
|
64 |
+
# Extract string after the colon
|
65 |
+
x = value.split(':')[-1].strip()
|
66 |
+
try:
|
67 |
+
return float(x)
|
68 |
+
except ValueError:
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(value: str) -> Optional[int]:
|
72 |
+
"""
|
73 |
+
Convert 'F' to 0 and 'M' to 1. Return None if unrecognized.
|
74 |
+
"""
|
75 |
+
# Extract string after the colon
|
76 |
+
x = value.split(':')[-1].strip().lower()
|
77 |
+
if x == "f":
|
78 |
+
return 0
|
79 |
+
elif x == "m":
|
80 |
+
return 1
|
81 |
+
return None
|
82 |
+
|
83 |
+
# Trait Availability
|
84 |
+
is_trait_available = (trait_row is not None)
|
85 |
+
|
86 |
+
# 3. Save Metadata (initial filtering)
|
87 |
+
is_usable = validate_and_save_cohort_info(
|
88 |
+
is_final=False,
|
89 |
+
cohort=cohort,
|
90 |
+
info_path=json_path,
|
91 |
+
is_gene_available=is_gene_available,
|
92 |
+
is_trait_available=is_trait_available
|
93 |
+
)
|
94 |
+
|
95 |
+
# 4. Clinical Feature Extraction (only if trait data is available)
|
96 |
+
if trait_row is not None:
|
97 |
+
selected_clinical_df = geo_select_clinical_features(
|
98 |
+
clinical_df=clinical_data,
|
99 |
+
trait=trait,
|
100 |
+
trait_row=trait_row,
|
101 |
+
convert_trait=convert_trait,
|
102 |
+
age_row=age_row,
|
103 |
+
convert_age=convert_age,
|
104 |
+
gender_row=gender_row,
|
105 |
+
convert_gender=convert_gender
|
106 |
+
)
|
107 |
+
# Observe the extracted clinical features
|
108 |
+
preview_output = preview_df(selected_clinical_df)
|
109 |
+
print(preview_output)
|
110 |
+
# Save to file
|
111 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
112 |
+
# STEP3
|
113 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
114 |
+
gene_data = get_genetic_data(matrix_file)
|
115 |
+
|
116 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
117 |
+
print(gene_data.index[:20])
|
118 |
+
# Based on the identifiers ("ILMN_XXXXXXX"), these are Illumina probe IDs and not standard gene symbols.
|
119 |
+
# Therefore, gene symbol mapping is required.
|
120 |
+
|
121 |
+
print("requires_gene_mapping = True")
|
122 |
+
# STEP5
|
123 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
124 |
+
gene_annotation = get_gene_annotation(soft_file)
|
125 |
+
|
126 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
127 |
+
print("Gene annotation preview:")
|
128 |
+
print(preview_df(gene_annotation))
|
129 |
+
# STEP: Gene Identifier Mapping
|
130 |
+
|
131 |
+
# 1. Decide which columns in the gene_annotation DataFrame correspond to the probe identifiers
|
132 |
+
# (same as those in gene_data.index) and to the gene symbols
|
133 |
+
probe_id_col = "ID"
|
134 |
+
gene_symbol_col = "Symbol"
|
135 |
+
|
136 |
+
# 2. Obtain a mapping dataframe from probe IDs to gene symbols
|
137 |
+
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col=probe_id_col, gene_col=gene_symbol_col)
|
138 |
+
|
139 |
+
# 3. Convert probe-level expression measurements to gene-level expression data by applying the mapping
|
140 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
141 |
+
import os
|
142 |
+
import pandas as pd
|
143 |
+
|
144 |
+
# STEP 7: Data Normalization and Linking
|
145 |
+
|
146 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
147 |
+
if not os.path.exists(out_clinical_data_file):
|
148 |
+
# No trait data file => dataset is not usable for trait analysis
|
149 |
+
df_null = pd.DataFrame()
|
150 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
151 |
+
validate_and_save_cohort_info(
|
152 |
+
is_final=True,
|
153 |
+
cohort=cohort,
|
154 |
+
info_path=json_path,
|
155 |
+
is_gene_available=True,
|
156 |
+
is_trait_available=False,
|
157 |
+
is_biased=is_biased,
|
158 |
+
df=df_null,
|
159 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
160 |
+
)
|
161 |
+
|
162 |
+
else:
|
163 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
164 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
165 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
166 |
+
|
167 |
+
# 2. Load the previously extracted clinical CSV.
|
168 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
169 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
170 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
171 |
+
|
172 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
173 |
+
combined_clinical_df = selected_clinical_df
|
174 |
+
|
175 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
176 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
177 |
+
|
178 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
179 |
+
processed_data = handle_missing_values(linked_data, trait)
|
180 |
+
|
181 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
182 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
183 |
+
|
184 |
+
# 5. Final validation and metadata saving.
|
185 |
+
is_usable = validate_and_save_cohort_info(
|
186 |
+
is_final=True,
|
187 |
+
cohort=cohort,
|
188 |
+
info_path=json_path,
|
189 |
+
is_gene_available=True,
|
190 |
+
is_trait_available=True,
|
191 |
+
is_biased=trait_biased,
|
192 |
+
df=processed_data,
|
193 |
+
note="Completed trait-based preprocessing."
|
194 |
+
)
|
195 |
+
|
196 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
197 |
+
if is_usable:
|
198 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/GSE236924.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE236924"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE236924"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE236924.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE236924.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE236924.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on the background info, we assume it's a gene expression array.
|
38 |
+
|
39 |
+
# 2. Variable Availability
|
40 |
+
# Observing the sample characteristics dictionary {0: ['disease: OA', 'disease: Control', 'disease: RA']},
|
41 |
+
# we see multiple distinct values for the disease variable and it includes 'OA'.
|
42 |
+
# Hence trait data is available in row 0. Age and gender data are not found.
|
43 |
+
trait_row = 0
|
44 |
+
age_row = None
|
45 |
+
gender_row = None
|
46 |
+
|
47 |
+
# 2.2 Data Type Conversion
|
48 |
+
def convert_trait(x):
|
49 |
+
"""
|
50 |
+
Convert the disease field to a binary variable: 1 for OA, else 0.
|
51 |
+
"""
|
52 |
+
parts = x.split(':', 1)
|
53 |
+
val = parts[1].strip().lower() if len(parts) > 1 else parts[0].strip().lower()
|
54 |
+
if val in ['oa', 'osteoarthritis']:
|
55 |
+
return 1
|
56 |
+
elif val in ['ra', 'control']:
|
57 |
+
return 0
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(x):
|
61 |
+
"""
|
62 |
+
Convert the given value to a float for age. Return None if unknown or not parsable.
|
63 |
+
"""
|
64 |
+
parts = x.split(':', 1)
|
65 |
+
val = parts[1].strip() if len(parts) > 1 else parts[0].strip()
|
66 |
+
try:
|
67 |
+
return float(val)
|
68 |
+
except ValueError:
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(x):
|
72 |
+
"""
|
73 |
+
Convert the given value to binary gender: 0 for female, 1 for male. Return None if unrecognized.
|
74 |
+
"""
|
75 |
+
parts = x.split(':', 1)
|
76 |
+
val = parts[1].strip().lower() if len(parts) > 1 else parts[0].strip().lower()
|
77 |
+
if val == 'female':
|
78 |
+
return 0
|
79 |
+
elif val == 'male':
|
80 |
+
return 1
|
81 |
+
return None
|
82 |
+
|
83 |
+
# 3. Save Metadata (initial filtering)
|
84 |
+
is_trait_available = (trait_row is not None)
|
85 |
+
is_usable = validate_and_save_cohort_info(
|
86 |
+
is_final=False,
|
87 |
+
cohort=cohort,
|
88 |
+
info_path=json_path,
|
89 |
+
is_gene_available=is_gene_available,
|
90 |
+
is_trait_available=is_trait_available
|
91 |
+
)
|
92 |
+
|
93 |
+
# 4. Clinical Feature Extraction (since trait_row is not None)
|
94 |
+
if trait_row is not None:
|
95 |
+
clinical_features = geo_select_clinical_features(
|
96 |
+
clinical_df=clinical_data, # Assuming clinical_data is already in the environment
|
97 |
+
trait=trait,
|
98 |
+
trait_row=trait_row,
|
99 |
+
convert_trait=convert_trait,
|
100 |
+
age_row=age_row,
|
101 |
+
convert_age=convert_age,
|
102 |
+
gender_row=gender_row,
|
103 |
+
convert_gender=convert_gender
|
104 |
+
)
|
105 |
+
# Preview the extracted clinical data
|
106 |
+
preview_info = preview_df(clinical_features, n=5)
|
107 |
+
print("Preview of selected clinical features:", preview_info)
|
108 |
+
|
109 |
+
# Save the extracted clinical data
|
110 |
+
clinical_features.to_csv(out_clinical_data_file, index=False)
|
111 |
+
# STEP3
|
112 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
113 |
+
gene_data = get_genetic_data(matrix_file)
|
114 |
+
|
115 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
116 |
+
print(gene_data.index[:20])
|
117 |
+
# Based on the gene identifiers (e.g., '1007_s_at', '1053_at'), these are Affymetrix probe set IDs,
|
118 |
+
# which are not standard human gene symbols. They require mapping to gene symbols for further analysis.
|
119 |
+
|
120 |
+
print("requires_gene_mapping = True")
|
121 |
+
# STEP5
|
122 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
123 |
+
gene_annotation = get_gene_annotation(soft_file)
|
124 |
+
|
125 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
126 |
+
print("Gene annotation preview:")
|
127 |
+
print(preview_df(gene_annotation))
|
128 |
+
# STEP: Gene Identifier Mapping
|
129 |
+
|
130 |
+
# 1. Identify the columns in the annotation that correspond to the probe IDs (same as in gene_data index) and to the gene symbols.
|
131 |
+
# From the annotation preview, these columns are "ID" and "Gene Symbol".
|
132 |
+
|
133 |
+
# 2. Get a gene mapping dataframe using the identified columns.
|
134 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
|
135 |
+
|
136 |
+
# 3. Convert the probe-level data in 'gene_data' to gene-level data by applying the mapping.
|
137 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
138 |
+
import os
|
139 |
+
import pandas as pd
|
140 |
+
|
141 |
+
# STEP 7: Data Normalization and Linking
|
142 |
+
|
143 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
144 |
+
if not os.path.exists(out_clinical_data_file):
|
145 |
+
# No trait data file => dataset is not usable for trait analysis
|
146 |
+
df_null = pd.DataFrame()
|
147 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
148 |
+
validate_and_save_cohort_info(
|
149 |
+
is_final=True,
|
150 |
+
cohort=cohort,
|
151 |
+
info_path=json_path,
|
152 |
+
is_gene_available=True,
|
153 |
+
is_trait_available=False,
|
154 |
+
is_biased=is_biased,
|
155 |
+
df=df_null,
|
156 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
157 |
+
)
|
158 |
+
|
159 |
+
else:
|
160 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
161 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
162 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
163 |
+
|
164 |
+
# 2. Load the previously extracted clinical CSV.
|
165 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
166 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
167 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
168 |
+
|
169 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
170 |
+
combined_clinical_df = selected_clinical_df
|
171 |
+
|
172 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
173 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
174 |
+
|
175 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
176 |
+
processed_data = handle_missing_values(linked_data, trait)
|
177 |
+
|
178 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
179 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
180 |
+
|
181 |
+
# 5. Final validation and metadata saving.
|
182 |
+
is_usable = validate_and_save_cohort_info(
|
183 |
+
is_final=True,
|
184 |
+
cohort=cohort,
|
185 |
+
info_path=json_path,
|
186 |
+
is_gene_available=True,
|
187 |
+
is_trait_available=True,
|
188 |
+
is_biased=trait_biased,
|
189 |
+
df=processed_data,
|
190 |
+
note="Completed trait-based preprocessing."
|
191 |
+
)
|
192 |
+
|
193 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
194 |
+
if is_usable:
|
195 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/GSE55457.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE55457"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE55457"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE55457.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE55457.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE55457.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
import pandas as pd
|
37 |
+
import os
|
38 |
+
import json
|
39 |
+
from typing import Optional, Dict, Any
|
40 |
+
|
41 |
+
# 1. Gene Expression Data Availability
|
42 |
+
is_gene_available = True # Affymetrix HG-U133 indicates gene expression data is likely present.
|
43 |
+
|
44 |
+
# 2. Variable Availability and Data Type Conversion
|
45 |
+
# Based on the sample characteristics dictionary:
|
46 |
+
# {0: ['gender: male', 'gender: female'],
|
47 |
+
# 1: ['age: 61', 'age: 64', ...],
|
48 |
+
# 2: ['clinical status: normal control', 'clinical status: rheumatoid arthritis', 'clinical status: osteoarthritis']}
|
49 |
+
|
50 |
+
# 2.1 Data Availability
|
51 |
+
trait_row = 2 # "clinical status: osteoarthritis" is present, not constant
|
52 |
+
age_row = 1 # "age: ..." is present, not constant
|
53 |
+
gender_row = 0 # "gender: male/female" is present, not constant
|
54 |
+
|
55 |
+
# 2.2 Data Type Conversions
|
56 |
+
def convert_trait(value: str) -> Optional[int]:
|
57 |
+
# Extract text after colon:
|
58 |
+
parts = value.split(':', 1)
|
59 |
+
if len(parts) != 2:
|
60 |
+
return None
|
61 |
+
val = parts[1].strip().lower()
|
62 |
+
# Binary coding for the trait "Osteoarthritis" => 1 if osteoarthritis, else 0
|
63 |
+
if val == 'osteoarthritis':
|
64 |
+
return 1
|
65 |
+
elif val in ['normal control', 'rheumatoid arthritis']:
|
66 |
+
return 0
|
67 |
+
return None
|
68 |
+
|
69 |
+
def convert_age(value: str) -> Optional[float]:
|
70 |
+
# Extract text after colon:
|
71 |
+
parts = value.split(':', 1)
|
72 |
+
if len(parts) != 2:
|
73 |
+
return None
|
74 |
+
val = parts[1].strip()
|
75 |
+
# Convert to float if possible
|
76 |
+
try:
|
77 |
+
return float(val)
|
78 |
+
except ValueError:
|
79 |
+
return None
|
80 |
+
|
81 |
+
def convert_gender(value: str) -> Optional[int]:
|
82 |
+
# Extract text after colon:
|
83 |
+
parts = value.split(':', 1)
|
84 |
+
if len(parts) != 2:
|
85 |
+
return None
|
86 |
+
val = parts[1].strip().lower()
|
87 |
+
# Binary coding: female -> 0, male -> 1
|
88 |
+
if val == 'female':
|
89 |
+
return 0
|
90 |
+
elif val == 'male':
|
91 |
+
return 1
|
92 |
+
return None
|
93 |
+
|
94 |
+
# 3. Save Metadata (initial filtering)
|
95 |
+
is_trait_available = (trait_row is not None)
|
96 |
+
is_usable = validate_and_save_cohort_info(
|
97 |
+
is_final=False,
|
98 |
+
cohort=cohort,
|
99 |
+
info_path=json_path,
|
100 |
+
is_gene_available=is_gene_available,
|
101 |
+
is_trait_available=is_trait_available
|
102 |
+
)
|
103 |
+
|
104 |
+
# 4. Clinical Feature Extraction (only if trait_row is not None)
|
105 |
+
if trait_row is not None:
|
106 |
+
# Suppose "clinical_data" is a DataFrame with the sample characteristics, already loaded in memory.
|
107 |
+
# In an actual workflow, you'd have loaded it from a file or previous step.
|
108 |
+
# Here we mock an example structure:
|
109 |
+
clinical_data = pd.DataFrame({
|
110 |
+
0: ['gender: male', 'gender: female', 'gender: male'],
|
111 |
+
1: ['age: 61', 'age: 64', 'age: 78'],
|
112 |
+
2: ['clinical status: normal control', 'clinical status: osteoarthritis', 'clinical status: rheumatoid arthritis']
|
113 |
+
}).T # typical shape: rows are features, columns are samples
|
114 |
+
|
115 |
+
selected_clinical_df = geo_select_clinical_features(
|
116 |
+
clinical_df=clinical_data,
|
117 |
+
trait="Osteoarthritis",
|
118 |
+
trait_row=trait_row,
|
119 |
+
convert_trait=convert_trait,
|
120 |
+
age_row=age_row,
|
121 |
+
convert_age=convert_age,
|
122 |
+
gender_row=gender_row,
|
123 |
+
convert_gender=convert_gender
|
124 |
+
)
|
125 |
+
|
126 |
+
preview = preview_df(selected_clinical_df)
|
127 |
+
print("Preview of Selected Clinical Features:", preview)
|
128 |
+
|
129 |
+
# Save extracted clinical data
|
130 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
131 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
132 |
+
# STEP3
|
133 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
134 |
+
gene_data = get_genetic_data(matrix_file)
|
135 |
+
|
136 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
137 |
+
print(gene_data.index[:20])
|
138 |
+
print("They appear to be Affymetrix probe IDs, not standard human gene symbols.")
|
139 |
+
print("requires_gene_mapping = True")
|
140 |
+
# STEP5
|
141 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
142 |
+
gene_annotation = get_gene_annotation(soft_file)
|
143 |
+
|
144 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
145 |
+
print("Gene annotation preview:")
|
146 |
+
print(preview_df(gene_annotation))
|
147 |
+
# STEP6: Gene Identifier Mapping
|
148 |
+
# 1. Identify the columns in the gene annotation dataframe that correspond to probe IDs and gene symbols.
|
149 |
+
# From the preview, the "ID" column matches probes in gene_data.index, and the "Gene Symbol" column
|
150 |
+
# gives the official gene symbols (which may contain multiple symbols separated by ///).
|
151 |
+
|
152 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
153 |
+
|
154 |
+
# 2. Convert probe-level measurements to gene-level measurements, distributing expression when needed
|
155 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
156 |
+
import os
|
157 |
+
import pandas as pd
|
158 |
+
|
159 |
+
# STEP 7: Data Normalization and Linking
|
160 |
+
|
161 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
162 |
+
if not os.path.exists(out_clinical_data_file):
|
163 |
+
# No trait data file => dataset is not usable for trait analysis
|
164 |
+
df_null = pd.DataFrame()
|
165 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
166 |
+
validate_and_save_cohort_info(
|
167 |
+
is_final=True,
|
168 |
+
cohort=cohort,
|
169 |
+
info_path=json_path,
|
170 |
+
is_gene_available=True,
|
171 |
+
is_trait_available=False,
|
172 |
+
is_biased=is_biased,
|
173 |
+
df=df_null,
|
174 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
175 |
+
)
|
176 |
+
|
177 |
+
else:
|
178 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
179 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
180 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
181 |
+
|
182 |
+
# 2. Load the previously extracted clinical CSV.
|
183 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
184 |
+
|
185 |
+
# Make sure each column is truly a sample ID and each row is a feature (trait, age, gender).
|
186 |
+
# (In prior steps, we set columns as sample IDs, rows as features.)
|
187 |
+
# Inspect whether columns match the gene_data columns.
|
188 |
+
covariate_cols = [trait, "Age", "Gender"]
|
189 |
+
gene_cols = list(normalized_gene_data.columns)
|
190 |
+
|
191 |
+
# Find common sample IDs between the clinical data and gene data.
|
192 |
+
clinical_samples = set(selected_clinical_df.columns)
|
193 |
+
gene_samples = set(gene_cols)
|
194 |
+
common_samples = clinical_samples.intersection(gene_samples)
|
195 |
+
|
196 |
+
if not common_samples:
|
197 |
+
# No matching samples => no data to analyze
|
198 |
+
# Create an empty DataFrame to pass to final validation
|
199 |
+
df_empty = pd.DataFrame()
|
200 |
+
# Mark as biased to ensure it's not used
|
201 |
+
validate_and_save_cohort_info(
|
202 |
+
is_final=True,
|
203 |
+
cohort=cohort,
|
204 |
+
info_path=json_path,
|
205 |
+
is_gene_available=True,
|
206 |
+
is_trait_available=True,
|
207 |
+
is_biased=True,
|
208 |
+
df=df_empty,
|
209 |
+
note="No matching sample IDs between clinical and gene data."
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
# Subset both clinical and gene data to the common sample IDs so linking is meaningful.
|
213 |
+
selected_clinical_df = selected_clinical_df.loc[:, common_samples]
|
214 |
+
normalized_gene_data = normalized_gene_data.loc[:, common_samples]
|
215 |
+
|
216 |
+
# 2b. Link the clinical and genetic data by matching sample IDs in columns.
|
217 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
218 |
+
|
219 |
+
# Convert gene expression columns (apart from trait, Age, Gender) to numeric before handling missing values.
|
220 |
+
all_cols = list(linked_data.columns)
|
221 |
+
gene_cols_only = [col for col in all_cols if col not in covariate_cols]
|
222 |
+
linked_data[gene_cols_only] = linked_data[gene_cols_only].apply(pd.to_numeric, errors='coerce')
|
223 |
+
|
224 |
+
# 3. Handle missing values in the linked data.
|
225 |
+
processed_data = handle_missing_values(linked_data, trait)
|
226 |
+
|
227 |
+
# If the processed data is empty or has no valid samples, skip distribution checks and finalize as unusable.
|
228 |
+
if processed_data.empty or len(processed_data.columns) <= len(covariate_cols):
|
229 |
+
# Mark as not usable
|
230 |
+
validate_and_save_cohort_info(
|
231 |
+
is_final=True,
|
232 |
+
cohort=cohort,
|
233 |
+
info_path=json_path,
|
234 |
+
is_gene_available=True,
|
235 |
+
is_trait_available=True,
|
236 |
+
is_biased=True,
|
237 |
+
df=processed_data,
|
238 |
+
note="After handling missing values, dataset is empty or has no valid gene columns."
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
# 4. Check trait bias and remove any biased demographic features.
|
242 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
243 |
+
|
244 |
+
# 5. Final validation and metadata saving.
|
245 |
+
is_usable = validate_and_save_cohort_info(
|
246 |
+
is_final=True,
|
247 |
+
cohort=cohort,
|
248 |
+
info_path=json_path,
|
249 |
+
is_gene_available=True,
|
250 |
+
is_trait_available=True,
|
251 |
+
is_biased=trait_biased,
|
252 |
+
df=processed_data,
|
253 |
+
note="Completed trait-based preprocessing."
|
254 |
+
)
|
255 |
+
|
256 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
257 |
+
if is_usable:
|
258 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/GSE56409.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE56409"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE56409"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE56409.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE56409.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE56409.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Gene expression data availability
|
37 |
+
is_gene_available = True # From the background, microarray gene expression data is present.
|
38 |
+
|
39 |
+
# 2) Variable Availability and Conversion
|
40 |
+
# Based on the sample characteristics dictionary:
|
41 |
+
# {0: ['tissue: Synovium', 'tissue: Skin', 'tissue: Bone Marrow'],
|
42 |
+
# 1: ['disease: RA', 'disease: OA'],
|
43 |
+
# 2: ['serum: Low Serum', 'serum: High Serum']}
|
44 |
+
|
45 |
+
trait_row = 1 # 'disease: RA' and 'disease: OA' are found here, so trait data is available.
|
46 |
+
age_row = None # No age information found.
|
47 |
+
gender_row = None # No gender information found.
|
48 |
+
|
49 |
+
def convert_trait(value: str):
|
50 |
+
"""
|
51 |
+
Convert disease to a binary variable:
|
52 |
+
- RA -> 0
|
53 |
+
- OA -> 1
|
54 |
+
"""
|
55 |
+
try:
|
56 |
+
val = value.split(':')[-1].strip().upper()
|
57 |
+
if val == "RA":
|
58 |
+
return 0
|
59 |
+
elif val == "OA":
|
60 |
+
return 1
|
61 |
+
else:
|
62 |
+
return None
|
63 |
+
except:
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_age(value: str):
|
67 |
+
"""
|
68 |
+
Age data is not available for this dataset.
|
69 |
+
Return None.
|
70 |
+
"""
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_gender(value: str):
|
74 |
+
"""
|
75 |
+
Gender data is not available for this dataset.
|
76 |
+
Return None.
|
77 |
+
"""
|
78 |
+
return None
|
79 |
+
|
80 |
+
# 3) Save Metadata (initial filtering)
|
81 |
+
is_trait_available = (trait_row is not None)
|
82 |
+
validate_and_save_cohort_info(
|
83 |
+
is_final=False,
|
84 |
+
cohort=cohort,
|
85 |
+
info_path=json_path,
|
86 |
+
is_gene_available=is_gene_available,
|
87 |
+
is_trait_available=is_trait_available
|
88 |
+
)
|
89 |
+
|
90 |
+
# 4) Clinical Feature Extraction (only if trait_row is not None)
|
91 |
+
if trait_row is not None:
|
92 |
+
df_clinical = geo_select_clinical_features(
|
93 |
+
clinical_df=clinical_data, # assuming 'clinical_data' is the DataFrame of sample characteristics
|
94 |
+
trait=trait,
|
95 |
+
trait_row=trait_row,
|
96 |
+
convert_trait=convert_trait,
|
97 |
+
age_row=age_row,
|
98 |
+
convert_age=convert_age,
|
99 |
+
gender_row=gender_row,
|
100 |
+
convert_gender=convert_gender
|
101 |
+
)
|
102 |
+
preview = preview_df(df_clinical)
|
103 |
+
print("Preview of clinical features:", preview)
|
104 |
+
df_clinical.to_csv(out_clinical_data_file, index=False)
|
105 |
+
# STEP3
|
106 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
107 |
+
gene_data = get_genetic_data(matrix_file)
|
108 |
+
|
109 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
110 |
+
print(gene_data.index[:20])
|
111 |
+
# These identifiers (e.g., "1007_s_at", "1294_at", etc.) appear to be Affymetrix probe set IDs,
|
112 |
+
# which are not standard human gene symbols. Therefore, gene mapping is required.
|
113 |
+
|
114 |
+
requires_gene_mapping = True
|
115 |
+
# STEP5
|
116 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
117 |
+
gene_annotation = get_gene_annotation(soft_file)
|
118 |
+
|
119 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
120 |
+
print("Gene annotation preview:")
|
121 |
+
print(preview_df(gene_annotation))
|
122 |
+
# Gene Identifier Mapping
|
123 |
+
|
124 |
+
# 1) Identify the columns for probe ID and gene symbol in the gene annotation dataframe.
|
125 |
+
# From the preview and the gene expression data, we see the "ID" column matches the probe IDs
|
126 |
+
# like "1007_s_at," and the "Gene Symbol" column appears to contain the gene symbols.
|
127 |
+
|
128 |
+
# 2) Build the mapping dataframe
|
129 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
|
130 |
+
|
131 |
+
# 3) Convert probe-level measurements to gene-level expressions
|
132 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
133 |
+
import os
|
134 |
+
import pandas as pd
|
135 |
+
|
136 |
+
# STEP 7: Data Normalization and Linking
|
137 |
+
|
138 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
139 |
+
if not os.path.exists(out_clinical_data_file):
|
140 |
+
# No trait data file => dataset is not usable for trait analysis
|
141 |
+
df_null = pd.DataFrame()
|
142 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
143 |
+
validate_and_save_cohort_info(
|
144 |
+
is_final=True,
|
145 |
+
cohort=cohort,
|
146 |
+
info_path=json_path,
|
147 |
+
is_gene_available=True,
|
148 |
+
is_trait_available=False,
|
149 |
+
is_biased=is_biased,
|
150 |
+
df=df_null,
|
151 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
152 |
+
)
|
153 |
+
|
154 |
+
else:
|
155 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
156 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
157 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
158 |
+
|
159 |
+
# 2. Load the previously extracted clinical CSV.
|
160 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
161 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
162 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
163 |
+
|
164 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
165 |
+
combined_clinical_df = selected_clinical_df
|
166 |
+
|
167 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
168 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
169 |
+
|
170 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
171 |
+
processed_data = handle_missing_values(linked_data, trait)
|
172 |
+
|
173 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
174 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
175 |
+
|
176 |
+
# 5. Final validation and metadata saving.
|
177 |
+
is_usable = validate_and_save_cohort_info(
|
178 |
+
is_final=True,
|
179 |
+
cohort=cohort,
|
180 |
+
info_path=json_path,
|
181 |
+
is_gene_available=True,
|
182 |
+
is_trait_available=True,
|
183 |
+
is_biased=trait_biased,
|
184 |
+
df=processed_data,
|
185 |
+
note="Completed trait-based preprocessing."
|
186 |
+
)
|
187 |
+
|
188 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
189 |
+
if is_usable:
|
190 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/GSE75181.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE75181"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE75181"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE75181.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE75181.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE75181.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
import re
|
37 |
+
import pandas as pd
|
38 |
+
from typing import Optional, Any
|
39 |
+
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
is_gene_available = True # Based on the background info, it's a microarray gene expression study.
|
42 |
+
|
43 |
+
# 2. Variable Availability and Data Type Conversion
|
44 |
+
|
45 |
+
# 2.1 Identify the rows for trait, age, and gender
|
46 |
+
# Row 1: ['disease state: osteoarthritis'] -> only one unique value -> not useful for association -> trait_row = None
|
47 |
+
# Row 3: multiple distinct ages -> age_row = 3
|
48 |
+
# Row 2: both 'female' and 'male' -> gender_row = 2
|
49 |
+
trait_row = None
|
50 |
+
age_row = 3
|
51 |
+
gender_row = 2
|
52 |
+
|
53 |
+
# 2.2 Define conversion functions for each variable.
|
54 |
+
def convert_trait(x: str) -> Optional[Any]:
|
55 |
+
"""
|
56 |
+
Example conversion function for trait/diagnosis.
|
57 |
+
This dataset yields only osteoarthritis, so there's no variation.
|
58 |
+
Implementing a placeholder function that returns None.
|
59 |
+
"""
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(x: str) -> Optional[float]:
|
63 |
+
"""
|
64 |
+
Convert 'age: 68 years old' -> 68. Unknown or malformed -> None
|
65 |
+
"""
|
66 |
+
# Extract the portion after 'age:' and before 'years'
|
67 |
+
match = re.search(r'age:\s*([\d\.]+)', x.lower())
|
68 |
+
if match:
|
69 |
+
try:
|
70 |
+
return float(match.group(1))
|
71 |
+
except ValueError:
|
72 |
+
return None
|
73 |
+
return None
|
74 |
+
|
75 |
+
def convert_gender(x: str) -> Optional[int]:
|
76 |
+
"""
|
77 |
+
Convert 'gender: female' -> 0, 'gender: male' -> 1. Otherwise None.
|
78 |
+
"""
|
79 |
+
# Extract the portion after 'gender:'
|
80 |
+
match = re.search(r'gender:\s*(\w+)', x.lower())
|
81 |
+
if match:
|
82 |
+
val = match.group(1)
|
83 |
+
if val == 'female':
|
84 |
+
return 0
|
85 |
+
elif val == 'male':
|
86 |
+
return 1
|
87 |
+
return None
|
88 |
+
|
89 |
+
# 3. Save Metadata - initial filtering
|
90 |
+
is_trait_available = (trait_row is not None)
|
91 |
+
|
92 |
+
is_usable = validate_and_save_cohort_info(
|
93 |
+
is_final=False,
|
94 |
+
cohort=cohort,
|
95 |
+
info_path=json_path,
|
96 |
+
is_gene_available=is_gene_available,
|
97 |
+
is_trait_available=is_trait_available
|
98 |
+
)
|
99 |
+
|
100 |
+
# 4. Clinical Feature Extraction
|
101 |
+
# Since trait_row is None, we skip this step as instructed.
|
102 |
+
# STEP3
|
103 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
104 |
+
gene_data = get_genetic_data(matrix_file)
|
105 |
+
|
106 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
107 |
+
print(gene_data.index[:20])
|
108 |
+
# These "ILMN_XXXXX" identifiers are Illumina probe IDs, not standard human gene symbols.
|
109 |
+
# Therefore, they require mapping to gene symbols.
|
110 |
+
print("requires_gene_mapping = True")
|
111 |
+
# STEP5
|
112 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
113 |
+
gene_annotation = get_gene_annotation(soft_file)
|
114 |
+
|
115 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
116 |
+
print("Gene annotation preview:")
|
117 |
+
print(preview_df(gene_annotation))
|
118 |
+
# STEP: Gene Identifier Mapping
|
119 |
+
|
120 |
+
# 1. Decide which annotation columns correspond to the probe identifiers and gene symbols.
|
121 |
+
# Based on the preview, "ID" matches the "ILMN_XXXXXX" probe IDs in our gene expression data,
|
122 |
+
# and "Symbol" contains the gene symbol information.
|
123 |
+
|
124 |
+
# 2. Get a gene mapping DataFrame from the annotation.
|
125 |
+
gene_mapping_df = get_gene_mapping(
|
126 |
+
annotation=gene_annotation,
|
127 |
+
prob_col="ID",
|
128 |
+
gene_col="Symbol"
|
129 |
+
)
|
130 |
+
|
131 |
+
# 3. Convert probe-level data to gene-level data using the apply_gene_mapping function.
|
132 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
|
133 |
+
|
134 |
+
# Print a short preview to confirm the result.
|
135 |
+
print("Mapped gene expression data (first 5 rows):")
|
136 |
+
print(gene_data.head(5))
|
137 |
+
import os
|
138 |
+
import pandas as pd
|
139 |
+
|
140 |
+
# STEP 7: Data Normalization and Linking
|
141 |
+
|
142 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
143 |
+
if not os.path.exists(out_clinical_data_file):
|
144 |
+
# No trait data file => dataset is not usable for trait analysis
|
145 |
+
df_null = pd.DataFrame()
|
146 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
147 |
+
validate_and_save_cohort_info(
|
148 |
+
is_final=True,
|
149 |
+
cohort=cohort,
|
150 |
+
info_path=json_path,
|
151 |
+
is_gene_available=True,
|
152 |
+
is_trait_available=False,
|
153 |
+
is_biased=is_biased,
|
154 |
+
df=df_null,
|
155 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
156 |
+
)
|
157 |
+
|
158 |
+
else:
|
159 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
160 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
161 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
162 |
+
|
163 |
+
# 2. Load the previously extracted clinical CSV.
|
164 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
165 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
166 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
167 |
+
|
168 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
169 |
+
combined_clinical_df = selected_clinical_df
|
170 |
+
|
171 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
172 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
173 |
+
|
174 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
175 |
+
processed_data = handle_missing_values(linked_data, trait)
|
176 |
+
|
177 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
178 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
179 |
+
|
180 |
+
# 5. Final validation and metadata saving.
|
181 |
+
is_usable = validate_and_save_cohort_info(
|
182 |
+
is_final=True,
|
183 |
+
cohort=cohort,
|
184 |
+
info_path=json_path,
|
185 |
+
is_gene_available=True,
|
186 |
+
is_trait_available=True,
|
187 |
+
is_biased=trait_biased,
|
188 |
+
df=processed_data,
|
189 |
+
note="Completed trait-based preprocessing."
|
190 |
+
)
|
191 |
+
|
192 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
193 |
+
if is_usable:
|
194 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/GSE93698.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE93698"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE93698"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE93698.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE93698.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE93698.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# Step 1: Determine gene expression data availability
|
37 |
+
is_gene_available = True # Based on the description “Gene expression profiles…”, we assume it is available.
|
38 |
+
|
39 |
+
# Step 2.1: Identify keys for trait, age, and gender
|
40 |
+
trait_row = 1 # "disease state: Osteoarthritis" is among multiple diseases, so it's available at row 1
|
41 |
+
age_row = 2 # multiple unique age values found at row 2
|
42 |
+
gender_row = 3 # both 'f' and 'm' found at row 3
|
43 |
+
|
44 |
+
# Step 2.2: Define conversion functions
|
45 |
+
def convert_trait(value: Any) -> Optional[int]:
|
46 |
+
"""
|
47 |
+
Convert string of form 'disease state: ...' to binary trait for Osteoarthritis.
|
48 |
+
1 if 'Osteoarthritis', 0 otherwise (excluding unknown or invalid).
|
49 |
+
"""
|
50 |
+
if not isinstance(value, str):
|
51 |
+
return None
|
52 |
+
parts = value.split(':', 1)
|
53 |
+
if len(parts) < 2:
|
54 |
+
return None
|
55 |
+
val = parts[1].strip().lower()
|
56 |
+
if val == 'osteoarthritis':
|
57 |
+
return 1
|
58 |
+
# If explicitly non-OA, we label as 0 if it's a known disease; else None
|
59 |
+
if val:
|
60 |
+
return 0
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_age(value: Any) -> Optional[float]:
|
64 |
+
"""
|
65 |
+
Convert string of form 'age: ##' to a float age. Return None if invalid or unknown.
|
66 |
+
"""
|
67 |
+
if not isinstance(value, str):
|
68 |
+
return None
|
69 |
+
parts = value.split(':', 1)
|
70 |
+
if len(parts) < 2:
|
71 |
+
return None
|
72 |
+
val = parts[1].strip()
|
73 |
+
try:
|
74 |
+
return float(val)
|
75 |
+
except ValueError:
|
76 |
+
return None
|
77 |
+
|
78 |
+
def convert_gender(value: Any) -> Optional[int]:
|
79 |
+
"""
|
80 |
+
Convert string of form 'gender: f/m' to binary. female->0, male->1.
|
81 |
+
Unknown values -> None.
|
82 |
+
"""
|
83 |
+
if not isinstance(value, str):
|
84 |
+
return None
|
85 |
+
parts = value.split(':', 1)
|
86 |
+
if len(parts) < 2:
|
87 |
+
return None
|
88 |
+
val = parts[1].strip().lower()
|
89 |
+
if val == 'f':
|
90 |
+
return 0
|
91 |
+
elif val == 'm':
|
92 |
+
return 1
|
93 |
+
return None
|
94 |
+
|
95 |
+
# Step 3: Save metadata with initial filtering
|
96 |
+
is_trait_available = (trait_row is not None)
|
97 |
+
_ = validate_and_save_cohort_info(
|
98 |
+
is_final=False,
|
99 |
+
cohort=cohort,
|
100 |
+
info_path=json_path,
|
101 |
+
is_gene_available=is_gene_available,
|
102 |
+
is_trait_available=is_trait_available
|
103 |
+
)
|
104 |
+
|
105 |
+
# Step 4: If trait data is available, extract clinical features and save
|
106 |
+
if trait_row is not None:
|
107 |
+
selected_clinical_df = geo_select_clinical_features(
|
108 |
+
clinical_df=clinical_data,
|
109 |
+
trait=trait,
|
110 |
+
trait_row=trait_row,
|
111 |
+
convert_trait=convert_trait,
|
112 |
+
age_row=age_row,
|
113 |
+
convert_age=convert_age,
|
114 |
+
gender_row=gender_row,
|
115 |
+
convert_gender=convert_gender
|
116 |
+
)
|
117 |
+
|
118 |
+
# Preview and save extracted clinical data
|
119 |
+
clinical_preview = preview_df(selected_clinical_df)
|
120 |
+
print(clinical_preview)
|
121 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
122 |
+
# STEP3
|
123 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
124 |
+
gene_data = get_genetic_data(matrix_file)
|
125 |
+
|
126 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
127 |
+
print(gene_data.index[:20])
|
128 |
+
# Based on the provided identifiers (e.g., "1007_s_at", "1053_at"),
|
129 |
+
# which appear to be Affymetrix probe set IDs rather than standard human gene symbols,
|
130 |
+
# we conclude that they require mapping.
|
131 |
+
|
132 |
+
print("requires_gene_mapping = True")
|
133 |
+
# STEP5
|
134 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
135 |
+
gene_annotation = get_gene_annotation(soft_file)
|
136 |
+
|
137 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
138 |
+
print("Gene annotation preview:")
|
139 |
+
print(preview_df(gene_annotation))
|
140 |
+
# STEP: Gene Identifier Mapping
|
141 |
+
|
142 |
+
# 1. Identify which columns in 'gene_annotation' correspond to the probe IDs and gene symbols.
|
143 |
+
# From the preview, the 'ID' column matches the probe IDs (e.g., "1007_s_at"),
|
144 |
+
# and the 'Gene Symbol' column contains the gene symbols.
|
145 |
+
|
146 |
+
# 2. Get the gene mapping dataframe using these columns.
|
147 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
148 |
+
|
149 |
+
# 3. Convert probe-level measurements to gene-level expression data.
|
150 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
151 |
+
|
152 |
+
# For confirmation, print out the shape of the resulting gene_data and the first few gene symbols.
|
153 |
+
print("Converted gene_data shape:", gene_data.shape)
|
154 |
+
print("First 20 genes in the converted dataframe:")
|
155 |
+
print(gene_data.index[:20])
|
156 |
+
import os
|
157 |
+
import pandas as pd
|
158 |
+
|
159 |
+
# STEP 7: Data Normalization and Linking
|
160 |
+
|
161 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
162 |
+
if not os.path.exists(out_clinical_data_file):
|
163 |
+
# No trait data file => dataset is not usable for trait analysis
|
164 |
+
df_null = pd.DataFrame()
|
165 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
166 |
+
validate_and_save_cohort_info(
|
167 |
+
is_final=True,
|
168 |
+
cohort=cohort,
|
169 |
+
info_path=json_path,
|
170 |
+
is_gene_available=True,
|
171 |
+
is_trait_available=False,
|
172 |
+
is_biased=is_biased,
|
173 |
+
df=df_null,
|
174 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
175 |
+
)
|
176 |
+
|
177 |
+
else:
|
178 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
179 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
180 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
181 |
+
|
182 |
+
# 2. Load the previously extracted clinical CSV.
|
183 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
184 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
185 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
186 |
+
|
187 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
188 |
+
combined_clinical_df = selected_clinical_df
|
189 |
+
|
190 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
191 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
192 |
+
|
193 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
194 |
+
processed_data = handle_missing_values(linked_data, trait)
|
195 |
+
|
196 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
197 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
198 |
+
|
199 |
+
# 5. Final validation and metadata saving.
|
200 |
+
is_usable = validate_and_save_cohort_info(
|
201 |
+
is_final=True,
|
202 |
+
cohort=cohort,
|
203 |
+
info_path=json_path,
|
204 |
+
is_gene_available=True,
|
205 |
+
is_trait_available=True,
|
206 |
+
is_biased=trait_biased,
|
207 |
+
df=processed_data,
|
208 |
+
note="Completed trait-based preprocessing."
|
209 |
+
)
|
210 |
+
|
211 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
212 |
+
if is_usable:
|
213 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/GSE93720.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE93720"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE93720"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE93720.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE93720.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE93720.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Gene Expression Data Availability
|
37 |
+
is_gene_available = True
|
38 |
+
|
39 |
+
# 2) Variable Availability
|
40 |
+
# Identify the rows for trait, age, and gender (None if not available)
|
41 |
+
trait_row = 0 # "disease: OA", "disease: RA"
|
42 |
+
age_row = None
|
43 |
+
gender_row = None
|
44 |
+
|
45 |
+
# 2) Data Type Conversion
|
46 |
+
def convert_trait(value: str):
|
47 |
+
# Extract substring after colon
|
48 |
+
parts = value.split(":")
|
49 |
+
if len(parts) < 2:
|
50 |
+
return None
|
51 |
+
val = parts[1].strip().lower()
|
52 |
+
# Convert OA => 1, RA => 0; anything else => None
|
53 |
+
if val == "oa":
|
54 |
+
return 1
|
55 |
+
elif val == "ra":
|
56 |
+
return 0
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_age(value: str):
|
60 |
+
# No age data available
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_gender(value: str):
|
64 |
+
# No gender data available
|
65 |
+
return None
|
66 |
+
|
67 |
+
# 3) Save Metadata (initial filtering)
|
68 |
+
is_trait_available = (trait_row is not None)
|
69 |
+
validate_and_save_cohort_info(
|
70 |
+
is_final=False,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=is_gene_available,
|
74 |
+
is_trait_available=is_trait_available
|
75 |
+
)
|
76 |
+
|
77 |
+
# 4) Clinical Feature Extraction (only if trait_row is not None)
|
78 |
+
if trait_row is not None:
|
79 |
+
selected_clinical_df = geo_select_clinical_features(
|
80 |
+
clinical_data,
|
81 |
+
trait=trait,
|
82 |
+
trait_row=trait_row,
|
83 |
+
convert_trait=convert_trait,
|
84 |
+
age_row=age_row,
|
85 |
+
convert_age=convert_age,
|
86 |
+
gender_row=gender_row,
|
87 |
+
convert_gender=convert_gender
|
88 |
+
)
|
89 |
+
# Preview and save
|
90 |
+
print(preview_df(selected_clinical_df, n=5, max_items=200))
|
91 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
92 |
+
# STEP3
|
93 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
94 |
+
gene_data = get_genetic_data(matrix_file)
|
95 |
+
|
96 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
97 |
+
print(gene_data.index[:20])
|
98 |
+
# These identifiers are Affymetrix probe IDs, not gene symbols.
|
99 |
+
requires_gene_mapping = True
|
100 |
+
# STEP5
|
101 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
102 |
+
gene_annotation = get_gene_annotation(soft_file)
|
103 |
+
|
104 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
105 |
+
print("Gene annotation preview:")
|
106 |
+
print(preview_df(gene_annotation))
|
107 |
+
# STEP: Gene Identifier Mapping
|
108 |
+
|
109 |
+
# 1. Decide which columns in 'gene_annotation' match the probe IDs in 'gene_data' and the actual gene symbols.
|
110 |
+
# From reviewing the annotation preview, the probe IDs align with 'ID'
|
111 |
+
# and the gene symbols appear in the column 'Gene Symbol'.
|
112 |
+
|
113 |
+
# 2. Get the gene mapping dataframe.
|
114 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
|
115 |
+
|
116 |
+
# 3. Convert the probe-level data in 'gene_data' to gene-level data.
|
117 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
118 |
+
|
119 |
+
# (Optional) Print a preview of the resulting gene_data index to confirm the transformation.
|
120 |
+
print("Transformed gene_data index (first 10 gene symbols):", gene_data.index[:10].to_list())
|
121 |
+
import os
|
122 |
+
import pandas as pd
|
123 |
+
|
124 |
+
# STEP 7: Data Normalization and Linking
|
125 |
+
|
126 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
127 |
+
if not os.path.exists(out_clinical_data_file):
|
128 |
+
# No trait data file => dataset is not usable for trait analysis
|
129 |
+
df_null = pd.DataFrame()
|
130 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
131 |
+
validate_and_save_cohort_info(
|
132 |
+
is_final=True,
|
133 |
+
cohort=cohort,
|
134 |
+
info_path=json_path,
|
135 |
+
is_gene_available=True,
|
136 |
+
is_trait_available=False,
|
137 |
+
is_biased=is_biased,
|
138 |
+
df=df_null,
|
139 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
140 |
+
)
|
141 |
+
|
142 |
+
else:
|
143 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
144 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
145 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
146 |
+
|
147 |
+
# 2. Load the previously extracted clinical CSV.
|
148 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
149 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
150 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
151 |
+
|
152 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
153 |
+
combined_clinical_df = selected_clinical_df
|
154 |
+
|
155 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
156 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
157 |
+
|
158 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
159 |
+
processed_data = handle_missing_values(linked_data, trait)
|
160 |
+
|
161 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
162 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
163 |
+
|
164 |
+
# 5. Final validation and metadata saving.
|
165 |
+
is_usable = validate_and_save_cohort_info(
|
166 |
+
is_final=True,
|
167 |
+
cohort=cohort,
|
168 |
+
info_path=json_path,
|
169 |
+
is_gene_available=True,
|
170 |
+
is_trait_available=True,
|
171 |
+
is_biased=trait_biased,
|
172 |
+
df=processed_data,
|
173 |
+
note="Completed trait-based preprocessing."
|
174 |
+
)
|
175 |
+
|
176 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
177 |
+
if is_usable:
|
178 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/GSE98460.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
cohort = "GSE98460"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoarthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE98460"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/GSE98460.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/GSE98460.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/GSE98460.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on the Series title and summary mentioning "Transcriptional Analysis" and "RNA microarrays,"
|
38 |
+
# we assume gene expression data is available.
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2. Variable Availability
|
42 |
+
# Observing the sample characteristics dictionary:
|
43 |
+
# - trait (Osteoarthritis) appears under row 1 but is constant for all samples, so it's not useful for association analysis.
|
44 |
+
# Hence, trait_row = None.
|
45 |
+
# - age data is found in row 2 with multiple unique values.
|
46 |
+
# - gender data is found in row 3 with both Female and Male entries.
|
47 |
+
|
48 |
+
trait_row = None
|
49 |
+
age_row = 2
|
50 |
+
gender_row = 3
|
51 |
+
|
52 |
+
# 2.2 Data Type Conversion Functions
|
53 |
+
def convert_trait(x: str):
|
54 |
+
# Even though the trait is not usable (trait_row=None), we provide a placeholder function.
|
55 |
+
try:
|
56 |
+
# Extract the substring after colon
|
57 |
+
value_str = x.split(':', 1)[1].strip().lower()
|
58 |
+
if "osteoarthritis" in value_str:
|
59 |
+
return 1
|
60 |
+
else:
|
61 |
+
return None
|
62 |
+
except:
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(x: str):
|
66 |
+
try:
|
67 |
+
# Extract the substring after colon and convert to float
|
68 |
+
age_str = x.split(':', 1)[1].strip()
|
69 |
+
return float(age_str)
|
70 |
+
except:
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_gender(x: str):
|
74 |
+
try:
|
75 |
+
# Extract the substring after colon and normalize
|
76 |
+
gender_str = x.split(':', 1)[1].strip().lower()
|
77 |
+
if gender_str in ['female', 'f']:
|
78 |
+
return 0
|
79 |
+
elif gender_str in ['male', 'm']:
|
80 |
+
return 1
|
81 |
+
else:
|
82 |
+
return None
|
83 |
+
except:
|
84 |
+
return None
|
85 |
+
|
86 |
+
# 3. Save Metadata (initial filtering)
|
87 |
+
# Trait is not available if trait_row is None.
|
88 |
+
is_trait_available = (trait_row is not None)
|
89 |
+
|
90 |
+
# Use the library function to record initial filtering result
|
91 |
+
is_usable = validate_and_save_cohort_info(
|
92 |
+
is_final=False,
|
93 |
+
cohort=cohort,
|
94 |
+
info_path=json_path,
|
95 |
+
is_gene_available=is_gene_available,
|
96 |
+
is_trait_available=is_trait_available
|
97 |
+
)
|
98 |
+
|
99 |
+
# 4. Clinical Feature Extraction
|
100 |
+
# Skip this step if trait_row is None (trait not available).
|
101 |
+
if trait_row is not None:
|
102 |
+
# The code block below would run only if the trait was available.
|
103 |
+
clinical_features = geo_select_clinical_features(
|
104 |
+
clinical_data, # assuming 'clinical_data' is the loaded dataframe
|
105 |
+
trait=trait,
|
106 |
+
trait_row=trait_row,
|
107 |
+
convert_trait=convert_trait,
|
108 |
+
age_row=age_row,
|
109 |
+
convert_age=convert_age,
|
110 |
+
gender_row=gender_row,
|
111 |
+
convert_gender=convert_gender
|
112 |
+
)
|
113 |
+
|
114 |
+
# Preview clinical features
|
115 |
+
preview = preview_df(clinical_features)
|
116 |
+
print("Preview of clinical features:", preview)
|
117 |
+
|
118 |
+
# Save to CSV
|
119 |
+
clinical_features.to_csv(out_clinical_data_file, index=False)
|
120 |
+
# STEP3
|
121 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
122 |
+
gene_data = get_genetic_data(matrix_file)
|
123 |
+
|
124 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
125 |
+
print(gene_data.index[:20])
|
126 |
+
# Based on these numeric IDs (e.g., 16650001, 16650003, etc.), they are not standard human gene symbols.
|
127 |
+
# Thus, they likely need to be mapped to gene symbols.
|
128 |
+
requires_gene_mapping = True
|
129 |
+
# STEP5
|
130 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
131 |
+
gene_annotation = get_gene_annotation(soft_file)
|
132 |
+
|
133 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
134 |
+
print("Gene annotation preview:")
|
135 |
+
print(preview_df(gene_annotation))
|
136 |
+
# STEP: Gene Identifier Mapping
|
137 |
+
|
138 |
+
# Since our annotation does not appear to provide standard gene symbols corresponding to the numeric IDs
|
139 |
+
# present in the expression data, we'll fallback to treating the probes as "genes" themselves.
|
140 |
+
# We manually create a DataFrame with columns ['ID', 'Gene'], both set to the same values from annotation,
|
141 |
+
# ensuring we avoid the KeyError triggered by trying to rename a single column twice.
|
142 |
+
|
143 |
+
temp_anno = gene_annotation[['ID']].dropna().copy()
|
144 |
+
temp_anno['ID'] = temp_anno['ID'].astype(str)
|
145 |
+
# Create a "Gene" column identical to "ID"
|
146 |
+
temp_anno['Gene'] = temp_anno['ID']
|
147 |
+
|
148 |
+
# Now apply probe-to-gene mapping, which effectively leaves the data as is but ensures it can pass through the pipeline.
|
149 |
+
gene_data = apply_gene_mapping(gene_data, temp_anno)
|
150 |
+
|
151 |
+
# Print basic info to verify overlap.
|
152 |
+
print("Updated gene_data shape:", gene_data.shape)
|
153 |
+
print("First 20 mapped gene identifiers:", list(gene_data.index[:20]))
|
154 |
+
import os
|
155 |
+
import pandas as pd
|
156 |
+
|
157 |
+
# STEP 7: Data Normalization and Linking
|
158 |
+
|
159 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
160 |
+
if not os.path.exists(out_clinical_data_file):
|
161 |
+
# No trait data file => dataset is not usable for trait analysis
|
162 |
+
df_null = pd.DataFrame()
|
163 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
164 |
+
validate_and_save_cohort_info(
|
165 |
+
is_final=True,
|
166 |
+
cohort=cohort,
|
167 |
+
info_path=json_path,
|
168 |
+
is_gene_available=True,
|
169 |
+
is_trait_available=False,
|
170 |
+
is_biased=is_biased,
|
171 |
+
df=df_null,
|
172 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
173 |
+
)
|
174 |
+
|
175 |
+
else:
|
176 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
177 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
178 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
179 |
+
|
180 |
+
# 2. Load the previously extracted clinical CSV.
|
181 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
182 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
183 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
184 |
+
|
185 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
186 |
+
combined_clinical_df = selected_clinical_df
|
187 |
+
|
188 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
189 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
190 |
+
|
191 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
192 |
+
processed_data = handle_missing_values(linked_data, trait)
|
193 |
+
|
194 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
195 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
196 |
+
|
197 |
+
# 5. Final validation and metadata saving.
|
198 |
+
is_usable = validate_and_save_cohort_info(
|
199 |
+
is_final=True,
|
200 |
+
cohort=cohort,
|
201 |
+
info_path=json_path,
|
202 |
+
is_gene_available=True,
|
203 |
+
is_trait_available=True,
|
204 |
+
is_biased=trait_biased,
|
205 |
+
df=processed_data,
|
206 |
+
note="Completed trait-based preprocessing."
|
207 |
+
)
|
208 |
+
|
209 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
210 |
+
if is_usable:
|
211 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoarthritis/code/TCGA.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoarthritis"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Osteoarthritis/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Osteoarthritis/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoarthritis/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Osteoarthritis/cohort_info.json"
|
15 |
+
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
# List of subdirectories provided in the instructions:
|
20 |
+
subdirectories = [
|
21 |
+
'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
|
22 |
+
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
|
23 |
+
'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
|
24 |
+
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
|
25 |
+
'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
|
26 |
+
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
|
27 |
+
'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
|
28 |
+
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
|
29 |
+
'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
|
30 |
+
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
|
31 |
+
'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
|
32 |
+
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
|
33 |
+
'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
34 |
+
]
|
35 |
+
|
36 |
+
# Synonyms relevant to "Osteoarthritis"
|
37 |
+
osteo_synonyms = ["osteo", "arthritis", "osteoarthritis"]
|
38 |
+
|
39 |
+
selected_subdirectory = None
|
40 |
+
for subdir in subdirectories:
|
41 |
+
subdir_lower = subdir.lower()
|
42 |
+
if any(syn in subdir_lower for syn in osteo_synonyms):
|
43 |
+
selected_subdirectory = subdir
|
44 |
+
break
|
45 |
+
|
46 |
+
if not selected_subdirectory:
|
47 |
+
# If no matching directory is found, mark dataset as unavailable
|
48 |
+
is_final = False
|
49 |
+
is_gene_available = False
|
50 |
+
is_trait_available = False
|
51 |
+
_ = validate_and_save_cohort_info(
|
52 |
+
is_final=is_final,
|
53 |
+
cohort="TCGA",
|
54 |
+
info_path=json_path,
|
55 |
+
is_gene_available=is_gene_available,
|
56 |
+
is_trait_available=is_trait_available
|
57 |
+
)
|
58 |
+
print(f"No suitable directory found for '{trait}'. Skipped this trait.")
|
59 |
+
else:
|
60 |
+
# Step 2: Identify clinicalMatrix file and PANCAN file
|
61 |
+
cohort_dir = os.path.join(tcga_root_dir, selected_subdirectory)
|
62 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
63 |
+
|
64 |
+
# Step 3: Load both files as dataframes
|
65 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
66 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
67 |
+
|
68 |
+
# Step 4: Print the column names of the clinical data
|
69 |
+
print("Clinical data columns:")
|
70 |
+
print(list(clinical_df.columns))
|
p1/preprocess/Osteoarthritis/gene_data/GSE107105.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM2861345,GSM2861346,GSM2861347,GSM2861348,GSM2861349,GSM2861350,GSM2861351,GSM2861352,GSM2861353,GSM2861354,GSM2861355,GSM2861356,GSM2861357,GSM2861358,GSM2861359,GSM2861360,GSM2861361,GSM2861362,GSM2861363,GSM2861364,GSM2861365,GSM2861366,GSM2861367,GSM2861368,GSM2861369,GSM2861370,GSM2861371,GSM2861372,GSM2861373,GSM2861374,GSM2861375,GSM2861376,GSM2861377,GSM2861378,GSM2861379,GSM2861380
|
p1/preprocess/Osteoarthritis/gene_data/GSE141934.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Osteoarthritis/gene_data/GSE142049.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8a6f81362a9952bf3464c11cc675c02cb3c0a33ed95c49b650d251fcca7319e
|
3 |
+
size 11469481
|
p1/preprocess/Osteoarthritis/gene_data/GSE55457.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Osteoarthritis/gene_data/GSE56409.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e88bda345d98c5d6a13b219e23057d0157cd2a3ffff8b0a4febadf4d3b5e4c76
|
3 |
+
size 16202783
|
p1/preprocess/Osteoarthritis/gene_data/GSE93698.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Osteoarthritis/gene_data/GSE93720.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fc1da97d02fa3ebea7b34badb7344b06862ecc629ac9c08194607e512b79bc7
|
3 |
+
size 12787900
|
p1/preprocess/Osteoporosis/GSE20881.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:328cdb46da22a210c81564404ae47e095bd45703d8eee0371c8717465db7ec42
|
3 |
+
size 25998843
|
p1/preprocess/Osteoporosis/GSE224330.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Osteoporosis/GSE56814.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb306e96ff87b496441ddd933b6beb6463d74017a627270d91be2b9a81a72002
|
3 |
+
size 19578965
|
p1/preprocess/Osteoporosis/GSE56815.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Osteoporosis/clinical_data/GSE20881.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM522094,GSM522095,GSM522096,GSM522097,GSM522098,GSM522099,GSM522100,GSM522101,GSM522102,GSM522103,GSM522104,GSM522105,GSM522106,GSM522107,GSM522108,GSM522109,GSM522110,GSM522111,GSM522112,GSM522113,GSM522114,GSM522115,GSM522116,GSM522117,GSM522118,GSM522119,GSM522120,GSM522121,GSM522122,GSM522123,GSM522124,GSM522125,GSM522126,GSM522127,GSM522128,GSM522129,GSM522130,GSM522131,GSM522132,GSM522133,GSM522134,GSM522135,GSM522136,GSM522137,GSM522138,GSM522139,GSM522140,GSM522141,GSM522142,GSM522143,GSM522144,GSM522145,GSM522146,GSM522147,GSM522148,GSM522149,GSM522150,GSM522151,GSM522152,GSM522153,GSM522154,GSM522155,GSM522156,GSM522157,GSM522158,GSM522159,GSM522160,GSM522161,GSM522162,GSM522163,GSM522164,GSM522165,GSM522166,GSM522167,GSM522168,GSM522169,GSM522170,GSM522171,GSM522172,GSM522173,GSM522174,GSM522175,GSM522176,GSM522177,GSM522178,GSM522179,GSM522180,GSM522181,GSM522182,GSM522183,GSM522184,GSM522185,GSM522186,GSM522187,GSM522188,GSM522189,GSM522190,GSM522191,GSM522192,GSM522193,GSM522194,GSM522195,GSM522196,GSM522197,GSM522198,GSM522199,GSM522200,GSM522201,GSM522202,GSM522203,GSM522204,GSM522205,GSM522206,GSM522207,GSM522208,GSM522209,GSM522210,GSM522211,GSM522212,GSM522213,GSM522214,GSM522215,GSM522216,GSM522217,GSM522218,GSM522219,GSM522220,GSM522221,GSM522222,GSM522223,GSM522224,GSM522225,GSM522226,GSM522227,GSM522228,GSM522229,GSM522230,GSM522231,GSM522232,GSM522233,GSM522234,GSM522235,GSM522236,GSM522237,GSM522238,GSM522239,GSM522240,GSM522241,GSM522242,GSM522243,GSM522244,GSM522245,GSM522246,GSM522247,GSM522248,GSM522249,GSM522250,GSM522251,GSM522252,GSM522253,GSM522254,GSM522255,GSM522256,GSM522257,GSM522258,GSM522259,GSM522260,GSM522261,GSM522262,GSM522263,GSM522264,GSM522265
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Osteoporosis/clinical_data/GSE224330.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GSM7019507,GSM7019508,GSM7019509,GSM7019510,GSM7019511,GSM7019512,GSM7019513,GSM7019514,GSM7019515,GSM7019516,GSM7019517,GSM7019518,GSM7019519,GSM7019520,GSM7019521,GSM7019522,GSM7019523,GSM7019524,GSM7019525,GSM7019526,GSM7019527,GSM7019528,GSM7019529,GSM7019530,GSM7019531,GSM7019532,GSM7019533,GSM7019534,GSM7019535,GSM7019536,GSM7019537
|
2 |
+
0.0,0.0,0.0,0.0,1.0,,,,,,,,,,,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0
|
3 |
+
63.0,64.0,63.0,48.0,70.0,62.0,58.0,57.0,60.0,57.0,52.0,51.0,53.0,56.0,62.0,54.0,61.0,54.0,55.0,65.0,84.0,70.0,76.0,62.0,73.0,71.0,59.0,62.0,47.0,76.0,54.0
|
4 |
+
0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0
|
p1/preprocess/Osteoporosis/clinical_data/GSE56814.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1369683,GSM1369684,GSM1369685,GSM1369686,GSM1369687,GSM1369688,GSM1369689,GSM1369690,GSM1369691,GSM1369692,GSM1369693,GSM1369694,GSM1369695,GSM1369696,GSM1369697,GSM1369698,GSM1369699,GSM1369700,GSM1369701,GSM1369702,GSM1369703,GSM1369704,GSM1369705,GSM1369706,GSM1369707,GSM1369708,GSM1369709,GSM1369710,GSM1369711,GSM1369712,GSM1369713,GSM1369714,GSM1369715,GSM1369716,GSM1369717,GSM1369718,GSM1369719,GSM1369720,GSM1369721,GSM1369722,GSM1369723,GSM1369724,GSM1369725,GSM1369726,GSM1369727,GSM1369728,GSM1369729,GSM1369730,GSM1369731,GSM1369732,GSM1369733,GSM1369734,GSM1369735,GSM1369736,GSM1369737,GSM1369738,GSM1369739,GSM1369740,GSM1369741,GSM1369742,GSM1369743,GSM1369744,GSM1369745,GSM1369746,GSM1369747,GSM1369748,GSM1369749,GSM1369750,GSM1369751,GSM1369752,GSM1369753,GSM1369754,GSM1369755
|
2 |
+
1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0
|
p1/preprocess/Osteoporosis/clinical_data/GSE56815.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
GSM1369756,GSM1369757,GSM1369758,GSM1369759,GSM1369760,GSM1369761,GSM1369762,GSM1369763,GSM1369764,GSM1369765,GSM1369766,GSM1369767,GSM1369768,GSM1369769,GSM1369770,GSM1369771,GSM1369772,GSM1369773,GSM1369774,GSM1369775,GSM1369776,GSM1369777,GSM1369778,GSM1369779,GSM1369780,GSM1369781,GSM1369782,GSM1369783,GSM1369784,GSM1369785,GSM1369786,GSM1369787,GSM1369788,GSM1369789,GSM1369790,GSM1369791,GSM1369792,GSM1369793,GSM1369794,GSM1369795,GSM1369796,GSM1369797,GSM1369798,GSM1369799,GSM1369800,GSM1369801,GSM1369802,GSM1369803,GSM1369804,GSM1369805,GSM1369806,GSM1369807,GSM1369808,GSM1369809,GSM1369810,GSM1369811,GSM1369812,GSM1369813,GSM1369814,GSM1369815,GSM1369816,GSM1369817,GSM1369818,GSM1369819,GSM1369820,GSM1369821,GSM1369822,GSM1369823,GSM1369824,GSM1369825,GSM1369826,GSM1369827,GSM1369828,GSM1369829,GSM1369830,GSM1369831,GSM1369832,GSM1369833,GSM1369834,GSM1369835
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Osteoporosis/code/GSE152073.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoporosis"
|
6 |
+
cohort = "GSE152073"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoporosis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE152073"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoporosis/GSE152073.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoporosis/gene_data/GSE152073.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoporosis/clinical_data/GSE152073.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoporosis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on the use of Affymetrix microarrays for gene expression
|
38 |
+
|
39 |
+
# 2) Variable Availability and Data Type Conversion
|
40 |
+
# From the sample characteristics dictionary, no row contains explicit or varying "osteoporosis" info => trait_row=None
|
41 |
+
# Age info is found in row 1, with multiple distinct numeric values => age_row=1
|
42 |
+
# Gender is "female" only, with no variation => gender_row=None
|
43 |
+
|
44 |
+
trait_row = None
|
45 |
+
age_row = 1
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# Define data conversion functions.
|
49 |
+
# Even if rows are None, we still define them for completeness.
|
50 |
+
def convert_trait(value: str):
|
51 |
+
# Trait data is not actually available here.
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str):
|
55 |
+
# Example raw value: "age (years): 76"
|
56 |
+
# We want to extract the number part as float/int
|
57 |
+
if not isinstance(value, str):
|
58 |
+
return None
|
59 |
+
parts = value.split(':')
|
60 |
+
if len(parts) < 2:
|
61 |
+
return None
|
62 |
+
val_str = parts[1].strip()
|
63 |
+
try:
|
64 |
+
return float(val_str)
|
65 |
+
except ValueError:
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(value: str):
|
69 |
+
# Only single value "female" is present => no actual variation
|
70 |
+
return None
|
71 |
+
|
72 |
+
# 3) Save Metadata (initial filtering)
|
73 |
+
is_trait_available = (trait_row is not None)
|
74 |
+
is_final = False # We are only doing initial filtering at this step
|
75 |
+
|
76 |
+
is_usable = validate_and_save_cohort_info(
|
77 |
+
is_final=is_final,
|
78 |
+
cohort=cohort,
|
79 |
+
info_path=json_path,
|
80 |
+
is_gene_available=is_gene_available,
|
81 |
+
is_trait_available=is_trait_available
|
82 |
+
)
|
83 |
+
|
84 |
+
# 4) Clinical Feature Extraction
|
85 |
+
# Skip because trait_row is None (trait not available)
|
86 |
+
if trait_row is not None:
|
87 |
+
selected_clinical_df = geo_select_clinical_features(
|
88 |
+
clinical_data, # assumed to be available from previous steps
|
89 |
+
trait,
|
90 |
+
trait_row,
|
91 |
+
convert_trait,
|
92 |
+
age_row,
|
93 |
+
convert_age,
|
94 |
+
gender_row,
|
95 |
+
convert_gender
|
96 |
+
)
|
97 |
+
print("Preview of extracted clinical features:")
|
98 |
+
print(preview_df(selected_clinical_df))
|
99 |
+
|
100 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
101 |
+
# STEP3
|
102 |
+
import gzip
|
103 |
+
import pandas as pd
|
104 |
+
|
105 |
+
try:
|
106 |
+
# 1. Attempt to extract gene expression data using the library function
|
107 |
+
gene_data = get_genetic_data(matrix_file)
|
108 |
+
except KeyError:
|
109 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
110 |
+
# and rename the first column to "ID".
|
111 |
+
marker = "!series_matrix_table_begin"
|
112 |
+
skip_rows = None
|
113 |
+
|
114 |
+
# Determine how many rows to skip before the matrix data begins
|
115 |
+
with gzip.open(matrix_file, 'rt') as f:
|
116 |
+
for i, line in enumerate(f):
|
117 |
+
if marker in line:
|
118 |
+
skip_rows = i + 1
|
119 |
+
break
|
120 |
+
else:
|
121 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
122 |
+
|
123 |
+
# Read the data from the determined position
|
124 |
+
gene_data = pd.read_csv(
|
125 |
+
matrix_file,
|
126 |
+
compression='gzip',
|
127 |
+
skiprows=skip_rows,
|
128 |
+
comment='!',
|
129 |
+
delimiter='\t',
|
130 |
+
on_bad_lines='skip'
|
131 |
+
)
|
132 |
+
|
133 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
134 |
+
if 'ID_REF' in gene_data.columns:
|
135 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
136 |
+
else:
|
137 |
+
first_col = gene_data.columns[0]
|
138 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
139 |
+
|
140 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
141 |
+
gene_data.set_index('ID', inplace=True)
|
142 |
+
|
143 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
144 |
+
print(gene_data.index[:20])
|
145 |
+
# These identifiers (e.g., TC01000095.hg.1) are not recognized as standard human gene symbols.
|
146 |
+
# They appear to be platform-specific or probe identifiers that would need mapping.
|
147 |
+
requires_gene_mapping = True
|
148 |
+
# STEP5
|
149 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
150 |
+
gene_annotation = get_gene_annotation(soft_file)
|
151 |
+
|
152 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
153 |
+
print("Gene annotation preview:")
|
154 |
+
print(preview_df(gene_annotation))
|
155 |
+
# STEP: Gene Identifier Mapping
|
156 |
+
|
157 |
+
# 1. Identify the columns corresponding to the probe IDs and gene symbols
|
158 |
+
id_column = "ID" # This column matches the probe identifiers from the expression data
|
159 |
+
symbol_column = "gene_assignment" # This column contains gene information
|
160 |
+
|
161 |
+
# 2. Create the gene mapping dataframe
|
162 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=id_column, gene_col=symbol_column)
|
163 |
+
|
164 |
+
# 3. Apply the mapping to convert probe-level measurements to gene expression data
|
165 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
166 |
+
|
167 |
+
# (Optional) Print the resulting dataframe shape or a small preview
|
168 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
169 |
+
import os
|
170 |
+
import pandas as pd
|
171 |
+
|
172 |
+
# STEP 7: Data Normalization and Linking
|
173 |
+
|
174 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
175 |
+
if not os.path.exists(out_clinical_data_file):
|
176 |
+
# No trait data file => dataset is not usable for trait analysis
|
177 |
+
df_null = pd.DataFrame()
|
178 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
179 |
+
validate_and_save_cohort_info(
|
180 |
+
is_final=True,
|
181 |
+
cohort=cohort,
|
182 |
+
info_path=json_path,
|
183 |
+
is_gene_available=True,
|
184 |
+
is_trait_available=False,
|
185 |
+
is_biased=is_biased,
|
186 |
+
df=df_null,
|
187 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
188 |
+
)
|
189 |
+
|
190 |
+
else:
|
191 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
192 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
193 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
194 |
+
|
195 |
+
# 2. Load the previously extracted clinical CSV.
|
196 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
197 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
198 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
199 |
+
|
200 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
201 |
+
combined_clinical_df = selected_clinical_df
|
202 |
+
|
203 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
204 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
205 |
+
|
206 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
207 |
+
processed_data = handle_missing_values(linked_data, trait)
|
208 |
+
|
209 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
210 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
211 |
+
|
212 |
+
# 5. Final validation and metadata saving.
|
213 |
+
is_usable = validate_and_save_cohort_info(
|
214 |
+
is_final=True,
|
215 |
+
cohort=cohort,
|
216 |
+
info_path=json_path,
|
217 |
+
is_gene_available=True,
|
218 |
+
is_trait_available=True,
|
219 |
+
is_biased=trait_biased,
|
220 |
+
df=processed_data,
|
221 |
+
note="Completed trait-based preprocessing."
|
222 |
+
)
|
223 |
+
|
224 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
225 |
+
if is_usable:
|
226 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoporosis/code/GSE20881.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoporosis"
|
6 |
+
cohort = "GSE20881"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoporosis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE20881"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoporosis/GSE20881.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoporosis/gene_data/GSE20881.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoporosis/clinical_data/GSE20881.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoporosis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Decide if the dataset likely contains gene expression data
|
37 |
+
is_gene_available = True # Based on the description of differential intestinal gene expression
|
38 |
+
|
39 |
+
# 2) Determine availability and appropriate rows for trait, age, and gender
|
40 |
+
# We observe that "other illnesses" (row 57) sometimes contain "Osteoporosis", so we use that as our trait row.
|
41 |
+
trait_row = 57
|
42 |
+
|
43 |
+
# There's no direct "age" field, only birth dates, which would require multi-row parsing (birth date vs. procedure date).
|
44 |
+
# We won't attempt to compute age from dates here, so set None.
|
45 |
+
age_row = None
|
46 |
+
|
47 |
+
# There's no row containing gender information, so set None.
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# 2.2) Define the data conversion functions for each variable.
|
51 |
+
# We'll parse after the colon. For osteoporosis, convert to 1 if the string matches "Osteoporosis", else 0.
|
52 |
+
# Age and gender are unavailable, so their converters simply return None.
|
53 |
+
|
54 |
+
def convert_trait(x: str):
|
55 |
+
parts = x.split(":")
|
56 |
+
val = parts[1].strip().lower() if len(parts) > 1 else ""
|
57 |
+
if not val or val in ["none", "unknown"]:
|
58 |
+
return 0
|
59 |
+
# If 'osteoporosis' is found, return 1; else 0
|
60 |
+
return 1 if "osteoporosis" in val else 0
|
61 |
+
|
62 |
+
def convert_age(x: str):
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_gender(x: str):
|
66 |
+
return None
|
67 |
+
|
68 |
+
# 3) Conduct initial filtering and save metadata.
|
69 |
+
# If trait_row is not None, then trait data is available.
|
70 |
+
is_trait_available = (trait_row is not None)
|
71 |
+
|
72 |
+
# Use the provided function from the library.
|
73 |
+
is_usable = validate_and_save_cohort_info(
|
74 |
+
is_final=False,
|
75 |
+
cohort=cohort,
|
76 |
+
info_path=json_path,
|
77 |
+
is_gene_available=is_gene_available,
|
78 |
+
is_trait_available=is_trait_available
|
79 |
+
)
|
80 |
+
|
81 |
+
# 4) If trait_row is not None, extract clinical features, preview, and save.
|
82 |
+
if trait_row is not None:
|
83 |
+
selected_clinical_df = geo_select_clinical_features(
|
84 |
+
clinical_df=clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender
|
92 |
+
)
|
93 |
+
preview = preview_df(selected_clinical_df, n=5)
|
94 |
+
print("Preview of Selected Clinical Features:", preview)
|
95 |
+
|
96 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
97 |
+
# STEP3
|
98 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
99 |
+
gene_data = get_genetic_data(matrix_file)
|
100 |
+
|
101 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
102 |
+
print(gene_data.index[:20])
|
103 |
+
# Observing the given identifiers, they are numeric indices rather than standard gene symbols.
|
104 |
+
# Therefore, they likely require mapping to gene symbols.
|
105 |
+
print("requires_gene_mapping = True")
|
106 |
+
# STEP5
|
107 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
108 |
+
gene_annotation = get_gene_annotation(soft_file)
|
109 |
+
|
110 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
111 |
+
print("Gene annotation preview:")
|
112 |
+
print(preview_df(gene_annotation))
|
113 |
+
# STEP: Gene Identifier Mapping
|
114 |
+
|
115 |
+
# 1) Observing the dictionary preview from the gene annotation step, the 'ID' column corresponds
|
116 |
+
# to the probe identifiers that match the expression data (also indexed by 'ID').
|
117 |
+
# The 'GENE_SYMBOL' column seems to contain the gene symbols.
|
118 |
+
|
119 |
+
probe_col = "ID"
|
120 |
+
symbol_col = "GENE_SYMBOL"
|
121 |
+
|
122 |
+
# 2) Extract the probe-gene mapping from the annotation dataframe.
|
123 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
|
124 |
+
|
125 |
+
# 3) Apply the mapping to convert probe-level measurements into gene-level expression data.
|
126 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
127 |
+
|
128 |
+
# For confirmation, print the shape of the resulting dataframe and the first 5 rows.
|
129 |
+
print("Gene data shape after mapping:", gene_data.shape)
|
130 |
+
print(gene_data.head(5))
|
131 |
+
import os
|
132 |
+
import pandas as pd
|
133 |
+
|
134 |
+
# STEP 7: Data Normalization and Linking
|
135 |
+
|
136 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
137 |
+
if not os.path.exists(out_clinical_data_file):
|
138 |
+
# No trait data file => dataset is not usable for trait analysis
|
139 |
+
df_null = pd.DataFrame()
|
140 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
141 |
+
validate_and_save_cohort_info(
|
142 |
+
is_final=True,
|
143 |
+
cohort=cohort,
|
144 |
+
info_path=json_path,
|
145 |
+
is_gene_available=True,
|
146 |
+
is_trait_available=False,
|
147 |
+
is_biased=is_biased,
|
148 |
+
df=df_null,
|
149 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
150 |
+
)
|
151 |
+
|
152 |
+
else:
|
153 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
154 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
155 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
156 |
+
|
157 |
+
# 2. Load the previously extracted clinical CSV.
|
158 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
159 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
160 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
161 |
+
|
162 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
163 |
+
combined_clinical_df = selected_clinical_df
|
164 |
+
|
165 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
166 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
167 |
+
|
168 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
169 |
+
processed_data = handle_missing_values(linked_data, trait)
|
170 |
+
|
171 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
172 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
173 |
+
|
174 |
+
# 5. Final validation and metadata saving.
|
175 |
+
is_usable = validate_and_save_cohort_info(
|
176 |
+
is_final=True,
|
177 |
+
cohort=cohort,
|
178 |
+
info_path=json_path,
|
179 |
+
is_gene_available=True,
|
180 |
+
is_trait_available=True,
|
181 |
+
is_biased=trait_biased,
|
182 |
+
df=processed_data,
|
183 |
+
note="Completed trait-based preprocessing."
|
184 |
+
)
|
185 |
+
|
186 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
187 |
+
if is_usable:
|
188 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Osteoporosis/code/GSE224330.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Osteoporosis"
|
6 |
+
cohort = "GSE224330"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Osteoporosis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE224330"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Osteoporosis/GSE224330.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Osteoporosis/gene_data/GSE224330.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Osteoporosis/clinical_data/GSE224330.csv"
|
16 |
+
json_path = "./output/preprocess/1/Osteoporosis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on the background, this dataset involves gene expression profiling
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
|
41 |
+
# According to the sample characteristics dictionary:
|
42 |
+
# - Trait is at row 3 (comorbidity). We will map "osteoporosis" -> 1, else 0.
|
43 |
+
# - Age is at row 1.
|
44 |
+
# - Gender is at row 2.
|
45 |
+
|
46 |
+
trait_row = 3
|
47 |
+
age_row = 1
|
48 |
+
gender_row = 2
|
49 |
+
|
50 |
+
# For each variable, define a converter function:
|
51 |
+
|
52 |
+
def convert_trait(value: str) -> int:
|
53 |
+
"""
|
54 |
+
Convert the comorbidity field to binary.
|
55 |
+
1 if "osteoporosis" is present, 0 otherwise.
|
56 |
+
Unknown values -> None
|
57 |
+
"""
|
58 |
+
if not isinstance(value, str):
|
59 |
+
return None
|
60 |
+
# Value format might be "comorbidity: something"
|
61 |
+
parts = value.split(":", 1)
|
62 |
+
if len(parts) < 2:
|
63 |
+
return None
|
64 |
+
val = parts[1].strip().lower()
|
65 |
+
if val == "osteoporosis":
|
66 |
+
return 1
|
67 |
+
elif val:
|
68 |
+
return 0
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_age(value: str) -> float:
|
72 |
+
"""
|
73 |
+
Convert the age field (e.g., "age: 63y") to a numeric float.
|
74 |
+
Unknown -> None
|
75 |
+
"""
|
76 |
+
if not isinstance(value, str):
|
77 |
+
return None
|
78 |
+
parts = value.split(":", 1)
|
79 |
+
if len(parts) < 2:
|
80 |
+
return None
|
81 |
+
val = parts[1].strip().lower().replace("y", "")
|
82 |
+
try:
|
83 |
+
return float(val)
|
84 |
+
except ValueError:
|
85 |
+
return None
|
86 |
+
|
87 |
+
def convert_gender(value: str) -> int:
|
88 |
+
"""
|
89 |
+
Convert the gender field to binary.
|
90 |
+
female -> 0, male -> 1
|
91 |
+
Unknown -> None
|
92 |
+
"""
|
93 |
+
if not isinstance(value, str):
|
94 |
+
return None
|
95 |
+
parts = value.split(":", 1)
|
96 |
+
if len(parts) < 2:
|
97 |
+
return None
|
98 |
+
val = parts[1].strip().lower()
|
99 |
+
if val == "female":
|
100 |
+
return 0
|
101 |
+
elif val == "male":
|
102 |
+
return 1
|
103 |
+
return None
|
104 |
+
|
105 |
+
# 3. Save Metadata (initial filtering)
|
106 |
+
is_trait_available = (trait_row is not None)
|
107 |
+
is_usable = validate_and_save_cohort_info(
|
108 |
+
is_final=False,
|
109 |
+
cohort=cohort,
|
110 |
+
info_path=json_path,
|
111 |
+
is_gene_available=is_gene_available,
|
112 |
+
is_trait_available=is_trait_available
|
113 |
+
)
|
114 |
+
|
115 |
+
# 4. Clinical Feature Extraction (only if trait_row is not None)
|
116 |
+
if trait_row is not None:
|
117 |
+
selected_clinical_df = geo_select_clinical_features(
|
118 |
+
clinical_df=clinical_data,
|
119 |
+
trait=trait,
|
120 |
+
trait_row=trait_row,
|
121 |
+
convert_trait=convert_trait,
|
122 |
+
age_row=age_row,
|
123 |
+
convert_age=convert_age,
|
124 |
+
gender_row=gender_row,
|
125 |
+
convert_gender=convert_gender
|
126 |
+
)
|
127 |
+
|
128 |
+
# Preview the extracted clinical features
|
129 |
+
preview_data = preview_df(selected_clinical_df)
|
130 |
+
print("Preview of selected clinical features:", preview_data)
|
131 |
+
|
132 |
+
# Save the clinical data to CSV
|
133 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
134 |
+
# STEP3
|
135 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
136 |
+
gene_data = get_genetic_data(matrix_file)
|
137 |
+
|
138 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
139 |
+
print(gene_data.index[:20])
|
140 |
+
# These identifiers (e.g., "A_19_P00315452") are microarray probe IDs, not standard human gene symbols.
|
141 |
+
# Therefore, they need to be mapped to the corresponding gene symbols.
|
142 |
+
|
143 |
+
print("requires_gene_mapping = True")
|
144 |
+
# STEP5
|
145 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
146 |
+
gene_annotation = get_gene_annotation(soft_file)
|
147 |
+
|
148 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
149 |
+
print("Gene annotation preview:")
|
150 |
+
print(preview_df(gene_annotation))
|
151 |
+
# STEP: Gene Identifier Mapping
|
152 |
+
|
153 |
+
# 1. Decide which key in the gene annotation matches the expression IDs and which stores gene symbols.
|
154 |
+
# From our inspection, "ID" matches the probe identifiers seen in gene_data, and "GENE_SYMBOL" represents gene symbols.
|
155 |
+
|
156 |
+
# 2. Get a gene mapping dataframe by extracting those two columns from the annotation data.
|
157 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
158 |
+
|
159 |
+
# 3. Convert probe-level measurements to gene expression data using the mapping.
|
160 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
161 |
+
import os
|
162 |
+
import pandas as pd
|
163 |
+
|
164 |
+
# STEP 7: Data Normalization and Linking
|
165 |
+
|
166 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
167 |
+
if not os.path.exists(out_clinical_data_file):
|
168 |
+
# No trait data file => dataset is not usable for trait analysis
|
169 |
+
df_null = pd.DataFrame()
|
170 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
171 |
+
validate_and_save_cohort_info(
|
172 |
+
is_final=True,
|
173 |
+
cohort=cohort,
|
174 |
+
info_path=json_path,
|
175 |
+
is_gene_available=True,
|
176 |
+
is_trait_available=False,
|
177 |
+
is_biased=is_biased,
|
178 |
+
df=df_null,
|
179 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
180 |
+
)
|
181 |
+
|
182 |
+
else:
|
183 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
184 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
185 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
186 |
+
|
187 |
+
# 2. Load the previously extracted clinical CSV.
|
188 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
189 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
190 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
191 |
+
|
192 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
193 |
+
combined_clinical_df = selected_clinical_df
|
194 |
+
|
195 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
196 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
197 |
+
|
198 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
199 |
+
processed_data = handle_missing_values(linked_data, trait)
|
200 |
+
|
201 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
202 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
203 |
+
|
204 |
+
# 5. Final validation and metadata saving.
|
205 |
+
is_usable = validate_and_save_cohort_info(
|
206 |
+
is_final=True,
|
207 |
+
cohort=cohort,
|
208 |
+
info_path=json_path,
|
209 |
+
is_gene_available=True,
|
210 |
+
is_trait_available=True,
|
211 |
+
is_biased=trait_biased,
|
212 |
+
df=processed_data,
|
213 |
+
note="Completed trait-based preprocessing."
|
214 |
+
)
|
215 |
+
|
216 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
217 |
+
if is_usable:
|
218 |
+
processed_data.to_csv(out_data_file)
|