Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +24 -0
- p3/preprocess/Chronic_kidney_disease/TCGA.csv +3 -0
- p3/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv +3 -0
- p3/preprocess/Crohns_Disease/GSE186582.csv +3 -0
- p3/preprocess/Crohns_Disease/gene_data/GSE186582.csv +3 -0
- p3/preprocess/Cystic_Fibrosis/GSE60690.csv +3 -0
- p3/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv +3 -0
- p3/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv +3 -0
- p3/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv +3 -0
- p3/preprocess/Depression/GSE135524.csv +3 -0
- p3/preprocess/Depression/GSE138297.csv +3 -0
- p3/preprocess/Depression/GSE149980.csv +3 -0
- p3/preprocess/Depression/GSE81761.csv +3 -0
- p3/preprocess/Depression/GSE99725.csv +0 -0
- p3/preprocess/Depression/clinical_data/GSE208668.csv +4 -0
- p3/preprocess/Depression/clinical_data/GSE81761.csv +4 -0
- p3/preprocess/Depression/clinical_data/GSE99725.csv +2 -0
- p3/preprocess/Depression/clinical_data/TCGA.csv +1149 -0
- p3/preprocess/Depression/code/GSE110298.py +166 -0
- p3/preprocess/Depression/code/GSE128387.py +167 -0
- p3/preprocess/Depression/code/GSE135524.py +160 -0
- p3/preprocess/Depression/code/GSE138297.py +183 -0
- p3/preprocess/Depression/code/GSE149980.py +145 -0
- p3/preprocess/Depression/code/GSE201332.py +260 -0
- p3/preprocess/Depression/code/GSE208668.py +102 -0
- p3/preprocess/Depression/code/GSE273630.py +111 -0
- p3/preprocess/Depression/code/GSE81761.py +173 -0
- p3/preprocess/Depression/code/GSE99725.py +146 -0
- p3/preprocess/Depression/code/TCGA.py +191 -0
- p3/preprocess/Depression/gene_data/GSE110298.csv +0 -0
- p3/preprocess/Depression/gene_data/GSE128387.csv +0 -0
- p3/preprocess/Depression/gene_data/GSE135524.csv +3 -0
- p3/preprocess/Depression/gene_data/GSE138297.csv +3 -0
- p3/preprocess/Depression/gene_data/GSE149980.csv +3 -0
- p3/preprocess/Depression/gene_data/GSE273630.csv +0 -0
- p3/preprocess/Depression/gene_data/GSE81761.csv +3 -0
- p3/preprocess/Depression/gene_data/GSE99725.csv +0 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/GSE109178.csv +3 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/GSE13608.csv +0 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv +3 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE109178.csv +4 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE13608.csv +4 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv +4 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv +3 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE109178.py +167 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE13608.py +167 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE48828.py +226 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE79263.py +167 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/code/TCGA.py +24 -0
- p3/preprocess/Duchenne_Muscular_Dystrophy/cohort_info.json +1 -0
.gitattributes
CHANGED
@@ -1612,3 +1612,27 @@ p3/preprocess/Colon_and_Rectal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs mer
|
|
1612 |
p3/preprocess/Craniosynostosis/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
|
1613 |
p3/preprocess/Craniosynostosis/gene_data/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
|
1614 |
p3/preprocess/Cystic_Fibrosis/gene_data/GSE100521.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1612 |
p3/preprocess/Craniosynostosis/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
|
1613 |
p3/preprocess/Craniosynostosis/gene_data/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
|
1614 |
p3/preprocess/Cystic_Fibrosis/gene_data/GSE100521.csv filter=lfs diff=lfs merge=lfs -text
|
1615 |
+
p3/preprocess/Crohns_Disease/GSE186582.csv filter=lfs diff=lfs merge=lfs -text
|
1616 |
+
p3/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv filter=lfs diff=lfs merge=lfs -text
|
1617 |
+
p3/preprocess/Depression/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
|
1618 |
+
p3/preprocess/Depression/GSE135524.csv filter=lfs diff=lfs merge=lfs -text
|
1619 |
+
p3/preprocess/Depression/GSE149980.csv filter=lfs diff=lfs merge=lfs -text
|
1620 |
+
p3/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv filter=lfs diff=lfs merge=lfs -text
|
1621 |
+
p3/preprocess/Chronic_kidney_disease/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1622 |
+
p3/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv filter=lfs diff=lfs merge=lfs -text
|
1623 |
+
p3/preprocess/Crohns_Disease/gene_data/GSE186582.csv filter=lfs diff=lfs merge=lfs -text
|
1624 |
+
p3/preprocess/Depression/GSE81761.csv filter=lfs diff=lfs merge=lfs -text
|
1625 |
+
p3/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1626 |
+
p3/preprocess/Depression/gene_data/GSE149980.csv filter=lfs diff=lfs merge=lfs -text
|
1627 |
+
p3/preprocess/Depression/gene_data/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
|
1628 |
+
p3/preprocess/Depression/gene_data/GSE135524.csv filter=lfs diff=lfs merge=lfs -text
|
1629 |
+
p3/preprocess/Depression/gene_data/GSE81761.csv filter=lfs diff=lfs merge=lfs -text
|
1630 |
+
p3/preprocess/Cystic_Fibrosis/GSE60690.csv filter=lfs diff=lfs merge=lfs -text
|
1631 |
+
p3/preprocess/Duchenne_Muscular_Dystrophy/GSE109178.csv filter=lfs diff=lfs merge=lfs -text
|
1632 |
+
p3/preprocess/Eczema/GSE150797.csv filter=lfs diff=lfs merge=lfs -text
|
1633 |
+
p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE109178.csv filter=lfs diff=lfs merge=lfs -text
|
1634 |
+
p3/preprocess/Eczema/GSE182740.csv filter=lfs diff=lfs merge=lfs -text
|
1635 |
+
p3/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv filter=lfs diff=lfs merge=lfs -text
|
1636 |
+
p3/preprocess/Eczema/GSE57225.csv filter=lfs diff=lfs merge=lfs -text
|
1637 |
+
p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv filter=lfs diff=lfs merge=lfs -text
|
1638 |
+
p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Chronic_kidney_disease/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fe778458667fef8f2ec0e3ff9321e5caceff14458bf65a8b0e550c3ece1cc94
|
3 |
+
size 182071783
|
p3/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad56d64496541ee0872327215eca3da6769d5e7ccee6a3d8759e9c00555c00ed
|
3 |
+
size 182067513
|
p3/preprocess/Crohns_Disease/GSE186582.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d015dd5f8636768fd0a03f151915cbb16b1c748f10048e29c249ae096e0b9266
|
3 |
+
size 80354199
|
p3/preprocess/Crohns_Disease/gene_data/GSE186582.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a9c7f53a5f6ea3c35153efb348986dccceb6882564285f9c3b52df03b7521f5
|
3 |
+
size 80350269
|
p3/preprocess/Cystic_Fibrosis/GSE60690.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74241b741e7cca4f4f313dc052ea8e3ab0bdda5a8d284f67df60e5837fa0d60a
|
3 |
+
size 75320453
|
p3/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b3d31e790d43703fae5e61d5b9a7f004629a173084bed93d0ef0286a56a80f1
|
3 |
+
size 24255296
|
p3/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5debcb1fde444713779eb28ea53e4d9bb3422da7eba5bf8fadcc86b4796e403
|
3 |
+
size 20220285
|
p3/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7903e22d5fcdd3b3d196dbbb637d009e3b76e76aa4d59a6d5c5f3bad17e810a1
|
3 |
+
size 25978567
|
p3/preprocess/Depression/GSE135524.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd501b9d55ae6c713e70b8e89e5357806a97be1113efce74c91b23a031ab286c
|
3 |
+
size 18898145
|
p3/preprocess/Depression/GSE138297.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1498ccf74f91c8669eacbc4807488d88d37c330623d9c3865f2c99e5e7214711
|
3 |
+
size 15408905
|
p3/preprocess/Depression/GSE149980.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ff9d15dedbfc5c5325163ae04e4843961bdc75de38ce48c5a2e6ed5fa0b0154
|
3 |
+
size 16699653
|
p3/preprocess/Depression/GSE81761.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a49ca1588819fa63cf0f9fc2ca8c95735ba75348dc9d3039bf879463fe5e81d5
|
3 |
+
size 18298746
|
p3/preprocess/Depression/GSE99725.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Depression/clinical_data/GSE208668.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM6360934,GSM6360935,GSM6360936,GSM6360937,GSM6360938,GSM6360939,GSM6360940,GSM6360941,GSM6360942,GSM6360943,GSM6360944,GSM6360945,GSM6360946,GSM6360947,GSM6360948,GSM6360949,GSM6360950,GSM6360951,GSM6360952,GSM6360953,GSM6360954,GSM6360955,GSM6360956,GSM6360957,GSM6360958,GSM6360959,GSM6360960,GSM6360961,GSM6360962,GSM6360963,GSM6360964,GSM6360965,GSM6360966,GSM6360967,GSM6360968,GSM6360969,GSM6360970,GSM6360971,GSM6360972,GSM6360973,GSM6360974,GSM6360975
|
2 |
+
Depression,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0
|
3 |
+
Age,65.0,75.0,77.0,64.0,60.0,67.0,72.0,62.0,73.0,74.0,73.0,68.0,62.0,73.0,70.0,60.0,61.0,66.0,69.0,62.0,67.0,62.0,71.0,63.0,62.0,61.0,67.0,78.0,79.0,72.0,73.0,77.0,72.0,62.0,70.0,65.0,63.0,74.0,71.0,80.0,78.0,65.0
|
4 |
+
Gender,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0
|
p3/preprocess/Depression/clinical_data/GSE81761.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2175165,GSM2175166,GSM2175167,GSM2175168,GSM2175169,GSM2175170,GSM2175171,GSM2175172,GSM2175173,GSM2175174,GSM2175175,GSM2175176,GSM2175177,GSM2175178,GSM2175179,GSM2175180,GSM2175181,GSM2175182,GSM2175183,GSM2175184,GSM2175185,GSM2175186,GSM2175187,GSM2175188,GSM2175189,GSM2175190,GSM2175191,GSM2175192,GSM2175193,GSM2175194,GSM2175195,GSM2175196,GSM2175197,GSM2175198,GSM2175199,GSM2175200,GSM2175201,GSM2175202,GSM2175203,GSM2175204,GSM2175205,GSM2175206,GSM2175207,GSM2175208,GSM2175209,GSM2175210,GSM2175211,GSM2175212,GSM2175213,GSM2175214,GSM2175215,GSM2175216,GSM2175217,GSM2175218,GSM2175219,GSM2175220,GSM2175221,GSM2175222,GSM2175223,GSM2175224,GSM2175225,GSM2175226,GSM2175227,GSM2175228,GSM2175229,GSM2175230,GSM2175231,GSM2175232,GSM2175233,GSM2175234,GSM2175235,GSM2175236,GSM2175237,GSM2175238,GSM2175239,GSM2175240,GSM2175241,GSM2175242,GSM2175243,GSM2175244,GSM2175245,GSM2175246,GSM2175247,GSM2175248,GSM2175249,GSM2175250,GSM2175251,GSM2175252,GSM2175253,GSM2175254,GSM2175255,GSM2175256,GSM2175257,GSM2175258,GSM2175259,GSM2175260,GSM2175261,GSM2175262,GSM2175263,GSM2175264,GSM2175265,GSM2175266,GSM2175267,GSM2175268,GSM2175269,GSM2175270,GSM2175271,GSM2175272,GSM2175273
|
2 |
+
Depression,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,1.0,0.0,0.0,0.0,,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,,1.0,,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,,,,,,,,
|
3 |
+
Age,30.0,38.0,39.0,38.0,23.0,48.0,49.0,34.0,33.0,45.0,25.0,25.0,30.0,39.0,23.0,22.0,46.0,35.0,22.0,23.0,48.0,23.0,49.0,38.0,25.0,33.0,30.0,36.0,43.0,34.0,22.0,26.0,46.0,39.0,27.0,23.0,28.0,22.0,29.0,41.0,25.0,39.0,38.0,25.0,46.0,35.0,44.0,34.0,23.0,46.0,43.0,26.0,34.0,31.0,30.0,36.0,23.0,25.0,28.0,27.0,39.0,26.0,38.0,25.0,31.0,39.0,29.0,34.0,23.0,42.0,44.0,46.0,21.0,35.0,44.0,34.0,28.0,37.0,23.0,26.0,28.0,52.0,31.0,36.0,41.0,21.0,42.0,30.0,24.0,41.0,35.0,44.0,26.0,27.0,37.0,52.0,36.0,41.0,24.0,26.0,27.0,26.0,37.0,22.0,32.0,45.0,23.0,35.0,27.0
|
4 |
+
Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Depression/clinical_data/GSE99725.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM2650879,GSM2650880,GSM2650881,GSM2650882,GSM2650883,GSM2650884,GSM2650885,GSM2650886,GSM2650887,GSM2650888,GSM2650889,GSM2650890,GSM2650891,GSM2650892,GSM2650893,GSM2650894,GSM2650895,GSM2650896,GSM2650897,GSM2650898,GSM2650899,GSM2650900,GSM2650901,GSM2650902,GSM2650903,GSM2650904,GSM2650905,GSM2650906,GSM2650907,GSM2650908,GSM2650909,GSM2650910,GSM2650911,GSM2650912,GSM2650913,GSM2650914,GSM2650915,GSM2650916,GSM2650917,GSM2650918,GSM2650919,GSM2650920,GSM2650921,GSM2650922,GSM2650923,GSM2650924,GSM2650925,GSM2650926,GSM2650927,GSM2650928,GSM2650929,GSM2650930,GSM2650931,GSM2650932,GSM2650933,GSM2650934,GSM2650935
|
2 |
+
Depression,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0
|
p3/preprocess/Depression/clinical_data/TCGA.csv
ADDED
@@ -0,0 +1,1149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sampleID,mental_status_changes,Age,Gender
|
2 |
+
TCGA-02-0001-01,1,44.0,0.0
|
3 |
+
TCGA-02-0003-01,1,50.0,1.0
|
4 |
+
TCGA-02-0004-01,1,59.0,1.0
|
5 |
+
TCGA-02-0006-01,1,56.0,0.0
|
6 |
+
TCGA-02-0007-01,1,40.0,0.0
|
7 |
+
TCGA-02-0009-01,1,61.0,0.0
|
8 |
+
TCGA-02-0010-01,1,20.0,0.0
|
9 |
+
TCGA-02-0011-01,1,18.0,0.0
|
10 |
+
TCGA-02-0014-01,1,25.0,1.0
|
11 |
+
TCGA-02-0015-01,1,50.0,1.0
|
12 |
+
TCGA-02-0016-01,1,50.0,1.0
|
13 |
+
TCGA-02-0021-01,1,43.0,0.0
|
14 |
+
TCGA-02-0023-01,1,38.0,0.0
|
15 |
+
TCGA-02-0024-01,1,35.0,1.0
|
16 |
+
TCGA-02-0025-01,1,47.0,1.0
|
17 |
+
TCGA-02-0026-01,1,27.0,1.0
|
18 |
+
TCGA-02-0027-01,1,33.0,0.0
|
19 |
+
TCGA-02-0028-01,1,39.0,1.0
|
20 |
+
TCGA-02-0033-01,1,54.0,1.0
|
21 |
+
TCGA-02-0034-01,1,60.0,1.0
|
22 |
+
TCGA-02-0037-01,1,74.0,0.0
|
23 |
+
TCGA-02-0038-01,1,48.0,0.0
|
24 |
+
TCGA-02-0039-01,1,54.0,1.0
|
25 |
+
TCGA-02-0043-01,1,54.0,0.0
|
26 |
+
TCGA-02-0046-01,1,61.0,1.0
|
27 |
+
TCGA-02-0047-01,1,78.0,1.0
|
28 |
+
TCGA-02-0048-01,1,80.0,1.0
|
29 |
+
TCGA-02-0051-01,1,43.0,1.0
|
30 |
+
TCGA-02-0052-01,1,49.0,1.0
|
31 |
+
TCGA-02-0054-01,1,44.0,0.0
|
32 |
+
TCGA-02-0055-01,1,62.0,0.0
|
33 |
+
TCGA-02-0057-01,1,66.0,0.0
|
34 |
+
TCGA-02-0058-01,1,28.0,0.0
|
35 |
+
TCGA-02-0059-01,1,68.0,0.0
|
36 |
+
TCGA-02-0060-01,1,66.0,0.0
|
37 |
+
TCGA-02-0064-01,1,50.0,1.0
|
38 |
+
TCGA-02-0068-01,1,57.0,1.0
|
39 |
+
TCGA-02-0069-01,1,31.0,0.0
|
40 |
+
TCGA-02-0070-01,1,70.0,1.0
|
41 |
+
TCGA-02-0071-01,1,53.0,1.0
|
42 |
+
TCGA-02-0074-01,1,68.0,0.0
|
43 |
+
TCGA-02-0075-01,1,63.0,1.0
|
44 |
+
TCGA-02-0079-01,1,57.0,1.0
|
45 |
+
TCGA-02-0080-01,1,28.0,1.0
|
46 |
+
TCGA-02-0083-01,1,59.0,0.0
|
47 |
+
TCGA-02-0084-01,1,36.0,0.0
|
48 |
+
TCGA-02-0085-01,1,63.0,0.0
|
49 |
+
TCGA-02-0086-01,1,45.0,0.0
|
50 |
+
TCGA-02-0087-01,1,27.0,0.0
|
51 |
+
TCGA-02-0089-01,1,52.0,1.0
|
52 |
+
TCGA-02-0099-01,1,46.0,1.0
|
53 |
+
TCGA-02-0102-01,1,42.0,1.0
|
54 |
+
TCGA-02-0104-01,1,29.0,0.0
|
55 |
+
TCGA-02-0106-01,1,54.0,1.0
|
56 |
+
TCGA-02-0107-01,1,56.0,1.0
|
57 |
+
TCGA-02-0111-01,1,56.0,1.0
|
58 |
+
TCGA-02-0113-01,1,43.0,0.0
|
59 |
+
TCGA-02-0114-01,1,37.0,0.0
|
60 |
+
TCGA-02-0115-01,1,52.0,1.0
|
61 |
+
TCGA-02-0116-01,1,51.0,1.0
|
62 |
+
TCGA-02-0258-01,1,36.0,0.0
|
63 |
+
TCGA-02-0260-01,1,54.0,1.0
|
64 |
+
TCGA-02-0266-01,1,14.0,1.0
|
65 |
+
TCGA-02-0269-01,1,68.0,1.0
|
66 |
+
TCGA-02-0271-01,1,26.0,1.0
|
67 |
+
TCGA-02-0281-01,1,78.0,0.0
|
68 |
+
TCGA-02-0285-01,1,50.0,0.0
|
69 |
+
TCGA-02-0289-01,1,57.0,1.0
|
70 |
+
TCGA-02-0290-01,1,49.0,1.0
|
71 |
+
TCGA-02-0317-01,1,40.0,1.0
|
72 |
+
TCGA-02-0321-01,1,74.0,1.0
|
73 |
+
TCGA-02-0324-01,1,69.0,0.0
|
74 |
+
TCGA-02-0325-01,1,61.0,1.0
|
75 |
+
TCGA-02-0326-01,1,82.0,0.0
|
76 |
+
TCGA-02-0330-01,1,51.0,0.0
|
77 |
+
TCGA-02-0332-01,1,46.0,0.0
|
78 |
+
TCGA-02-0333-01,1,77.0,0.0
|
79 |
+
TCGA-02-0337-01,1,48.0,1.0
|
80 |
+
TCGA-02-0338-01,1,41.0,1.0
|
81 |
+
TCGA-02-0339-01,1,67.0,1.0
|
82 |
+
TCGA-02-0422-01,1,50.0,1.0
|
83 |
+
TCGA-02-0430-01,1,67.0,0.0
|
84 |
+
TCGA-02-0432-01,1,36.0,1.0
|
85 |
+
TCGA-02-0439-01,1,70.0,0.0
|
86 |
+
TCGA-02-0440-01,1,62.0,1.0
|
87 |
+
TCGA-02-0446-01,1,61.0,1.0
|
88 |
+
TCGA-02-0451-01,1,62.0,0.0
|
89 |
+
TCGA-02-0456-01,1,67.0,0.0
|
90 |
+
TCGA-02-2466-01,1,61.0,1.0
|
91 |
+
TCGA-02-2470-01,1,57.0,1.0
|
92 |
+
TCGA-02-2483-01,1,43.0,1.0
|
93 |
+
TCGA-02-2485-01,1,53.0,1.0
|
94 |
+
TCGA-02-2486-01,1,64.0,1.0
|
95 |
+
TCGA-06-0119-01,1,81.0,0.0
|
96 |
+
TCGA-06-0121-01,1,,
|
97 |
+
TCGA-06-0122-01,1,84.0,0.0
|
98 |
+
TCGA-06-0124-01,1,67.0,1.0
|
99 |
+
TCGA-06-0125-01,1,63.0,0.0
|
100 |
+
TCGA-06-0125-02,1,63.0,0.0
|
101 |
+
TCGA-06-0126-01,1,86.0,1.0
|
102 |
+
TCGA-06-0127-01,1,67.0,1.0
|
103 |
+
TCGA-06-0128-01,1,66.0,1.0
|
104 |
+
TCGA-06-0129-01,1,30.0,1.0
|
105 |
+
TCGA-06-0130-01,1,54.0,1.0
|
106 |
+
TCGA-06-0132-01,1,49.0,1.0
|
107 |
+
TCGA-06-0133-01,1,64.0,1.0
|
108 |
+
TCGA-06-0137-01,1,63.0,0.0
|
109 |
+
TCGA-06-0138-01,1,43.0,1.0
|
110 |
+
TCGA-06-0139-01,1,40.0,1.0
|
111 |
+
TCGA-06-0140-01,1,86.0,1.0
|
112 |
+
TCGA-06-0141-01,1,62.0,1.0
|
113 |
+
TCGA-06-0142-01,1,81.0,1.0
|
114 |
+
TCGA-06-0143-01,1,58.0,1.0
|
115 |
+
TCGA-06-0145-01,1,53.0,0.0
|
116 |
+
TCGA-06-0146-01,1,33.0,0.0
|
117 |
+
TCGA-06-0147-01,1,51.0,0.0
|
118 |
+
TCGA-06-0148-01,1,76.0,1.0
|
119 |
+
TCGA-06-0149-01,1,74.0,0.0
|
120 |
+
TCGA-06-0150-01,1,45.0,1.0
|
121 |
+
TCGA-06-0151-01,1,32.0,0.0
|
122 |
+
TCGA-06-0152-01,1,68.0,1.0
|
123 |
+
TCGA-06-0152-02,1,68.0,1.0
|
124 |
+
TCGA-06-0154-01,1,54.0,1.0
|
125 |
+
TCGA-06-0155-01,1,61.0,1.0
|
126 |
+
TCGA-06-0156-01,1,57.0,1.0
|
127 |
+
TCGA-06-0157-01,1,63.0,0.0
|
128 |
+
TCGA-06-0158-01,1,73.0,1.0
|
129 |
+
TCGA-06-0159-01,1,74.0,1.0
|
130 |
+
TCGA-06-0160-01,1,56.0,0.0
|
131 |
+
TCGA-06-0162-01,1,47.0,0.0
|
132 |
+
TCGA-06-0164-01,1,47.0,1.0
|
133 |
+
TCGA-06-0165-01,1,52.0,1.0
|
134 |
+
TCGA-06-0166-01,1,51.0,1.0
|
135 |
+
TCGA-06-0167-01,1,44.0,1.0
|
136 |
+
TCGA-06-0168-01,1,59.0,0.0
|
137 |
+
TCGA-06-0169-01,1,68.0,1.0
|
138 |
+
TCGA-06-0171-01,1,65.0,1.0
|
139 |
+
TCGA-06-0171-02,1,65.0,1.0
|
140 |
+
TCGA-06-0173-01,1,72.0,0.0
|
141 |
+
TCGA-06-0174-01,1,54.0,1.0
|
142 |
+
TCGA-06-0175-01,1,69.0,1.0
|
143 |
+
TCGA-06-0176-01,1,34.0,1.0
|
144 |
+
TCGA-06-0177-01,1,64.0,1.0
|
145 |
+
TCGA-06-0178-01,1,38.0,1.0
|
146 |
+
TCGA-06-0179-01,1,64.0,1.0
|
147 |
+
TCGA-06-0182-01,1,76.0,1.0
|
148 |
+
TCGA-06-0184-01,1,63.0,1.0
|
149 |
+
TCGA-06-0185-01,1,54.0,1.0
|
150 |
+
TCGA-06-0187-01,1,69.0,1.0
|
151 |
+
TCGA-06-0188-01,1,71.0,1.0
|
152 |
+
TCGA-06-0189-01,1,55.0,1.0
|
153 |
+
TCGA-06-0190-01,1,62.0,1.0
|
154 |
+
TCGA-06-0190-02,1,62.0,1.0
|
155 |
+
TCGA-06-0192-01,1,58.0,1.0
|
156 |
+
TCGA-06-0194-01,1,37.0,0.0
|
157 |
+
TCGA-06-0195-01,1,63.0,1.0
|
158 |
+
TCGA-06-0197-01,1,65.0,0.0
|
159 |
+
TCGA-06-0201-01,1,51.0,0.0
|
160 |
+
TCGA-06-0206-01,1,40.0,1.0
|
161 |
+
TCGA-06-0208-01,1,52.0,0.0
|
162 |
+
TCGA-06-0209-01,1,76.0,1.0
|
163 |
+
TCGA-06-0210-01,1,72.0,0.0
|
164 |
+
TCGA-06-0210-02,1,72.0,0.0
|
165 |
+
TCGA-06-0211-01,1,47.0,1.0
|
166 |
+
TCGA-06-0211-02,1,47.0,1.0
|
167 |
+
TCGA-06-0213-01,1,55.0,0.0
|
168 |
+
TCGA-06-0214-01,1,66.0,1.0
|
169 |
+
TCGA-06-0216-01,1,61.0,0.0
|
170 |
+
TCGA-06-0219-01,1,67.0,1.0
|
171 |
+
TCGA-06-0221-01,1,31.0,1.0
|
172 |
+
TCGA-06-0221-02,1,31.0,1.0
|
173 |
+
TCGA-06-0237-01,1,75.0,0.0
|
174 |
+
TCGA-06-0238-01,1,46.0,1.0
|
175 |
+
TCGA-06-0240-01,1,57.0,1.0
|
176 |
+
TCGA-06-0241-01,1,65.0,0.0
|
177 |
+
TCGA-06-0394-01,1,51.0,1.0
|
178 |
+
TCGA-06-0397-01,1,57.0,0.0
|
179 |
+
TCGA-06-0402-01,1,71.0,1.0
|
180 |
+
TCGA-06-0409-01,1,43.0,1.0
|
181 |
+
TCGA-06-0410-01,1,76.0,0.0
|
182 |
+
TCGA-06-0412-01,1,56.0,0.0
|
183 |
+
TCGA-06-0413-01,1,77.0,0.0
|
184 |
+
TCGA-06-0414-01,1,63.0,1.0
|
185 |
+
TCGA-06-0644-01,1,71.0,1.0
|
186 |
+
TCGA-06-0645-01,1,55.0,0.0
|
187 |
+
TCGA-06-0646-01,1,60.0,1.0
|
188 |
+
TCGA-06-0648-01,1,77.0,1.0
|
189 |
+
TCGA-06-0649-01,1,73.0,0.0
|
190 |
+
TCGA-06-0650-01,1,39.0,0.0
|
191 |
+
TCGA-06-0675-11,0,,
|
192 |
+
TCGA-06-0678-11,0,,
|
193 |
+
TCGA-06-0680-11,0,,
|
194 |
+
TCGA-06-0681-11,0,,
|
195 |
+
TCGA-06-0686-01,1,53.0,1.0
|
196 |
+
TCGA-06-0743-01,1,69.0,1.0
|
197 |
+
TCGA-06-0744-01,1,66.0,1.0
|
198 |
+
TCGA-06-0745-01,1,59.0,1.0
|
199 |
+
TCGA-06-0747-01,1,53.0,1.0
|
200 |
+
TCGA-06-0749-01,1,50.0,1.0
|
201 |
+
TCGA-06-0750-01,1,43.0,1.0
|
202 |
+
TCGA-06-0875-01,1,61.0,0.0
|
203 |
+
TCGA-06-0876-01,1,72.0,0.0
|
204 |
+
TCGA-06-0877-01,1,78.0,1.0
|
205 |
+
TCGA-06-0878-01,1,74.0,1.0
|
206 |
+
TCGA-06-0879-01,1,52.0,1.0
|
207 |
+
TCGA-06-0881-01,1,50.0,1.0
|
208 |
+
TCGA-06-0882-01,1,30.0,1.0
|
209 |
+
TCGA-06-0939-01,1,79.0,0.0
|
210 |
+
TCGA-06-1084-01,1,54.0,1.0
|
211 |
+
TCGA-06-1086-01,1,42.0,1.0
|
212 |
+
TCGA-06-1087-01,1,75.0,1.0
|
213 |
+
TCGA-06-1800-01,1,61.0,1.0
|
214 |
+
TCGA-06-1801-01,1,56.0,0.0
|
215 |
+
TCGA-06-1802-01,1,61.0,1.0
|
216 |
+
TCGA-06-1804-01,1,81.0,0.0
|
217 |
+
TCGA-06-1805-01,1,28.0,0.0
|
218 |
+
TCGA-06-1806-01,1,47.0,1.0
|
219 |
+
TCGA-06-2557-01,1,76.0,1.0
|
220 |
+
TCGA-06-2558-01,1,75.0,0.0
|
221 |
+
TCGA-06-2559-01,1,83.0,1.0
|
222 |
+
TCGA-06-2561-01,1,53.0,0.0
|
223 |
+
TCGA-06-2562-01,1,81.0,1.0
|
224 |
+
TCGA-06-2563-01,1,72.0,0.0
|
225 |
+
TCGA-06-2564-01,1,50.0,1.0
|
226 |
+
TCGA-06-2565-01,1,59.0,1.0
|
227 |
+
TCGA-06-2566-01,1,23.0,0.0
|
228 |
+
TCGA-06-2567-01,1,65.0,1.0
|
229 |
+
TCGA-06-2569-01,1,24.0,0.0
|
230 |
+
TCGA-06-2570-01,1,21.0,0.0
|
231 |
+
TCGA-06-5408-01,1,54.0,0.0
|
232 |
+
TCGA-06-5410-01,1,72.0,0.0
|
233 |
+
TCGA-06-5411-01,1,51.0,1.0
|
234 |
+
TCGA-06-5412-01,1,78.0,0.0
|
235 |
+
TCGA-06-5413-01,1,67.0,1.0
|
236 |
+
TCGA-06-5414-01,1,61.0,1.0
|
237 |
+
TCGA-06-5415-01,1,60.0,1.0
|
238 |
+
TCGA-06-5416-01,1,23.0,0.0
|
239 |
+
TCGA-06-5417-01,1,45.0,0.0
|
240 |
+
TCGA-06-5418-01,1,75.0,0.0
|
241 |
+
TCGA-06-5856-01,1,58.0,1.0
|
242 |
+
TCGA-06-5858-01,1,45.0,0.0
|
243 |
+
TCGA-06-5859-01,1,63.0,1.0
|
244 |
+
TCGA-06-6388-01,1,64.0,0.0
|
245 |
+
TCGA-06-6389-01,1,49.0,0.0
|
246 |
+
TCGA-06-6390-01,1,58.0,1.0
|
247 |
+
TCGA-06-6391-01,1,44.0,0.0
|
248 |
+
TCGA-06-6693-01,1,64.0,0.0
|
249 |
+
TCGA-06-6694-01,1,76.0,0.0
|
250 |
+
TCGA-06-6695-01,1,64.0,1.0
|
251 |
+
TCGA-06-6697-01,1,65.0,1.0
|
252 |
+
TCGA-06-6698-01,1,53.0,0.0
|
253 |
+
TCGA-06-6699-01,1,58.0,0.0
|
254 |
+
TCGA-06-6700-01,1,76.0,1.0
|
255 |
+
TCGA-06-6701-01,1,60.0,1.0
|
256 |
+
TCGA-06-A5U0-01,1,21.0,0.0
|
257 |
+
TCGA-06-A5U1-01,1,78.0,0.0
|
258 |
+
TCGA-06-A6S0-01,1,79.0,1.0
|
259 |
+
TCGA-06-A6S1-01,1,53.0,0.0
|
260 |
+
TCGA-06-A7TK-01,1,64.0,1.0
|
261 |
+
TCGA-06-A7TL-01,1,30.0,0.0
|
262 |
+
TCGA-06-AABW-11,0,,
|
263 |
+
TCGA-08-0244-01,1,62.0,1.0
|
264 |
+
TCGA-08-0245-01,1,31.0,0.0
|
265 |
+
TCGA-08-0246-01,1,57.0,0.0
|
266 |
+
TCGA-08-0344-01,1,66.0,1.0
|
267 |
+
TCGA-08-0345-01,1,71.0,0.0
|
268 |
+
TCGA-08-0346-01,1,69.0,1.0
|
269 |
+
TCGA-08-0347-01,1,50.0,1.0
|
270 |
+
TCGA-08-0348-01,1,63.0,1.0
|
271 |
+
TCGA-08-0349-01,1,46.0,1.0
|
272 |
+
TCGA-08-0350-01,1,32.0,1.0
|
273 |
+
TCGA-08-0351-01,1,40.0,1.0
|
274 |
+
TCGA-08-0352-01,1,79.0,1.0
|
275 |
+
TCGA-08-0353-01,1,58.0,1.0
|
276 |
+
TCGA-08-0354-01,1,52.0,0.0
|
277 |
+
TCGA-08-0355-01,1,30.0,0.0
|
278 |
+
TCGA-08-0356-01,1,59.0,0.0
|
279 |
+
TCGA-08-0357-01,1,49.0,1.0
|
280 |
+
TCGA-08-0358-01,1,50.0,1.0
|
281 |
+
TCGA-08-0359-01,1,59.0,0.0
|
282 |
+
TCGA-08-0360-01,1,76.0,1.0
|
283 |
+
TCGA-08-0373-01,1,69.0,1.0
|
284 |
+
TCGA-08-0375-01,1,51.0,0.0
|
285 |
+
TCGA-08-0380-01,1,74.0,0.0
|
286 |
+
TCGA-08-0385-01,1,71.0,1.0
|
287 |
+
TCGA-08-0386-01,1,74.0,1.0
|
288 |
+
TCGA-08-0389-01,1,59.0,1.0
|
289 |
+
TCGA-08-0390-01,1,69.0,1.0
|
290 |
+
TCGA-08-0392-01,1,60.0,1.0
|
291 |
+
TCGA-08-0509-01,1,63.0,1.0
|
292 |
+
TCGA-08-0510-01,1,75.0,1.0
|
293 |
+
TCGA-08-0511-01,1,69.0,1.0
|
294 |
+
TCGA-08-0512-01,1,48.0,1.0
|
295 |
+
TCGA-08-0514-01,1,69.0,0.0
|
296 |
+
TCGA-08-0516-01,1,14.0,1.0
|
297 |
+
TCGA-08-0517-01,1,34.0,0.0
|
298 |
+
TCGA-08-0518-01,1,60.0,0.0
|
299 |
+
TCGA-08-0520-01,1,70.0,1.0
|
300 |
+
TCGA-08-0521-01,1,17.0,1.0
|
301 |
+
TCGA-08-0522-01,1,61.0,1.0
|
302 |
+
TCGA-08-0524-01,1,17.0,0.0
|
303 |
+
TCGA-08-0525-01,1,52.0,1.0
|
304 |
+
TCGA-08-0529-01,1,56.0,0.0
|
305 |
+
TCGA-08-0531-01,1,64.0,1.0
|
306 |
+
TCGA-12-0615-01,1,78.0,0.0
|
307 |
+
TCGA-12-0616-01,1,36.0,0.0
|
308 |
+
TCGA-12-0618-01,1,49.0,1.0
|
309 |
+
TCGA-12-0619-01,1,60.0,1.0
|
310 |
+
TCGA-12-0620-01,1,57.0,1.0
|
311 |
+
TCGA-12-0654-01,1,48.0,0.0
|
312 |
+
TCGA-12-0656-01,1,48.0,0.0
|
313 |
+
TCGA-12-0657-01,1,69.0,1.0
|
314 |
+
TCGA-12-0662-01,1,51.0,1.0
|
315 |
+
TCGA-12-0670-01,1,60.0,1.0
|
316 |
+
TCGA-12-0688-01,1,74.0,1.0
|
317 |
+
TCGA-12-0691-01,1,63.0,1.0
|
318 |
+
TCGA-12-0692-01,1,75.0,0.0
|
319 |
+
TCGA-12-0703-01,1,46.0,1.0
|
320 |
+
TCGA-12-0707-01,1,55.0,1.0
|
321 |
+
TCGA-12-0769-01,1,52.0,1.0
|
322 |
+
TCGA-12-0772-01,1,46.0,1.0
|
323 |
+
TCGA-12-0773-01,1,24.0,1.0
|
324 |
+
TCGA-12-0775-01,1,75.0,0.0
|
325 |
+
TCGA-12-0776-01,1,52.0,1.0
|
326 |
+
TCGA-12-0778-01,1,53.0,1.0
|
327 |
+
TCGA-12-0780-01,1,51.0,0.0
|
328 |
+
TCGA-12-0818-01,1,45.0,0.0
|
329 |
+
TCGA-12-0819-01,1,49.0,0.0
|
330 |
+
TCGA-12-0820-01,1,40.0,1.0
|
331 |
+
TCGA-12-0821-01,1,62.0,1.0
|
332 |
+
TCGA-12-0822-01,1,46.0,1.0
|
333 |
+
TCGA-12-0826-01,1,38.0,0.0
|
334 |
+
TCGA-12-0827-01,1,38.0,0.0
|
335 |
+
TCGA-12-0828-01,1,57.0,1.0
|
336 |
+
TCGA-12-0829-01,1,75.0,1.0
|
337 |
+
TCGA-12-1088-01,1,53.0,0.0
|
338 |
+
TCGA-12-1089-01,1,64.0,1.0
|
339 |
+
TCGA-12-1090-01,1,58.0,1.0
|
340 |
+
TCGA-12-1091-01,1,10.0,0.0
|
341 |
+
TCGA-12-1092-01,1,58.0,1.0
|
342 |
+
TCGA-12-1093-01,1,66.0,0.0
|
343 |
+
TCGA-12-1094-01,1,56.0,1.0
|
344 |
+
TCGA-12-1095-01,1,65.0,0.0
|
345 |
+
TCGA-12-1096-01,1,55.0,1.0
|
346 |
+
TCGA-12-1097-01,1,61.0,1.0
|
347 |
+
TCGA-12-1098-01,1,75.0,0.0
|
348 |
+
TCGA-12-1099-01,1,68.0,0.0
|
349 |
+
TCGA-12-1597-01,1,62.0,0.0
|
350 |
+
TCGA-12-1598-01,1,75.0,0.0
|
351 |
+
TCGA-12-1599-01,1,47.0,0.0
|
352 |
+
TCGA-12-1600-01,1,86.0,1.0
|
353 |
+
TCGA-12-1602-01,1,58.0,1.0
|
354 |
+
TCGA-12-3644-01,1,47.0,0.0
|
355 |
+
TCGA-12-3646-01,1,59.0,0.0
|
356 |
+
TCGA-12-3648-01,1,61.0,0.0
|
357 |
+
TCGA-12-3649-01,1,76.0,1.0
|
358 |
+
TCGA-12-3650-01,1,46.0,1.0
|
359 |
+
TCGA-12-3651-01,1,77.0,1.0
|
360 |
+
TCGA-12-3652-01,1,60.0,1.0
|
361 |
+
TCGA-12-3653-01,1,34.0,0.0
|
362 |
+
TCGA-12-5295-01,1,60.0,0.0
|
363 |
+
TCGA-12-5299-01,1,56.0,0.0
|
364 |
+
TCGA-12-5301-01,1,59.0,1.0
|
365 |
+
TCGA-14-0736-01,1,49.0,1.0
|
366 |
+
TCGA-14-0736-02,1,49.0,1.0
|
367 |
+
TCGA-14-0740-01,1,70.0,1.0
|
368 |
+
TCGA-14-0781-01,1,49.0,1.0
|
369 |
+
TCGA-14-0783-01,1,36.0,0.0
|
370 |
+
TCGA-14-0786-01,1,50.0,0.0
|
371 |
+
TCGA-14-0787-01,1,69.0,1.0
|
372 |
+
TCGA-14-0789-01,1,54.0,1.0
|
373 |
+
TCGA-14-0790-01,1,64.0,0.0
|
374 |
+
TCGA-14-0812-01,1,65.0,1.0
|
375 |
+
TCGA-14-0813-01,1,78.0,1.0
|
376 |
+
TCGA-14-0817-01,1,69.0,0.0
|
377 |
+
TCGA-14-0862-01,1,60.0,1.0
|
378 |
+
TCGA-14-0865-01,1,67.0,1.0
|
379 |
+
TCGA-14-0866-01,1,55.0,1.0
|
380 |
+
TCGA-14-0867-01,1,67.0,1.0
|
381 |
+
TCGA-14-0871-01,1,74.0,0.0
|
382 |
+
TCGA-14-1034-01,1,60.0,0.0
|
383 |
+
TCGA-14-1034-02,1,60.0,0.0
|
384 |
+
TCGA-14-1037-01,1,66.0,0.0
|
385 |
+
TCGA-14-1043-01,1,61.0,1.0
|
386 |
+
TCGA-14-1395-01,1,52.0,1.0
|
387 |
+
TCGA-14-1396-01,1,78.0,0.0
|
388 |
+
TCGA-14-1401-01,1,54.0,1.0
|
389 |
+
TCGA-14-1402-01,1,58.0,0.0
|
390 |
+
TCGA-14-1402-02,1,58.0,0.0
|
391 |
+
TCGA-14-1450-01,1,57.0,0.0
|
392 |
+
TCGA-14-1451-01,1,39.0,1.0
|
393 |
+
TCGA-14-1452-01,1,60.0,1.0
|
394 |
+
TCGA-14-1453-01,1,69.0,1.0
|
395 |
+
TCGA-14-1454-01,1,54.0,0.0
|
396 |
+
TCGA-14-1455-01,1,61.0,1.0
|
397 |
+
TCGA-14-1456-01,1,23.0,1.0
|
398 |
+
TCGA-14-1458-01,1,54.0,1.0
|
399 |
+
TCGA-14-1459-01,1,63.0,0.0
|
400 |
+
TCGA-14-1794-01,1,59.0,1.0
|
401 |
+
TCGA-14-1795-01,1,66.0,1.0
|
402 |
+
TCGA-14-1821-01,1,31.0,1.0
|
403 |
+
TCGA-14-1823-01,1,58.0,0.0
|
404 |
+
TCGA-14-1825-01,1,70.0,1.0
|
405 |
+
TCGA-14-1827-01,1,51.0,1.0
|
406 |
+
TCGA-14-1829-01,1,57.0,1.0
|
407 |
+
TCGA-14-2554-01,1,52.0,0.0
|
408 |
+
TCGA-14-2555-01,1,44.0,0.0
|
409 |
+
TCGA-14-3476-01,1,74.0,1.0
|
410 |
+
TCGA-14-3477-01,1,38.0,0.0
|
411 |
+
TCGA-14-4157-01,1,40.0,1.0
|
412 |
+
TCGA-15-0742-01,1,65.0,1.0
|
413 |
+
TCGA-15-1444-01,1,21.0,1.0
|
414 |
+
TCGA-15-1446-01,1,55.0,1.0
|
415 |
+
TCGA-15-1447-01,1,36.0,0.0
|
416 |
+
TCGA-15-1449-01,1,65.0,1.0
|
417 |
+
TCGA-16-0846-01,1,85.0,1.0
|
418 |
+
TCGA-16-0848-01,1,57.0,1.0
|
419 |
+
TCGA-16-0849-01,1,54.0,1.0
|
420 |
+
TCGA-16-0850-01,1,52.0,0.0
|
421 |
+
TCGA-16-0861-01,1,65.0,1.0
|
422 |
+
TCGA-16-1045-01,1,49.0,0.0
|
423 |
+
TCGA-16-1047-01,1,66.0,0.0
|
424 |
+
TCGA-16-1048-01,1,,
|
425 |
+
TCGA-16-1055-01,1,48.0,1.0
|
426 |
+
TCGA-16-1056-01,1,55.0,1.0
|
427 |
+
TCGA-16-1060-01,1,70.0,0.0
|
428 |
+
TCGA-16-1062-01,1,57.0,0.0
|
429 |
+
TCGA-16-1063-01,1,72.0,1.0
|
430 |
+
TCGA-16-1460-01,1,36.0,0.0
|
431 |
+
TCGA-19-0955-01,1,71.0,1.0
|
432 |
+
TCGA-19-0957-01,1,48.0,0.0
|
433 |
+
TCGA-19-0957-02,1,48.0,0.0
|
434 |
+
TCGA-19-0960-01,1,83.0,0.0
|
435 |
+
TCGA-19-0962-01,1,77.0,0.0
|
436 |
+
TCGA-19-0963-01,1,61.0,1.0
|
437 |
+
TCGA-19-0964-01,1,70.0,1.0
|
438 |
+
TCGA-19-1385-01,1,69.0,1.0
|
439 |
+
TCGA-19-1386-01,1,51.0,1.0
|
440 |
+
TCGA-19-1387-01,1,81.0,1.0
|
441 |
+
TCGA-19-1388-01,1,58.0,1.0
|
442 |
+
TCGA-19-1389-01,1,51.0,1.0
|
443 |
+
TCGA-19-1389-02,1,51.0,1.0
|
444 |
+
TCGA-19-1390-01,1,63.0,0.0
|
445 |
+
TCGA-19-1392-01,1,72.0,0.0
|
446 |
+
TCGA-19-1786-01,1,64.0,0.0
|
447 |
+
TCGA-19-1787-01,1,48.0,1.0
|
448 |
+
TCGA-19-1788-01,1,39.0,1.0
|
449 |
+
TCGA-19-1789-01,1,69.0,0.0
|
450 |
+
TCGA-19-1790-01,1,56.0,1.0
|
451 |
+
TCGA-19-1791-01,1,82.0,0.0
|
452 |
+
TCGA-19-2619-01,1,55.0,0.0
|
453 |
+
TCGA-19-2620-01,1,70.0,1.0
|
454 |
+
TCGA-19-2621-01,1,83.0,1.0
|
455 |
+
TCGA-19-2623-01,1,65.0,1.0
|
456 |
+
TCGA-19-2624-01,1,51.0,1.0
|
457 |
+
TCGA-19-2625-01,1,76.0,0.0
|
458 |
+
TCGA-19-2629-01,1,60.0,1.0
|
459 |
+
TCGA-19-2631-01,1,74.0,0.0
|
460 |
+
TCGA-19-4065-01,1,36.0,1.0
|
461 |
+
TCGA-19-4065-02,1,36.0,1.0
|
462 |
+
TCGA-19-4068-01,1,68.0,0.0
|
463 |
+
TCGA-19-5947-01,1,47.0,0.0
|
464 |
+
TCGA-19-5950-01,1,52.0,0.0
|
465 |
+
TCGA-19-5951-01,1,76.0,0.0
|
466 |
+
TCGA-19-5952-01,1,62.0,1.0
|
467 |
+
TCGA-19-5953-01,1,58.0,1.0
|
468 |
+
TCGA-19-5954-01,1,72.0,0.0
|
469 |
+
TCGA-19-5955-01,1,83.0,1.0
|
470 |
+
TCGA-19-5956-01,1,53.0,0.0
|
471 |
+
TCGA-19-5958-01,1,56.0,1.0
|
472 |
+
TCGA-19-5959-01,1,77.0,0.0
|
473 |
+
TCGA-19-5960-01,1,56.0,1.0
|
474 |
+
TCGA-19-A60I-01,1,39.0,1.0
|
475 |
+
TCGA-19-A6J4-01,1,68.0,1.0
|
476 |
+
TCGA-19-A6J5-01,1,40.0,1.0
|
477 |
+
TCGA-26-1438-01,1,36.0,1.0
|
478 |
+
TCGA-26-1439-01,1,63.0,1.0
|
479 |
+
TCGA-26-1440-01,1,48.0,1.0
|
480 |
+
TCGA-26-1442-01,1,43.0,1.0
|
481 |
+
TCGA-26-1443-01,1,60.0,0.0
|
482 |
+
TCGA-26-1799-01,1,68.0,1.0
|
483 |
+
TCGA-26-5132-01,1,74.0,1.0
|
484 |
+
TCGA-26-5133-01,1,59.0,1.0
|
485 |
+
TCGA-26-5134-01,1,74.0,1.0
|
486 |
+
TCGA-26-5135-01,1,72.0,0.0
|
487 |
+
TCGA-26-5136-01,1,78.0,0.0
|
488 |
+
TCGA-26-5139-01,1,65.0,0.0
|
489 |
+
TCGA-26-6173-01,1,57.0,1.0
|
490 |
+
TCGA-26-6174-01,1,65.0,0.0
|
491 |
+
TCGA-26-A7UX-01,1,47.0,1.0
|
492 |
+
TCGA-27-1830-01,1,57.0,1.0
|
493 |
+
TCGA-27-1831-01,1,66.0,1.0
|
494 |
+
TCGA-27-1832-01,1,59.0,0.0
|
495 |
+
TCGA-27-1833-01,1,67.0,0.0
|
496 |
+
TCGA-27-1834-01,1,56.0,1.0
|
497 |
+
TCGA-27-1835-01,1,53.0,0.0
|
498 |
+
TCGA-27-1836-01,1,33.0,0.0
|
499 |
+
TCGA-27-1837-01,1,36.0,1.0
|
500 |
+
TCGA-27-1838-01,1,59.0,0.0
|
501 |
+
TCGA-27-2518-01,1,52.0,1.0
|
502 |
+
TCGA-27-2519-01,1,48.0,1.0
|
503 |
+
TCGA-27-2521-01,1,34.0,1.0
|
504 |
+
TCGA-27-2523-01,1,63.0,1.0
|
505 |
+
TCGA-27-2524-01,1,56.0,1.0
|
506 |
+
TCGA-27-2526-01,1,79.0,0.0
|
507 |
+
TCGA-27-2527-01,1,81.0,1.0
|
508 |
+
TCGA-27-2528-01,1,62.0,1.0
|
509 |
+
TCGA-28-1745-01,1,76.0,1.0
|
510 |
+
TCGA-28-1746-01,1,77.0,0.0
|
511 |
+
TCGA-28-1747-01,1,44.0,1.0
|
512 |
+
TCGA-28-1749-01,1,73.0,1.0
|
513 |
+
TCGA-28-1750-01,1,40.0,0.0
|
514 |
+
TCGA-28-1751-01,1,61.0,0.0
|
515 |
+
TCGA-28-1752-01,1,42.0,0.0
|
516 |
+
TCGA-28-1753-01,1,53.0,1.0
|
517 |
+
TCGA-28-1755-01,1,52.0,0.0
|
518 |
+
TCGA-28-1756-01,1,78.0,1.0
|
519 |
+
TCGA-28-1757-01,1,71.0,1.0
|
520 |
+
TCGA-28-1760-01,1,48.0,1.0
|
521 |
+
TCGA-28-2499-01,1,59.0,1.0
|
522 |
+
TCGA-28-2501-01,1,,
|
523 |
+
TCGA-28-2502-01,1,65.0,1.0
|
524 |
+
TCGA-28-2506-01,1,63.0,0.0
|
525 |
+
TCGA-28-2509-01,1,77.0,0.0
|
526 |
+
TCGA-28-2510-01,1,,
|
527 |
+
TCGA-28-2513-01,1,69.0,0.0
|
528 |
+
TCGA-28-2514-01,1,45.0,1.0
|
529 |
+
TCGA-28-5204-01,1,72.0,1.0
|
530 |
+
TCGA-28-5207-01,1,71.0,1.0
|
531 |
+
TCGA-28-5208-01,1,52.0,1.0
|
532 |
+
TCGA-28-5209-01,1,66.0,0.0
|
533 |
+
TCGA-28-5211-01,1,42.0,1.0
|
534 |
+
TCGA-28-5213-01,1,72.0,1.0
|
535 |
+
TCGA-28-5214-01,1,53.0,1.0
|
536 |
+
TCGA-28-5215-01,1,62.0,0.0
|
537 |
+
TCGA-28-5216-01,1,52.0,1.0
|
538 |
+
TCGA-28-5218-01,1,63.0,1.0
|
539 |
+
TCGA-28-5219-01,1,47.0,0.0
|
540 |
+
TCGA-28-5220-01,1,67.0,1.0
|
541 |
+
TCGA-28-6450-01,1,60.0,1.0
|
542 |
+
TCGA-32-1970-01,1,59.0,1.0
|
543 |
+
TCGA-32-1973-01,1,21.0,1.0
|
544 |
+
TCGA-32-1976-01,1,65.0,1.0
|
545 |
+
TCGA-32-1977-01,1,63.0,0.0
|
546 |
+
TCGA-32-1978-01,1,57.0,1.0
|
547 |
+
TCGA-32-1979-01,1,69.0,0.0
|
548 |
+
TCGA-32-1980-01,1,72.0,1.0
|
549 |
+
TCGA-32-1982-01,1,76.0,0.0
|
550 |
+
TCGA-32-1986-01,1,68.0,1.0
|
551 |
+
TCGA-32-1987-01,1,49.0,0.0
|
552 |
+
TCGA-32-1991-01,1,60.0,1.0
|
553 |
+
TCGA-32-2491-01,1,63.0,1.0
|
554 |
+
TCGA-32-2494-01,1,58.0,0.0
|
555 |
+
TCGA-32-2495-01,1,59.0,0.0
|
556 |
+
TCGA-32-2498-01,1,,
|
557 |
+
TCGA-32-2615-01,1,62.0,1.0
|
558 |
+
TCGA-32-2616-01,1,48.0,0.0
|
559 |
+
TCGA-32-2632-01,1,80.0,1.0
|
560 |
+
TCGA-32-2634-01,1,82.0,1.0
|
561 |
+
TCGA-32-2638-01,1,67.0,1.0
|
562 |
+
TCGA-32-4208-01,1,25.0,1.0
|
563 |
+
TCGA-32-4209-01,1,40.0,1.0
|
564 |
+
TCGA-32-4210-01,1,73.0,1.0
|
565 |
+
TCGA-32-4211-01,1,56.0,1.0
|
566 |
+
TCGA-32-4213-01,1,47.0,0.0
|
567 |
+
TCGA-32-4719-01,1,73.0,1.0
|
568 |
+
TCGA-32-5222-01,1,66.0,1.0
|
569 |
+
TCGA-41-2571-01,1,89.0,1.0
|
570 |
+
TCGA-41-2572-01,1,67.0,1.0
|
571 |
+
TCGA-41-2573-01,1,59.0,1.0
|
572 |
+
TCGA-41-2575-01,1,75.0,1.0
|
573 |
+
TCGA-41-3392-01,1,88.0,1.0
|
574 |
+
TCGA-41-3393-01,1,81.0,0.0
|
575 |
+
TCGA-41-3915-01,1,48.0,1.0
|
576 |
+
TCGA-41-4097-01,1,63.0,0.0
|
577 |
+
TCGA-41-5651-01,1,59.0,0.0
|
578 |
+
TCGA-41-6646-01,1,73.0,0.0
|
579 |
+
TCGA-4W-AA9R-01,1,61.0,1.0
|
580 |
+
TCGA-4W-AA9S-01,1,69.0,1.0
|
581 |
+
TCGA-4W-AA9T-01,1,54.0,0.0
|
582 |
+
TCGA-74-6573-01,1,67.0,1.0
|
583 |
+
TCGA-74-6573-11,0,67.0,1.0
|
584 |
+
TCGA-74-6575-01,1,73.0,0.0
|
585 |
+
TCGA-74-6577-01,1,51.0,1.0
|
586 |
+
TCGA-74-6578-01,1,58.0,1.0
|
587 |
+
TCGA-74-6581-01,1,77.0,1.0
|
588 |
+
TCGA-74-6584-01,1,55.0,0.0
|
589 |
+
TCGA-76-4925-01,1,76.0,1.0
|
590 |
+
TCGA-76-4926-01,1,68.0,1.0
|
591 |
+
TCGA-76-4927-01,1,58.0,1.0
|
592 |
+
TCGA-76-4928-01,1,85.0,0.0
|
593 |
+
TCGA-76-4929-01,1,76.0,0.0
|
594 |
+
TCGA-76-4931-01,1,70.0,0.0
|
595 |
+
TCGA-76-4932-01,1,50.0,0.0
|
596 |
+
TCGA-76-4934-01,1,66.0,0.0
|
597 |
+
TCGA-76-4935-01,1,52.0,0.0
|
598 |
+
TCGA-76-6191-01,1,57.0,1.0
|
599 |
+
TCGA-76-6192-01,1,74.0,1.0
|
600 |
+
TCGA-76-6193-01,1,78.0,1.0
|
601 |
+
TCGA-76-6280-01,1,57.0,1.0
|
602 |
+
TCGA-76-6282-01,1,63.0,1.0
|
603 |
+
TCGA-76-6283-01,1,71.0,0.0
|
604 |
+
TCGA-76-6285-01,1,64.0,0.0
|
605 |
+
TCGA-76-6286-01,1,60.0,1.0
|
606 |
+
TCGA-76-6656-01,1,66.0,1.0
|
607 |
+
TCGA-76-6657-01,1,74.0,1.0
|
608 |
+
TCGA-76-6660-01,1,73.0,1.0
|
609 |
+
TCGA-76-6661-01,1,54.0,1.0
|
610 |
+
TCGA-76-6662-01,1,58.0,1.0
|
611 |
+
TCGA-76-6663-01,1,44.0,0.0
|
612 |
+
TCGA-76-6664-01,1,49.0,0.0
|
613 |
+
TCGA-81-5910-01,1,64.0,1.0
|
614 |
+
TCGA-81-5911-01,1,33.0,1.0
|
615 |
+
TCGA-87-5896-01,1,50.0,0.0
|
616 |
+
TCGA-CS-4938-01,1,31.0,0.0
|
617 |
+
TCGA-CS-4941-01,1,67.0,1.0
|
618 |
+
TCGA-CS-4942-01,1,44.0,0.0
|
619 |
+
TCGA-CS-4943-01,1,37.0,1.0
|
620 |
+
TCGA-CS-4944-01,1,50.0,1.0
|
621 |
+
TCGA-CS-5390-01,1,47.0,0.0
|
622 |
+
TCGA-CS-5393-01,1,39.0,1.0
|
623 |
+
TCGA-CS-5394-01,1,40.0,1.0
|
624 |
+
TCGA-CS-5395-01,1,43.0,1.0
|
625 |
+
TCGA-CS-5396-01,1,53.0,0.0
|
626 |
+
TCGA-CS-5397-01,1,54.0,0.0
|
627 |
+
TCGA-CS-6186-01,1,58.0,1.0
|
628 |
+
TCGA-CS-6188-01,1,48.0,1.0
|
629 |
+
TCGA-CS-6290-01,1,31.0,1.0
|
630 |
+
TCGA-CS-6665-01,1,51.0,0.0
|
631 |
+
TCGA-CS-6666-01,1,22.0,1.0
|
632 |
+
TCGA-CS-6667-01,1,39.0,0.0
|
633 |
+
TCGA-CS-6668-01,1,57.0,0.0
|
634 |
+
TCGA-CS-6669-01,1,26.0,0.0
|
635 |
+
TCGA-CS-6670-01,1,43.0,1.0
|
636 |
+
TCGA-DB-5270-01,1,38.0,0.0
|
637 |
+
TCGA-DB-5273-01,1,33.0,1.0
|
638 |
+
TCGA-DB-5274-01,1,37.0,0.0
|
639 |
+
TCGA-DB-5275-01,1,36.0,1.0
|
640 |
+
TCGA-DB-5276-01,1,32.0,1.0
|
641 |
+
TCGA-DB-5277-01,1,34.0,1.0
|
642 |
+
TCGA-DB-5278-01,1,17.0,1.0
|
643 |
+
TCGA-DB-5279-01,1,59.0,1.0
|
644 |
+
TCGA-DB-5280-01,1,43.0,1.0
|
645 |
+
TCGA-DB-5281-01,1,61.0,1.0
|
646 |
+
TCGA-DB-A4X9-01,1,33.0,0.0
|
647 |
+
TCGA-DB-A4XA-01,1,30.0,1.0
|
648 |
+
TCGA-DB-A4XB-01,1,38.0,1.0
|
649 |
+
TCGA-DB-A4XC-01,1,26.0,1.0
|
650 |
+
TCGA-DB-A4XD-01,1,32.0,1.0
|
651 |
+
TCGA-DB-A4XE-01,1,27.0,0.0
|
652 |
+
TCGA-DB-A4XF-01,1,41.0,0.0
|
653 |
+
TCGA-DB-A4XG-01,1,34.0,1.0
|
654 |
+
TCGA-DB-A4XH-01,1,53.0,0.0
|
655 |
+
TCGA-DB-A64L-01,1,67.0,0.0
|
656 |
+
TCGA-DB-A64O-01,1,59.0,1.0
|
657 |
+
TCGA-DB-A64P-01,1,40.0,1.0
|
658 |
+
TCGA-DB-A64Q-01,1,31.0,0.0
|
659 |
+
TCGA-DB-A64R-01,1,24.0,0.0
|
660 |
+
TCGA-DB-A64S-01,1,20.0,1.0
|
661 |
+
TCGA-DB-A64U-01,1,38.0,0.0
|
662 |
+
TCGA-DB-A64V-01,1,54.0,1.0
|
663 |
+
TCGA-DB-A64W-01,1,65.0,0.0
|
664 |
+
TCGA-DB-A64X-01,1,56.0,0.0
|
665 |
+
TCGA-DB-A75K-01,1,55.0,0.0
|
666 |
+
TCGA-DB-A75L-01,1,36.0,0.0
|
667 |
+
TCGA-DB-A75M-01,1,47.0,1.0
|
668 |
+
TCGA-DB-A75O-01,1,29.0,1.0
|
669 |
+
TCGA-DB-A75P-01,1,25.0,0.0
|
670 |
+
TCGA-DH-5140-01,1,38.0,0.0
|
671 |
+
TCGA-DH-5141-01,1,32.0,1.0
|
672 |
+
TCGA-DH-5142-01,1,29.0,1.0
|
673 |
+
TCGA-DH-5143-01,1,30.0,1.0
|
674 |
+
TCGA-DH-5144-01,1,56.0,0.0
|
675 |
+
TCGA-DH-A669-01,1,70.0,1.0
|
676 |
+
TCGA-DH-A669-02,1,70.0,1.0
|
677 |
+
TCGA-DH-A66B-01,1,52.0,1.0
|
678 |
+
TCGA-DH-A66D-01,1,43.0,0.0
|
679 |
+
TCGA-DH-A66F-01,1,49.0,1.0
|
680 |
+
TCGA-DH-A66G-01,1,49.0,0.0
|
681 |
+
TCGA-DH-A7UR-01,1,59.0,0.0
|
682 |
+
TCGA-DH-A7US-01,1,50.0,1.0
|
683 |
+
TCGA-DH-A7UT-01,1,30.0,1.0
|
684 |
+
TCGA-DH-A7UU-01,1,43.0,1.0
|
685 |
+
TCGA-DH-A7UV-01,1,49.0,1.0
|
686 |
+
TCGA-DU-5847-01,1,34.0,0.0
|
687 |
+
TCGA-DU-5849-01,1,48.0,1.0
|
688 |
+
TCGA-DU-5851-01,1,40.0,0.0
|
689 |
+
TCGA-DU-5852-01,1,61.0,0.0
|
690 |
+
TCGA-DU-5853-01,1,29.0,1.0
|
691 |
+
TCGA-DU-5854-01,1,57.0,0.0
|
692 |
+
TCGA-DU-5855-01,1,49.0,0.0
|
693 |
+
TCGA-DU-5870-01,1,34.0,0.0
|
694 |
+
TCGA-DU-5870-02,1,34.0,0.0
|
695 |
+
TCGA-DU-5871-01,1,37.0,0.0
|
696 |
+
TCGA-DU-5872-01,1,43.0,0.0
|
697 |
+
TCGA-DU-5872-02,1,43.0,0.0
|
698 |
+
TCGA-DU-5874-01,1,62.0,0.0
|
699 |
+
TCGA-DU-6392-01,1,35.0,0.0
|
700 |
+
TCGA-DU-6393-01,1,66.0,1.0
|
701 |
+
TCGA-DU-6394-01,1,53.0,1.0
|
702 |
+
TCGA-DU-6395-01,1,31.0,1.0
|
703 |
+
TCGA-DU-6396-01,1,31.0,0.0
|
704 |
+
TCGA-DU-6397-01,1,45.0,1.0
|
705 |
+
TCGA-DU-6397-02,1,45.0,1.0
|
706 |
+
TCGA-DU-6399-01,1,54.0,1.0
|
707 |
+
TCGA-DU-6400-01,1,66.0,0.0
|
708 |
+
TCGA-DU-6401-01,1,31.0,0.0
|
709 |
+
TCGA-DU-6402-01,1,52.0,1.0
|
710 |
+
TCGA-DU-6403-01,1,60.0,0.0
|
711 |
+
TCGA-DU-6404-01,1,24.0,0.0
|
712 |
+
TCGA-DU-6404-02,1,24.0,0.0
|
713 |
+
TCGA-DU-6405-01,1,51.0,0.0
|
714 |
+
TCGA-DU-6406-01,1,59.0,0.0
|
715 |
+
TCGA-DU-6407-01,1,35.0,0.0
|
716 |
+
TCGA-DU-6407-02,1,35.0,0.0
|
717 |
+
TCGA-DU-6408-01,1,23.0,0.0
|
718 |
+
TCGA-DU-6410-01,1,56.0,1.0
|
719 |
+
TCGA-DU-6542-01,1,25.0,1.0
|
720 |
+
TCGA-DU-7006-01,1,60.0,0.0
|
721 |
+
TCGA-DU-7007-01,1,33.0,1.0
|
722 |
+
TCGA-DU-7008-01,1,41.0,0.0
|
723 |
+
TCGA-DU-7009-01,1,32.0,0.0
|
724 |
+
TCGA-DU-7010-01,1,58.0,0.0
|
725 |
+
TCGA-DU-7011-01,1,25.0,1.0
|
726 |
+
TCGA-DU-7012-01,1,74.0,0.0
|
727 |
+
TCGA-DU-7013-01,1,59.0,1.0
|
728 |
+
TCGA-DU-7014-01,1,59.0,1.0
|
729 |
+
TCGA-DU-7015-01,1,41.0,0.0
|
730 |
+
TCGA-DU-7018-01,1,57.0,0.0
|
731 |
+
TCGA-DU-7019-01,1,39.0,1.0
|
732 |
+
TCGA-DU-7290-01,1,45.0,0.0
|
733 |
+
TCGA-DU-7292-01,1,69.0,1.0
|
734 |
+
TCGA-DU-7294-01,1,53.0,0.0
|
735 |
+
TCGA-DU-7298-01,1,38.0,0.0
|
736 |
+
TCGA-DU-7299-01,1,33.0,1.0
|
737 |
+
TCGA-DU-7300-01,1,53.0,0.0
|
738 |
+
TCGA-DU-7301-01,1,53.0,1.0
|
739 |
+
TCGA-DU-7302-01,1,48.0,0.0
|
740 |
+
TCGA-DU-7304-01,1,43.0,1.0
|
741 |
+
TCGA-DU-7304-02,1,43.0,1.0
|
742 |
+
TCGA-DU-7306-01,1,67.0,1.0
|
743 |
+
TCGA-DU-7309-01,1,41.0,0.0
|
744 |
+
TCGA-DU-8158-01,1,57.0,0.0
|
745 |
+
TCGA-DU-8161-01,1,63.0,0.0
|
746 |
+
TCGA-DU-8162-01,1,61.0,0.0
|
747 |
+
TCGA-DU-8163-01,1,29.0,1.0
|
748 |
+
TCGA-DU-8164-01,1,51.0,1.0
|
749 |
+
TCGA-DU-8165-01,1,60.0,0.0
|
750 |
+
TCGA-DU-8166-01,1,29.0,0.0
|
751 |
+
TCGA-DU-8167-01,1,69.0,0.0
|
752 |
+
TCGA-DU-8168-01,1,55.0,0.0
|
753 |
+
TCGA-DU-A5TP-01,1,33.0,1.0
|
754 |
+
TCGA-DU-A5TR-01,1,51.0,1.0
|
755 |
+
TCGA-DU-A5TS-01,1,42.0,1.0
|
756 |
+
TCGA-DU-A5TT-01,1,70.0,1.0
|
757 |
+
TCGA-DU-A5TU-01,1,62.0,0.0
|
758 |
+
TCGA-DU-A5TW-01,1,33.0,0.0
|
759 |
+
TCGA-DU-A5TY-01,1,46.0,0.0
|
760 |
+
TCGA-DU-A6S2-01,1,37.0,0.0
|
761 |
+
TCGA-DU-A6S3-01,1,60.0,1.0
|
762 |
+
TCGA-DU-A6S6-01,1,35.0,0.0
|
763 |
+
TCGA-DU-A6S7-01,1,27.0,0.0
|
764 |
+
TCGA-DU-A6S8-01,1,74.0,0.0
|
765 |
+
TCGA-DU-A76K-01,1,87.0,1.0
|
766 |
+
TCGA-DU-A76L-01,1,54.0,1.0
|
767 |
+
TCGA-DU-A76O-01,1,30.0,1.0
|
768 |
+
TCGA-DU-A76R-01,1,51.0,1.0
|
769 |
+
TCGA-DU-A7T6-01,1,73.0,0.0
|
770 |
+
TCGA-DU-A7T8-01,1,35.0,1.0
|
771 |
+
TCGA-DU-A7TA-01,1,32.0,1.0
|
772 |
+
TCGA-DU-A7TB-01,1,56.0,1.0
|
773 |
+
TCGA-DU-A7TC-01,1,32.0,1.0
|
774 |
+
TCGA-DU-A7TD-01,1,52.0,1.0
|
775 |
+
TCGA-DU-A7TG-01,1,40.0,1.0
|
776 |
+
TCGA-DU-A7TI-01,1,32.0,1.0
|
777 |
+
TCGA-DU-A7TJ-01,1,55.0,1.0
|
778 |
+
TCGA-E1-5302-01,1,41.0,1.0
|
779 |
+
TCGA-E1-5303-01,1,38.0,1.0
|
780 |
+
TCGA-E1-5304-01,1,42.0,1.0
|
781 |
+
TCGA-E1-5305-01,1,34.0,1.0
|
782 |
+
TCGA-E1-5307-01,1,62.0,0.0
|
783 |
+
TCGA-E1-5311-01,1,31.0,1.0
|
784 |
+
TCGA-E1-5318-01,1,42.0,0.0
|
785 |
+
TCGA-E1-5319-01,1,48.0,0.0
|
786 |
+
TCGA-E1-5322-01,1,38.0,0.0
|
787 |
+
TCGA-E1-A7YD-01,1,57.0,1.0
|
788 |
+
TCGA-E1-A7YE-01,1,32.0,0.0
|
789 |
+
TCGA-E1-A7YH-01,1,47.0,0.0
|
790 |
+
TCGA-E1-A7YI-01,1,33.0,0.0
|
791 |
+
TCGA-E1-A7YJ-01,1,55.0,1.0
|
792 |
+
TCGA-E1-A7YK-01,1,52.0,1.0
|
793 |
+
TCGA-E1-A7YL-01,1,46.0,1.0
|
794 |
+
TCGA-E1-A7YM-01,1,63.0,1.0
|
795 |
+
TCGA-E1-A7YN-01,1,63.0,0.0
|
796 |
+
TCGA-E1-A7YO-01,1,45.0,1.0
|
797 |
+
TCGA-E1-A7YQ-01,1,58.0,0.0
|
798 |
+
TCGA-E1-A7YS-01,1,71.0,1.0
|
799 |
+
TCGA-E1-A7YU-01,1,42.0,1.0
|
800 |
+
TCGA-E1-A7YV-01,1,26.0,0.0
|
801 |
+
TCGA-E1-A7YW-01,1,28.0,1.0
|
802 |
+
TCGA-E1-A7YY-01,1,27.0,0.0
|
803 |
+
TCGA-E1-A7Z2-01,1,58.0,0.0
|
804 |
+
TCGA-E1-A7Z3-01,1,31.0,0.0
|
805 |
+
TCGA-E1-A7Z4-01,1,35.0,1.0
|
806 |
+
TCGA-E1-A7Z6-01,1,41.0,0.0
|
807 |
+
TCGA-EZ-7264-01,1,47.0,0.0
|
808 |
+
TCGA-F6-A8O3-01,1,34.0,1.0
|
809 |
+
TCGA-F6-A8O4-01,1,44.0,1.0
|
810 |
+
TCGA-FG-5962-01,1,54.0,1.0
|
811 |
+
TCGA-FG-5963-01,1,23.0,1.0
|
812 |
+
TCGA-FG-5963-02,1,23.0,1.0
|
813 |
+
TCGA-FG-5964-01,1,62.0,1.0
|
814 |
+
TCGA-FG-5965-01,1,39.0,0.0
|
815 |
+
TCGA-FG-5965-02,1,39.0,0.0
|
816 |
+
TCGA-FG-6688-01,1,59.0,0.0
|
817 |
+
TCGA-FG-6689-01,1,30.0,1.0
|
818 |
+
TCGA-FG-6690-01,1,70.0,1.0
|
819 |
+
TCGA-FG-6691-01,1,23.0,0.0
|
820 |
+
TCGA-FG-6692-01,1,63.0,1.0
|
821 |
+
TCGA-FG-7634-01,1,28.0,1.0
|
822 |
+
TCGA-FG-7636-01,1,48.0,1.0
|
823 |
+
TCGA-FG-7637-01,1,49.0,1.0
|
824 |
+
TCGA-FG-7638-01,1,31.0,0.0
|
825 |
+
TCGA-FG-7641-01,1,31.0,1.0
|
826 |
+
TCGA-FG-7643-01,1,49.0,0.0
|
827 |
+
TCGA-FG-8181-01,1,23.0,1.0
|
828 |
+
TCGA-FG-8182-01,1,35.0,1.0
|
829 |
+
TCGA-FG-8185-01,1,37.0,1.0
|
830 |
+
TCGA-FG-8186-01,1,42.0,0.0
|
831 |
+
TCGA-FG-8187-01,1,31.0,1.0
|
832 |
+
TCGA-FG-8188-01,1,41.0,1.0
|
833 |
+
TCGA-FG-8189-01,1,33.0,0.0
|
834 |
+
TCGA-FG-8191-01,1,30.0,1.0
|
835 |
+
TCGA-FG-A4MT-01,1,27.0,0.0
|
836 |
+
TCGA-FG-A4MT-02,1,27.0,0.0
|
837 |
+
TCGA-FG-A4MU-01,1,58.0,1.0
|
838 |
+
TCGA-FG-A4MW-01,1,63.0,1.0
|
839 |
+
TCGA-FG-A4MX-01,1,47.0,1.0
|
840 |
+
TCGA-FG-A4MY-01,1,44.0,0.0
|
841 |
+
TCGA-FG-A60J-01,1,47.0,0.0
|
842 |
+
TCGA-FG-A60K-01,1,34.0,0.0
|
843 |
+
TCGA-FG-A60L-01,1,34.0,0.0
|
844 |
+
TCGA-FG-A6IZ-01,1,60.0,1.0
|
845 |
+
TCGA-FG-A6J1-01,1,44.0,0.0
|
846 |
+
TCGA-FG-A6J3-01,1,52.0,0.0
|
847 |
+
TCGA-FG-A70Y-01,1,20.0,0.0
|
848 |
+
TCGA-FG-A70Z-01,1,53.0,0.0
|
849 |
+
TCGA-FG-A710-01,1,50.0,0.0
|
850 |
+
TCGA-FG-A711-01,1,33.0,0.0
|
851 |
+
TCGA-FG-A713-01,1,74.0,0.0
|
852 |
+
TCGA-FG-A87N-01,1,37.0,0.0
|
853 |
+
TCGA-FG-A87Q-01,1,61.0,0.0
|
854 |
+
TCGA-FN-7833-01,1,25.0,1.0
|
855 |
+
TCGA-HT-7467-01,1,54.0,1.0
|
856 |
+
TCGA-HT-7468-01,1,30.0,1.0
|
857 |
+
TCGA-HT-7469-01,1,30.0,1.0
|
858 |
+
TCGA-HT-7470-01,1,37.0,1.0
|
859 |
+
TCGA-HT-7471-01,1,37.0,0.0
|
860 |
+
TCGA-HT-7472-01,1,38.0,1.0
|
861 |
+
TCGA-HT-7473-01,1,28.0,1.0
|
862 |
+
TCGA-HT-7474-01,1,52.0,1.0
|
863 |
+
TCGA-HT-7475-01,1,67.0,1.0
|
864 |
+
TCGA-HT-7476-01,1,26.0,1.0
|
865 |
+
TCGA-HT-7477-01,1,62.0,1.0
|
866 |
+
TCGA-HT-7478-01,1,36.0,1.0
|
867 |
+
TCGA-HT-7479-01,1,44.0,1.0
|
868 |
+
TCGA-HT-7480-01,1,33.0,1.0
|
869 |
+
TCGA-HT-7481-01,1,39.0,1.0
|
870 |
+
TCGA-HT-7482-01,1,18.0,0.0
|
871 |
+
TCGA-HT-7483-01,1,14.0,1.0
|
872 |
+
TCGA-HT-7485-01,1,42.0,1.0
|
873 |
+
TCGA-HT-7601-01,1,30.0,0.0
|
874 |
+
TCGA-HT-7602-01,1,21.0,1.0
|
875 |
+
TCGA-HT-7603-01,1,29.0,1.0
|
876 |
+
TCGA-HT-7604-01,1,50.0,1.0
|
877 |
+
TCGA-HT-7605-01,1,38.0,1.0
|
878 |
+
TCGA-HT-7606-01,1,30.0,0.0
|
879 |
+
TCGA-HT-7607-01,1,61.0,0.0
|
880 |
+
TCGA-HT-7608-01,1,61.0,1.0
|
881 |
+
TCGA-HT-7609-01,1,34.0,1.0
|
882 |
+
TCGA-HT-7610-01,1,25.0,0.0
|
883 |
+
TCGA-HT-7611-01,1,36.0,1.0
|
884 |
+
TCGA-HT-7616-01,1,75.0,1.0
|
885 |
+
TCGA-HT-7620-01,1,40.0,1.0
|
886 |
+
TCGA-HT-7676-01,1,26.0,1.0
|
887 |
+
TCGA-HT-7677-01,1,53.0,1.0
|
888 |
+
TCGA-HT-7680-01,1,32.0,0.0
|
889 |
+
TCGA-HT-7681-01,1,29.0,0.0
|
890 |
+
TCGA-HT-7684-01,1,58.0,1.0
|
891 |
+
TCGA-HT-7686-01,1,29.0,0.0
|
892 |
+
TCGA-HT-7687-01,1,74.0,1.0
|
893 |
+
TCGA-HT-7688-01,1,59.0,1.0
|
894 |
+
TCGA-HT-7689-01,1,58.0,0.0
|
895 |
+
TCGA-HT-7690-01,1,29.0,1.0
|
896 |
+
TCGA-HT-7691-01,1,31.0,0.0
|
897 |
+
TCGA-HT-7692-01,1,43.0,1.0
|
898 |
+
TCGA-HT-7693-01,1,51.0,0.0
|
899 |
+
TCGA-HT-7694-01,1,60.0,1.0
|
900 |
+
TCGA-HT-7695-01,1,29.0,0.0
|
901 |
+
TCGA-HT-7854-01,1,62.0,1.0
|
902 |
+
TCGA-HT-7855-01,1,39.0,1.0
|
903 |
+
TCGA-HT-7856-01,1,35.0,1.0
|
904 |
+
TCGA-HT-7857-01,1,24.0,0.0
|
905 |
+
TCGA-HT-7858-01,1,28.0,1.0
|
906 |
+
TCGA-HT-7860-01,1,60.0,0.0
|
907 |
+
TCGA-HT-7873-01,1,29.0,1.0
|
908 |
+
TCGA-HT-7874-01,1,41.0,0.0
|
909 |
+
TCGA-HT-7875-01,1,56.0,1.0
|
910 |
+
TCGA-HT-7877-01,1,20.0,0.0
|
911 |
+
TCGA-HT-7879-01,1,31.0,1.0
|
912 |
+
TCGA-HT-7880-01,1,30.0,1.0
|
913 |
+
TCGA-HT-7881-01,1,38.0,1.0
|
914 |
+
TCGA-HT-7882-01,1,66.0,1.0
|
915 |
+
TCGA-HT-7884-01,1,44.0,0.0
|
916 |
+
TCGA-HT-7902-01,1,30.0,0.0
|
917 |
+
TCGA-HT-8010-01,1,64.0,0.0
|
918 |
+
TCGA-HT-8011-01,1,55.0,1.0
|
919 |
+
TCGA-HT-8012-01,1,30.0,0.0
|
920 |
+
TCGA-HT-8013-01,1,37.0,0.0
|
921 |
+
TCGA-HT-8015-01,1,21.0,1.0
|
922 |
+
TCGA-HT-8018-01,1,40.0,0.0
|
923 |
+
TCGA-HT-8019-01,1,34.0,0.0
|
924 |
+
TCGA-HT-8104-01,1,51.0,0.0
|
925 |
+
TCGA-HT-8105-01,1,54.0,1.0
|
926 |
+
TCGA-HT-8106-01,1,53.0,1.0
|
927 |
+
TCGA-HT-8107-01,1,62.0,1.0
|
928 |
+
TCGA-HT-8108-01,1,26.0,0.0
|
929 |
+
TCGA-HT-8109-01,1,64.0,1.0
|
930 |
+
TCGA-HT-8110-01,1,57.0,1.0
|
931 |
+
TCGA-HT-8111-01,1,32.0,1.0
|
932 |
+
TCGA-HT-8113-01,1,49.0,0.0
|
933 |
+
TCGA-HT-8114-01,1,36.0,1.0
|
934 |
+
TCGA-HT-8558-01,1,29.0,0.0
|
935 |
+
TCGA-HT-8563-01,1,30.0,0.0
|
936 |
+
TCGA-HT-8564-01,1,47.0,1.0
|
937 |
+
TCGA-HT-A4DS-01,1,55.0,0.0
|
938 |
+
TCGA-HT-A4DV-01,1,51.0,0.0
|
939 |
+
TCGA-HT-A5R5-01,1,33.0,0.0
|
940 |
+
TCGA-HT-A5R7-01,1,33.0,0.0
|
941 |
+
TCGA-HT-A5R9-01,1,48.0,0.0
|
942 |
+
TCGA-HT-A5RA-01,1,65.0,0.0
|
943 |
+
TCGA-HT-A5RB-01,1,24.0,1.0
|
944 |
+
TCGA-HT-A5RC-01,1,70.0,0.0
|
945 |
+
TCGA-HT-A614-01,1,47.0,1.0
|
946 |
+
TCGA-HT-A615-01,1,38.0,0.0
|
947 |
+
TCGA-HT-A616-01,1,36.0,0.0
|
948 |
+
TCGA-HT-A617-01,1,47.0,1.0
|
949 |
+
TCGA-HT-A618-01,1,37.0,0.0
|
950 |
+
TCGA-HT-A619-01,1,51.0,0.0
|
951 |
+
TCGA-HT-A61A-01,1,20.0,0.0
|
952 |
+
TCGA-HT-A61B-01,1,22.0,1.0
|
953 |
+
TCGA-HT-A61C-01,1,66.0,1.0
|
954 |
+
TCGA-HT-A74H-01,1,62.0,1.0
|
955 |
+
TCGA-HT-A74J-01,1,33.0,1.0
|
956 |
+
TCGA-HT-A74K-01,1,58.0,0.0
|
957 |
+
TCGA-HT-A74L-01,1,22.0,0.0
|
958 |
+
TCGA-HT-A74O-01,1,34.0,1.0
|
959 |
+
TCGA-HW-7486-01,1,37.0,1.0
|
960 |
+
TCGA-HW-7487-01,1,39.0,1.0
|
961 |
+
TCGA-HW-7489-01,1,38.0,1.0
|
962 |
+
TCGA-HW-7490-01,1,41.0,1.0
|
963 |
+
TCGA-HW-7491-01,1,35.0,1.0
|
964 |
+
TCGA-HW-7493-01,1,40.0,0.0
|
965 |
+
TCGA-HW-7495-01,1,45.0,0.0
|
966 |
+
TCGA-HW-8319-01,1,34.0,0.0
|
967 |
+
TCGA-HW-8320-01,1,36.0,1.0
|
968 |
+
TCGA-HW-8321-01,1,31.0,1.0
|
969 |
+
TCGA-HW-8322-01,1,39.0,1.0
|
970 |
+
TCGA-HW-A5KJ-01,1,68.0,1.0
|
971 |
+
TCGA-HW-A5KK-01,1,64.0,1.0
|
972 |
+
TCGA-HW-A5KL-01,1,42.0,0.0
|
973 |
+
TCGA-HW-A5KM-01,1,35.0,1.0
|
974 |
+
TCGA-IK-7675-01,1,43.0,1.0
|
975 |
+
TCGA-IK-8125-01,1,62.0,1.0
|
976 |
+
TCGA-KT-A74X-01,1,26.0,1.0
|
977 |
+
TCGA-KT-A7W1-01,1,45.0,0.0
|
978 |
+
TCGA-OX-A56R-01,1,68.0,1.0
|
979 |
+
TCGA-P5-A5ET-01,1,27.0,1.0
|
980 |
+
TCGA-P5-A5EU-01,1,35.0,1.0
|
981 |
+
TCGA-P5-A5EV-01,1,39.0,1.0
|
982 |
+
TCGA-P5-A5EW-01,1,20.0,0.0
|
983 |
+
TCGA-P5-A5EX-01,1,41.0,0.0
|
984 |
+
TCGA-P5-A5EY-01,1,21.0,1.0
|
985 |
+
TCGA-P5-A5EZ-01,1,39.0,1.0
|
986 |
+
TCGA-P5-A5F0-01,1,33.0,1.0
|
987 |
+
TCGA-P5-A5F1-01,1,30.0,1.0
|
988 |
+
TCGA-P5-A5F2-01,1,36.0,0.0
|
989 |
+
TCGA-P5-A5F4-01,1,35.0,0.0
|
990 |
+
TCGA-P5-A5F6-01,1,26.0,1.0
|
991 |
+
TCGA-P5-A72U-01,1,71.0,0.0
|
992 |
+
TCGA-P5-A72W-01,1,35.0,1.0
|
993 |
+
TCGA-P5-A72X-01,1,21.0,1.0
|
994 |
+
TCGA-P5-A72Z-01,1,64.0,0.0
|
995 |
+
TCGA-P5-A730-01,1,22.0,1.0
|
996 |
+
TCGA-P5-A731-01,1,59.0,0.0
|
997 |
+
TCGA-P5-A733-01,1,52.0,0.0
|
998 |
+
TCGA-P5-A735-01,1,38.0,0.0
|
999 |
+
TCGA-P5-A736-01,1,44.0,0.0
|
1000 |
+
TCGA-P5-A737-01,1,47.0,1.0
|
1001 |
+
TCGA-P5-A77W-01,1,37.0,0.0
|
1002 |
+
TCGA-P5-A77X-01,1,55.0,0.0
|
1003 |
+
TCGA-P5-A780-01,1,44.0,0.0
|
1004 |
+
TCGA-P5-A781-01,1,34.0,0.0
|
1005 |
+
TCGA-QH-A65R-01,1,38.0,0.0
|
1006 |
+
TCGA-QH-A65S-01,1,32.0,0.0
|
1007 |
+
TCGA-QH-A65V-01,1,43.0,0.0
|
1008 |
+
TCGA-QH-A65X-01,1,28.0,0.0
|
1009 |
+
TCGA-QH-A65Z-01,1,54.0,1.0
|
1010 |
+
TCGA-QH-A6CS-01,1,41.0,1.0
|
1011 |
+
TCGA-QH-A6CU-01,1,52.0,0.0
|
1012 |
+
TCGA-QH-A6CV-01,1,51.0,1.0
|
1013 |
+
TCGA-QH-A6CW-01,1,43.0,1.0
|
1014 |
+
TCGA-QH-A6CX-01,1,66.0,1.0
|
1015 |
+
TCGA-QH-A6CY-01,1,38.0,1.0
|
1016 |
+
TCGA-QH-A6CZ-01,1,38.0,1.0
|
1017 |
+
TCGA-QH-A6X3-01,1,27.0,1.0
|
1018 |
+
TCGA-QH-A6X4-01,1,47.0,1.0
|
1019 |
+
TCGA-QH-A6X5-01,1,58.0,0.0
|
1020 |
+
TCGA-QH-A6X8-01,1,56.0,0.0
|
1021 |
+
TCGA-QH-A6X9-01,1,73.0,0.0
|
1022 |
+
TCGA-QH-A6XA-01,1,23.0,0.0
|
1023 |
+
TCGA-QH-A6XC-01,1,48.0,1.0
|
1024 |
+
TCGA-QH-A86X-01,1,33.0,1.0
|
1025 |
+
TCGA-QH-A870-01,1,38.0,0.0
|
1026 |
+
TCGA-R8-A6MK-01,1,40.0,1.0
|
1027 |
+
TCGA-R8-A6ML-01,1,52.0,1.0
|
1028 |
+
TCGA-R8-A6MO-01,1,53.0,0.0
|
1029 |
+
TCGA-R8-A6YH-01,1,,
|
1030 |
+
TCGA-R8-A73M-01,1,48.0,0.0
|
1031 |
+
TCGA-RR-A6KA-01,1,72.0,0.0
|
1032 |
+
TCGA-RR-A6KB-01,1,51.0,1.0
|
1033 |
+
TCGA-RR-A6KC-01,1,55.0,1.0
|
1034 |
+
TCGA-RY-A83X-01,1,46.0,0.0
|
1035 |
+
TCGA-RY-A83Y-01,1,45.0,1.0
|
1036 |
+
TCGA-RY-A83Z-01,1,54.0,0.0
|
1037 |
+
TCGA-RY-A840-01,1,47.0,1.0
|
1038 |
+
TCGA-RY-A843-01,1,30.0,1.0
|
1039 |
+
TCGA-RY-A845-01,1,40.0,0.0
|
1040 |
+
TCGA-RY-A847-01,1,45.0,1.0
|
1041 |
+
TCGA-S9-A6TS-01,1,48.0,0.0
|
1042 |
+
TCGA-S9-A6TU-01,1,38.0,1.0
|
1043 |
+
TCGA-S9-A6TV-01,1,50.0,1.0
|
1044 |
+
TCGA-S9-A6TW-01,1,40.0,1.0
|
1045 |
+
TCGA-S9-A6TX-01,1,46.0,1.0
|
1046 |
+
TCGA-S9-A6TY-01,1,50.0,1.0
|
1047 |
+
TCGA-S9-A6TZ-01,1,39.0,0.0
|
1048 |
+
TCGA-S9-A6U0-01,1,46.0,1.0
|
1049 |
+
TCGA-S9-A6U1-01,1,22.0,0.0
|
1050 |
+
TCGA-S9-A6U2-01,1,48.0,0.0
|
1051 |
+
TCGA-S9-A6U5-01,1,33.0,1.0
|
1052 |
+
TCGA-S9-A6U6-01,1,28.0,1.0
|
1053 |
+
TCGA-S9-A6U8-01,1,24.0,1.0
|
1054 |
+
TCGA-S9-A6U9-01,1,36.0,1.0
|
1055 |
+
TCGA-S9-A6UA-01,1,66.0,1.0
|
1056 |
+
TCGA-S9-A6UB-01,1,52.0,1.0
|
1057 |
+
TCGA-S9-A6WD-01,1,58.0,1.0
|
1058 |
+
TCGA-S9-A6WE-01,1,34.0,1.0
|
1059 |
+
TCGA-S9-A6WG-01,1,31.0,1.0
|
1060 |
+
TCGA-S9-A6WH-01,1,73.0,0.0
|
1061 |
+
TCGA-S9-A6WI-01,1,56.0,0.0
|
1062 |
+
TCGA-S9-A6WL-01,1,52.0,1.0
|
1063 |
+
TCGA-S9-A6WM-01,1,59.0,0.0
|
1064 |
+
TCGA-S9-A6WN-01,1,38.0,0.0
|
1065 |
+
TCGA-S9-A6WO-01,1,29.0,1.0
|
1066 |
+
TCGA-S9-A6WP-01,1,42.0,1.0
|
1067 |
+
TCGA-S9-A6WQ-01,1,57.0,0.0
|
1068 |
+
TCGA-S9-A7IQ-01,1,45.0,0.0
|
1069 |
+
TCGA-S9-A7IS-01,1,33.0,0.0
|
1070 |
+
TCGA-S9-A7IX-01,1,57.0,1.0
|
1071 |
+
TCGA-S9-A7IY-01,1,39.0,1.0
|
1072 |
+
TCGA-S9-A7IZ-01,1,48.0,0.0
|
1073 |
+
TCGA-S9-A7J0-01,1,30.0,0.0
|
1074 |
+
TCGA-S9-A7J1-01,1,43.0,1.0
|
1075 |
+
TCGA-S9-A7J2-01,1,25.0,1.0
|
1076 |
+
TCGA-S9-A7J3-01,1,52.0,0.0
|
1077 |
+
TCGA-S9-A7QW-01,1,54.0,0.0
|
1078 |
+
TCGA-S9-A7QX-01,1,36.0,0.0
|
1079 |
+
TCGA-S9-A7QY-01,1,35.0,0.0
|
1080 |
+
TCGA-S9-A7QZ-01,1,41.0,1.0
|
1081 |
+
TCGA-S9-A7R1-01,1,35.0,1.0
|
1082 |
+
TCGA-S9-A7R2-01,1,69.0,1.0
|
1083 |
+
TCGA-S9-A7R3-01,1,28.0,0.0
|
1084 |
+
TCGA-S9-A7R4-01,1,46.0,1.0
|
1085 |
+
TCGA-S9-A7R7-01,1,27.0,1.0
|
1086 |
+
TCGA-S9-A7R8-01,1,44.0,0.0
|
1087 |
+
TCGA-S9-A89V-01,1,70.0,1.0
|
1088 |
+
TCGA-S9-A89Z-01,1,40.0,1.0
|
1089 |
+
TCGA-TM-A7C3-01,1,43.0,0.0
|
1090 |
+
TCGA-TM-A7C4-01,1,39.0,0.0
|
1091 |
+
TCGA-TM-A7C5-01,1,30.0,1.0
|
1092 |
+
TCGA-TM-A7CA-01,1,44.0,1.0
|
1093 |
+
TCGA-TM-A7CF-01,1,41.0,0.0
|
1094 |
+
TCGA-TM-A7CF-02,1,41.0,0.0
|
1095 |
+
TCGA-TM-A84B-01,1,40.0,1.0
|
1096 |
+
TCGA-TM-A84C-01,1,32.0,1.0
|
1097 |
+
TCGA-TM-A84F-01,1,48.0,1.0
|
1098 |
+
TCGA-TM-A84G-01,1,54.0,0.0
|
1099 |
+
TCGA-TM-A84H-01,1,44.0,0.0
|
1100 |
+
TCGA-TM-A84I-01,1,30.0,1.0
|
1101 |
+
TCGA-TM-A84J-01,1,63.0,1.0
|
1102 |
+
TCGA-TM-A84L-01,1,31.0,1.0
|
1103 |
+
TCGA-TM-A84M-01,1,40.0,1.0
|
1104 |
+
TCGA-TM-A84O-01,1,61.0,0.0
|
1105 |
+
TCGA-TM-A84Q-01,1,31.0,1.0
|
1106 |
+
TCGA-TM-A84R-01,1,46.0,1.0
|
1107 |
+
TCGA-TM-A84S-01,1,36.0,1.0
|
1108 |
+
TCGA-TM-A84T-01,1,19.0,1.0
|
1109 |
+
TCGA-TQ-A7RF-01,1,27.0,0.0
|
1110 |
+
TCGA-TQ-A7RG-01,1,36.0,1.0
|
1111 |
+
TCGA-TQ-A7RH-01,1,39.0,1.0
|
1112 |
+
TCGA-TQ-A7RI-01,1,37.0,0.0
|
1113 |
+
TCGA-TQ-A7RJ-01,1,25.0,0.0
|
1114 |
+
TCGA-TQ-A7RK-01,1,29.0,1.0
|
1115 |
+
TCGA-TQ-A7RK-02,1,29.0,1.0
|
1116 |
+
TCGA-TQ-A7RM-01,1,41.0,0.0
|
1117 |
+
TCGA-TQ-A7RN-01,1,32.0,1.0
|
1118 |
+
TCGA-TQ-A7RO-01,1,29.0,1.0
|
1119 |
+
TCGA-TQ-A7RP-01,1,66.0,1.0
|
1120 |
+
TCGA-TQ-A7RQ-01,1,38.0,0.0
|
1121 |
+
TCGA-TQ-A7RR-01,1,38.0,1.0
|
1122 |
+
TCGA-TQ-A7RS-01,1,25.0,0.0
|
1123 |
+
TCGA-TQ-A7RU-01,1,51.0,1.0
|
1124 |
+
TCGA-TQ-A7RV-01,1,27.0,1.0
|
1125 |
+
TCGA-TQ-A7RV-02,1,27.0,1.0
|
1126 |
+
TCGA-TQ-A7RW-01,1,32.0,1.0
|
1127 |
+
TCGA-TQ-A8XE-01,1,42.0,0.0
|
1128 |
+
TCGA-TQ-A8XE-02,1,42.0,0.0
|
1129 |
+
TCGA-VM-A8C8-01,1,50.0,0.0
|
1130 |
+
TCGA-VM-A8C9-01,1,37.0,0.0
|
1131 |
+
TCGA-VM-A8CA-01,1,54.0,1.0
|
1132 |
+
TCGA-VM-A8CB-01,1,33.0,1.0
|
1133 |
+
TCGA-VM-A8CD-01,1,58.0,1.0
|
1134 |
+
TCGA-VM-A8CE-01,1,25.0,1.0
|
1135 |
+
TCGA-VM-A8CF-01,1,44.0,0.0
|
1136 |
+
TCGA-VM-A8CH-01,1,24.0,0.0
|
1137 |
+
TCGA-VV-A829-01,1,44.0,1.0
|
1138 |
+
TCGA-VV-A86M-01,1,36.0,0.0
|
1139 |
+
TCGA-VW-A7QS-01,1,35.0,0.0
|
1140 |
+
TCGA-VW-A8FI-01,1,66.0,1.0
|
1141 |
+
TCGA-W9-A837-01,1,47.0,1.0
|
1142 |
+
TCGA-WH-A86K-01,1,65.0,1.0
|
1143 |
+
TCGA-WY-A858-01,1,32.0,0.0
|
1144 |
+
TCGA-WY-A859-01,1,34.0,0.0
|
1145 |
+
TCGA-WY-A85A-01,1,20.0,1.0
|
1146 |
+
TCGA-WY-A85B-01,1,24.0,1.0
|
1147 |
+
TCGA-WY-A85C-01,1,36.0,1.0
|
1148 |
+
TCGA-WY-A85D-01,1,60.0,1.0
|
1149 |
+
TCGA-WY-A85E-01,1,48.0,0.0
|
p3/preprocess/Depression/code/GSE110298.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE110298"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE110298"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE110298.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE110298.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE110298.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Check gene expression data availability
|
33 |
+
# Based on the background info, this dataset contains hippocampal gene expression data using microarrays
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Check variables availability and define conversion functions
|
37 |
+
# 2.1 Identify row numbers for variables
|
38 |
+
trait_row = 6 # depression data is in row 6
|
39 |
+
age_row = 2 # age data is in row 2
|
40 |
+
gender_row = 1 # gender data is in row 1
|
41 |
+
|
42 |
+
# 2.2 Define conversion functions
|
43 |
+
def convert_trait(value):
|
44 |
+
"""Convert depression score (0-8) to binary (0/1)"""
|
45 |
+
try:
|
46 |
+
if ':' in value:
|
47 |
+
score = int(value.split(':')[1].strip())
|
48 |
+
# Scores > 0 indicate presence of depression symptoms
|
49 |
+
return 1 if score > 0 else 0
|
50 |
+
return None
|
51 |
+
except:
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value):
|
55 |
+
"""Convert age to continuous value"""
|
56 |
+
try:
|
57 |
+
if ':' in value:
|
58 |
+
age = int(value.split(':')[1].strip())
|
59 |
+
return age
|
60 |
+
return None
|
61 |
+
except:
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_gender(value):
|
65 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
66 |
+
try:
|
67 |
+
if ':' in value:
|
68 |
+
gender = value.split(':')[1].strip().lower()
|
69 |
+
if 'female' in gender:
|
70 |
+
return 0
|
71 |
+
elif 'male' in gender:
|
72 |
+
return 1
|
73 |
+
return None
|
74 |
+
except:
|
75 |
+
return None
|
76 |
+
|
77 |
+
# 3. Save initial metadata
|
78 |
+
validate_and_save_cohort_info(
|
79 |
+
is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=trait_row is not None
|
84 |
+
)
|
85 |
+
|
86 |
+
# 4. Extract clinical features
|
87 |
+
if trait_row is not None:
|
88 |
+
clinical_features = geo_select_clinical_features(
|
89 |
+
clinical_df=clinical_data,
|
90 |
+
trait=trait,
|
91 |
+
trait_row=trait_row,
|
92 |
+
convert_trait=convert_trait,
|
93 |
+
age_row=age_row,
|
94 |
+
convert_age=convert_age,
|
95 |
+
gender_row=gender_row,
|
96 |
+
convert_gender=convert_gender
|
97 |
+
)
|
98 |
+
|
99 |
+
# Preview the data
|
100 |
+
print("Preview of extracted clinical features:")
|
101 |
+
print(preview_df(clinical_features))
|
102 |
+
|
103 |
+
# Save to CSV
|
104 |
+
clinical_features.to_csv(out_clinical_data_file)
|
105 |
+
# Extract gene expression data from matrix file
|
106 |
+
genetic_df = get_genetic_data(matrix_file)
|
107 |
+
|
108 |
+
# Print DataFrame shape and first 20 row IDs
|
109 |
+
print("DataFrame shape:", genetic_df.shape)
|
110 |
+
print("\nFirst 20 row IDs:")
|
111 |
+
print(genetic_df.index[:20])
|
112 |
+
|
113 |
+
print("\nPreview of first few rows and columns:")
|
114 |
+
print(genetic_df.head().iloc[:, :5])
|
115 |
+
# Based on the ID format (e.g., "1007_s_at"), these look like Affymetrix probe IDs
|
116 |
+
# which need to be mapped to standard human gene symbols
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# Extract gene annotation data, excluding control probe lines
|
119 |
+
gene_metadata = get_gene_annotation(soft_file)
|
120 |
+
|
121 |
+
# Preview filtered annotation data
|
122 |
+
print("Column names:")
|
123 |
+
print(gene_metadata.columns)
|
124 |
+
print("\nPreview of gene annotation data:")
|
125 |
+
print(preview_df(gene_metadata))
|
126 |
+
# Get mapping from probe IDs to gene symbols
|
127 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
|
128 |
+
|
129 |
+
# Apply mapping to convert probe data to gene expression data
|
130 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_data)
|
131 |
+
|
132 |
+
# Preview result
|
133 |
+
print("Gene expression data shape:", gene_data.shape)
|
134 |
+
print("\nFirst few rows and columns:")
|
135 |
+
print(gene_data.head().iloc[:, :5])
|
136 |
+
# 1. Normalize gene symbols and save
|
137 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
138 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
139 |
+
gene_data.to_csv(out_gene_data_file)
|
140 |
+
|
141 |
+
# 2. Link clinical and genetic data
|
142 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
143 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
144 |
+
|
145 |
+
# 3. Handle missing values
|
146 |
+
linked_data = handle_missing_values(linked_data, trait)
|
147 |
+
|
148 |
+
# 4. Check for biased features
|
149 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
150 |
+
|
151 |
+
# 5. Final validation and metadata saving
|
152 |
+
is_usable = validate_and_save_cohort_info(
|
153 |
+
is_final=True,
|
154 |
+
cohort=cohort,
|
155 |
+
info_path=json_path,
|
156 |
+
is_gene_available=True,
|
157 |
+
is_trait_available=True,
|
158 |
+
is_biased=trait_biased,
|
159 |
+
df=linked_data,
|
160 |
+
note="Study of depression in obese patients before and after bariatric surgery"
|
161 |
+
)
|
162 |
+
|
163 |
+
# 6. Save linked data if usable
|
164 |
+
if is_usable:
|
165 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
166 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Depression/code/GSE128387.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE128387"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE128387"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE128387.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE128387.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE128387.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Check gene expression data availability
|
33 |
+
# From background info, this is a microarray study of gene expression, not miRNA/methylation
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Identify data rows
|
37 |
+
trait_row = 1 # "illness" field indicates depression status
|
38 |
+
age_row = 2 # "age" field
|
39 |
+
gender_row = 3 # "Sex" field
|
40 |
+
|
41 |
+
# 2.2 Data conversion functions
|
42 |
+
def convert_trait(value: str) -> int:
|
43 |
+
"""Convert depression status to binary"""
|
44 |
+
if not isinstance(value, str):
|
45 |
+
return None
|
46 |
+
value = value.split(': ')[-1].lower()
|
47 |
+
if 'major depressive disorder' in value:
|
48 |
+
return 1
|
49 |
+
return None
|
50 |
+
|
51 |
+
def convert_age(value: str) -> float:
|
52 |
+
"""Convert age to continuous value"""
|
53 |
+
if not isinstance(value, str):
|
54 |
+
return None
|
55 |
+
try:
|
56 |
+
age = float(value.split(': ')[-1])
|
57 |
+
return age
|
58 |
+
except:
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_gender(value: str) -> int:
|
62 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
63 |
+
if not isinstance(value, str):
|
64 |
+
return None
|
65 |
+
value = value.split(': ')[-1].lower()
|
66 |
+
if value == 'female':
|
67 |
+
return 0
|
68 |
+
elif value == 'male':
|
69 |
+
return 1
|
70 |
+
return None
|
71 |
+
|
72 |
+
# 3. Save metadata
|
73 |
+
validate_and_save_cohort_info(
|
74 |
+
is_final=False,
|
75 |
+
cohort=cohort,
|
76 |
+
info_path=json_path,
|
77 |
+
is_gene_available=is_gene_available,
|
78 |
+
is_trait_available=trait_row is not None
|
79 |
+
)
|
80 |
+
|
81 |
+
# 4. Extract clinical features
|
82 |
+
clinical_df = geo_select_clinical_features(
|
83 |
+
clinical_df=clinical_data,
|
84 |
+
trait=trait,
|
85 |
+
trait_row=trait_row,
|
86 |
+
convert_trait=convert_trait,
|
87 |
+
age_row=age_row,
|
88 |
+
convert_age=convert_age,
|
89 |
+
gender_row=gender_row,
|
90 |
+
convert_gender=convert_gender
|
91 |
+
)
|
92 |
+
|
93 |
+
# Preview and save clinical data
|
94 |
+
print("Clinical data preview:")
|
95 |
+
print(preview_df(clinical_df))
|
96 |
+
|
97 |
+
clinical_df.to_csv(out_clinical_data_file)
|
98 |
+
# Extract gene expression data from matrix file
|
99 |
+
genetic_df = get_genetic_data(matrix_file)
|
100 |
+
|
101 |
+
# Print DataFrame shape and first 20 row IDs
|
102 |
+
print("DataFrame shape:", genetic_df.shape)
|
103 |
+
print("\nFirst 20 row IDs:")
|
104 |
+
print(genetic_df.index[:20])
|
105 |
+
|
106 |
+
print("\nPreview of first few rows and columns:")
|
107 |
+
print(genetic_df.head().iloc[:, :5])
|
108 |
+
# The gene identifiers appear to be probe IDs
|
109 |
+
# (numeric identifiers around 16657xxx) rather than human gene symbols
|
110 |
+
requires_gene_mapping = True
|
111 |
+
# Extract gene annotation data, excluding control probe lines
|
112 |
+
gene_metadata = get_gene_annotation(soft_file)
|
113 |
+
|
114 |
+
# Preview filtered annotation data
|
115 |
+
print("Column names:")
|
116 |
+
print(gene_metadata.columns)
|
117 |
+
print("\nPreview of gene annotation data:")
|
118 |
+
print(preview_df(gene_metadata))
|
119 |
+
# 1. Based on observation:
|
120 |
+
# - Gene expression data has identifiers like '16657436'
|
121 |
+
# - In annotation data, 'ID' column has the same format identifiers
|
122 |
+
# - 'gene_assignment' column contains gene symbol info in the format "//GENE_SYMBOL//"
|
123 |
+
|
124 |
+
# 2. Extract ID and gene assignments, then get mapping between them
|
125 |
+
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
|
126 |
+
|
127 |
+
# 3. Map probe IDs to gene symbols and convert probe-level data to gene-level data
|
128 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
129 |
+
|
130 |
+
# Preview results
|
131 |
+
print("Gene expression data shape:", gene_data.shape)
|
132 |
+
print("\nFirst few genes and samples:")
|
133 |
+
print(gene_data.head().iloc[:, :5])
|
134 |
+
|
135 |
+
# Save gene data
|
136 |
+
gene_data.to_csv(out_gene_data_file)
|
137 |
+
# 1. Normalize gene symbols and save
|
138 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
139 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
140 |
+
gene_data.to_csv(out_gene_data_file)
|
141 |
+
|
142 |
+
# 2. Link clinical and genetic data
|
143 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
144 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
145 |
+
|
146 |
+
# 3. Handle missing values
|
147 |
+
linked_data = handle_missing_values(linked_data, trait)
|
148 |
+
|
149 |
+
# 4. Check for biased features
|
150 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
151 |
+
|
152 |
+
# 5. Final validation and metadata saving
|
153 |
+
is_usable = validate_and_save_cohort_info(
|
154 |
+
is_final=True,
|
155 |
+
cohort=cohort,
|
156 |
+
info_path=json_path,
|
157 |
+
is_gene_available=True,
|
158 |
+
is_trait_available=True,
|
159 |
+
is_biased=trait_biased,
|
160 |
+
df=linked_data,
|
161 |
+
note="Study of depression in obese patients before and after bariatric surgery"
|
162 |
+
)
|
163 |
+
|
164 |
+
# 6. Save linked data if usable
|
165 |
+
if is_usable:
|
166 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
167 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Depression/code/GSE135524.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE135524"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE135524"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE135524.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE135524.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE135524.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes - the series studies gene expression in blood samples
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# Trait (Depression severity) available in hamd score (row 5)
|
38 |
+
trait_row = 5
|
39 |
+
# Age available in row 1
|
40 |
+
age_row = 1
|
41 |
+
# Gender available in row 2
|
42 |
+
gender_row = 2
|
43 |
+
|
44 |
+
# 2.2 Data Type Conversion Functions
|
45 |
+
def convert_trait(x):
|
46 |
+
if not isinstance(x, str):
|
47 |
+
return None
|
48 |
+
try:
|
49 |
+
# Extract HAMD score which indicates depression severity
|
50 |
+
score = int(x.split(': ')[1])
|
51 |
+
return score # Keep as continuous
|
52 |
+
except:
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(x):
|
56 |
+
if not isinstance(x, str):
|
57 |
+
return None
|
58 |
+
try:
|
59 |
+
age = int(x.split(': ')[1])
|
60 |
+
return age
|
61 |
+
except:
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_gender(x):
|
65 |
+
if not isinstance(x, str):
|
66 |
+
return None
|
67 |
+
value = x.split(': ')[1].lower()
|
68 |
+
if 'female' in value:
|
69 |
+
return 0
|
70 |
+
elif 'male' in value:
|
71 |
+
return 1
|
72 |
+
return None
|
73 |
+
|
74 |
+
# 3. Save metadata
|
75 |
+
validate_and_save_cohort_info(
|
76 |
+
is_final=False,
|
77 |
+
cohort=cohort,
|
78 |
+
info_path=json_path,
|
79 |
+
is_gene_available=is_gene_available,
|
80 |
+
is_trait_available=(trait_row is not None)
|
81 |
+
)
|
82 |
+
|
83 |
+
# 4. Extract clinical features
|
84 |
+
selected_clinical_df = geo_select_clinical_features(
|
85 |
+
clinical_df=clinical_data,
|
86 |
+
trait=trait,
|
87 |
+
trait_row=trait_row,
|
88 |
+
convert_trait=convert_trait,
|
89 |
+
age_row=age_row,
|
90 |
+
convert_age=convert_age,
|
91 |
+
gender_row=gender_row,
|
92 |
+
convert_gender=convert_gender
|
93 |
+
)
|
94 |
+
|
95 |
+
# Preview the extracted features
|
96 |
+
print(preview_df(selected_clinical_df))
|
97 |
+
|
98 |
+
# Save clinical data
|
99 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
100 |
+
# Extract gene expression data from matrix file
|
101 |
+
genetic_df = get_genetic_data(matrix_file)
|
102 |
+
|
103 |
+
# Print DataFrame shape and first 20 row IDs
|
104 |
+
print("DataFrame shape:", genetic_df.shape)
|
105 |
+
print("\nFirst 20 row IDs:")
|
106 |
+
print(genetic_df.index[:20])
|
107 |
+
|
108 |
+
print("\nPreview of first few rows and columns:")
|
109 |
+
print(genetic_df.head().iloc[:, :5])
|
110 |
+
# ILMN_ prefix indicates these are Illumina probe IDs, not gene symbols
|
111 |
+
requires_gene_mapping = True
|
112 |
+
# Extract gene annotation data, excluding control probe lines
|
113 |
+
gene_metadata = get_gene_annotation(soft_file)
|
114 |
+
|
115 |
+
# Preview filtered annotation data
|
116 |
+
print("Column names:")
|
117 |
+
print(gene_metadata.columns)
|
118 |
+
print("\nPreview of gene annotation data:")
|
119 |
+
print(preview_df(gene_metadata))
|
120 |
+
# Get the mapping between gene identifiers (ID) and gene symbols (Symbol)
|
121 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
|
122 |
+
|
123 |
+
# Apply gene mapping to convert probe-level data to gene expression data
|
124 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
125 |
+
|
126 |
+
# Preview result
|
127 |
+
print("Shape of gene expression data:", gene_data.shape)
|
128 |
+
print("\nFirst 5 rows and 5 columns:")
|
129 |
+
print(gene_data.iloc[:5, :5])
|
130 |
+
# 1. Normalize gene symbols and save
|
131 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
132 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
133 |
+
gene_data.to_csv(out_gene_data_file)
|
134 |
+
|
135 |
+
# 2. Link clinical and genetic data
|
136 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
137 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
138 |
+
|
139 |
+
# 3. Handle missing values
|
140 |
+
linked_data = handle_missing_values(linked_data, trait)
|
141 |
+
|
142 |
+
# 4. Check for biased features
|
143 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
144 |
+
|
145 |
+
# 5. Final validation and metadata saving
|
146 |
+
is_usable = validate_and_save_cohort_info(
|
147 |
+
is_final=True,
|
148 |
+
cohort=cohort,
|
149 |
+
info_path=json_path,
|
150 |
+
is_gene_available=True,
|
151 |
+
is_trait_available=True,
|
152 |
+
is_biased=trait_biased,
|
153 |
+
df=linked_data,
|
154 |
+
note="Study of depression in obese patients before and after bariatric surgery"
|
155 |
+
)
|
156 |
+
|
157 |
+
# 6. Save linked data if usable
|
158 |
+
if is_usable:
|
159 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
160 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Depression/code/GSE138297.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE138297"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE138297"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE138297.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE138297.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE138297.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on the background, this study used microarray, so gene expression data is available
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# Trait (experimental condition) is in row 6
|
38 |
+
trait_row = 6
|
39 |
+
|
40 |
+
def convert_trait(value):
|
41 |
+
# Extract value after colon if present
|
42 |
+
if ':' in value:
|
43 |
+
value = value.split(':')[1].strip()
|
44 |
+
# Convert to binary based on FMT type
|
45 |
+
if 'Allogenic FMT' in value:
|
46 |
+
return 1
|
47 |
+
elif 'Autologous FMT' in value:
|
48 |
+
return 0
|
49 |
+
return None
|
50 |
+
|
51 |
+
# Age is in row 3
|
52 |
+
age_row = 3
|
53 |
+
|
54 |
+
def convert_age(value):
|
55 |
+
# Extract value after colon
|
56 |
+
if ':' in value:
|
57 |
+
value = value.split(':')[1].strip()
|
58 |
+
# Convert to float if possible
|
59 |
+
try:
|
60 |
+
return float(value)
|
61 |
+
except:
|
62 |
+
return None
|
63 |
+
return None
|
64 |
+
|
65 |
+
# Gender is in row 1
|
66 |
+
gender_row = 1
|
67 |
+
|
68 |
+
def convert_gender(value):
|
69 |
+
# Extract value after colon
|
70 |
+
if ':' in value:
|
71 |
+
value = value.split(':')[1].strip()
|
72 |
+
# Data is already coded as 1=female, 0=male
|
73 |
+
# But we need to reverse it to match our convention (0=female, 1=male)
|
74 |
+
try:
|
75 |
+
return 1 - int(value) # Converts 1->0 (female) and 0->1 (male)
|
76 |
+
except:
|
77 |
+
return None
|
78 |
+
return None
|
79 |
+
|
80 |
+
# 3. Save metadata
|
81 |
+
validate_and_save_cohort_info(
|
82 |
+
is_final=False,
|
83 |
+
cohort=cohort,
|
84 |
+
info_path=json_path,
|
85 |
+
is_gene_available=is_gene_available,
|
86 |
+
is_trait_available=trait_row is not None
|
87 |
+
)
|
88 |
+
|
89 |
+
# 4. Extract clinical features
|
90 |
+
if trait_row is not None:
|
91 |
+
selected_clinical_df = geo_select_clinical_features(
|
92 |
+
clinical_df=clinical_data,
|
93 |
+
trait=trait,
|
94 |
+
trait_row=trait_row,
|
95 |
+
convert_trait=convert_trait,
|
96 |
+
age_row=age_row,
|
97 |
+
convert_age=convert_age,
|
98 |
+
gender_row=gender_row,
|
99 |
+
convert_gender=convert_gender
|
100 |
+
)
|
101 |
+
|
102 |
+
print("Preview of selected clinical features:")
|
103 |
+
print(preview_df(selected_clinical_df))
|
104 |
+
|
105 |
+
# Create directory if it doesn't exist
|
106 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
107 |
+
|
108 |
+
# Save to CSV
|
109 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
110 |
+
# Extract gene expression data from matrix file
|
111 |
+
genetic_df = get_genetic_data(matrix_file)
|
112 |
+
|
113 |
+
# Print DataFrame shape and first 20 row IDs
|
114 |
+
print("DataFrame shape:", genetic_df.shape)
|
115 |
+
print("\nFirst 20 row IDs:")
|
116 |
+
print(genetic_df.index[:20])
|
117 |
+
|
118 |
+
print("\nPreview of first few rows and columns:")
|
119 |
+
print(genetic_df.head().iloc[:, :5])
|
120 |
+
# The IDs look like probe IDs from a microarray platform since they are numerical
|
121 |
+
# and have a specific format (e.g., 16650001, 16650003). These are not standard
|
122 |
+
# human gene symbols which typically use letters (e.g., GAPDH, TP53).
|
123 |
+
# The probes will need to be mapped to gene symbols.
|
124 |
+
|
125 |
+
requires_gene_mapping = True
|
126 |
+
# Extract gene annotation data, excluding control probe lines
|
127 |
+
gene_metadata = get_gene_annotation(soft_file)
|
128 |
+
|
129 |
+
# Preview filtered annotation data
|
130 |
+
print("Column names:")
|
131 |
+
print(gene_metadata.columns)
|
132 |
+
print("\nPreview of gene annotation data:")
|
133 |
+
print(preview_df(gene_metadata))
|
134 |
+
# The 'ID' column in gene_metadata contains the same identifiers as in genetic_df
|
135 |
+
# The 'gene_assignment' column contains gene symbols and information
|
136 |
+
|
137 |
+
# Extract gene mapping dataframe
|
138 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
|
139 |
+
|
140 |
+
# Apply gene mapping to convert probe data to gene data
|
141 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
142 |
+
|
143 |
+
# Normalize gene symbols using the synonym dictionary
|
144 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
145 |
+
|
146 |
+
# Save to file
|
147 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
148 |
+
gene_data.to_csv(out_gene_data_file)
|
149 |
+
|
150 |
+
print("\nGene data shape:", gene_data.shape)
|
151 |
+
print("\nPreview of gene data:")
|
152 |
+
print(preview_df(gene_data))
|
153 |
+
# 1. Normalize gene symbols and save
|
154 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
155 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
156 |
+
gene_data.to_csv(out_gene_data_file)
|
157 |
+
|
158 |
+
# 2. Link clinical and genetic data
|
159 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
160 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
161 |
+
|
162 |
+
# 3. Handle missing values
|
163 |
+
linked_data = handle_missing_values(linked_data, trait)
|
164 |
+
|
165 |
+
# 4. Check for biased features
|
166 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
167 |
+
|
168 |
+
# 5. Final validation and metadata saving
|
169 |
+
is_usable = validate_and_save_cohort_info(
|
170 |
+
is_final=True,
|
171 |
+
cohort=cohort,
|
172 |
+
info_path=json_path,
|
173 |
+
is_gene_available=True,
|
174 |
+
is_trait_available=True,
|
175 |
+
is_biased=trait_biased,
|
176 |
+
df=linked_data,
|
177 |
+
note="Study of depression in obese patients before and after bariatric surgery"
|
178 |
+
)
|
179 |
+
|
180 |
+
# 6. Save linked data if usable
|
181 |
+
if is_usable:
|
182 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
183 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Depression/code/GSE149980.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE149980"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE149980"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE149980.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE149980.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE149980.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on background info, this is a gene expression study
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# Trait (response status) is in row 0
|
38 |
+
trait_row = 0
|
39 |
+
# Age and gender are not available in sample characteristics
|
40 |
+
age_row = None
|
41 |
+
gender_row = None
|
42 |
+
|
43 |
+
# 2.2 Data Type Conversion Functions
|
44 |
+
def convert_trait(x):
|
45 |
+
"""Convert treatment response status to binary (0=non-responder, 1=responder)"""
|
46 |
+
if pd.isna(x):
|
47 |
+
return None
|
48 |
+
value = x.split(': ')[1].lower() if ': ' in x else x.lower()
|
49 |
+
if 'responder' in value:
|
50 |
+
return 1 if 'non' not in value else 0
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_age(x):
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_gender(x):
|
57 |
+
return None
|
58 |
+
|
59 |
+
# 3. Save Metadata
|
60 |
+
is_trait_available = trait_row is not None
|
61 |
+
validate_and_save_cohort_info(is_final=False,
|
62 |
+
cohort=cohort,
|
63 |
+
info_path=json_path,
|
64 |
+
is_gene_available=is_gene_available,
|
65 |
+
is_trait_available=is_trait_available)
|
66 |
+
|
67 |
+
# 4. Clinical Feature Extraction
|
68 |
+
if trait_row is not None:
|
69 |
+
clinical_features = geo_select_clinical_features(clinical_data,
|
70 |
+
trait=trait,
|
71 |
+
trait_row=trait_row,
|
72 |
+
convert_trait=convert_trait,
|
73 |
+
age_row=age_row,
|
74 |
+
convert_age=convert_age,
|
75 |
+
gender_row=gender_row,
|
76 |
+
convert_gender=convert_gender)
|
77 |
+
|
78 |
+
print("Preview of extracted clinical features:")
|
79 |
+
print(preview_df(clinical_features))
|
80 |
+
|
81 |
+
# Save clinical features
|
82 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
83 |
+
clinical_features.to_csv(out_clinical_data_file)
|
84 |
+
# Extract gene expression data from matrix file
|
85 |
+
genetic_df = get_genetic_data(matrix_file)
|
86 |
+
|
87 |
+
# Print DataFrame shape and first 20 row IDs
|
88 |
+
print("DataFrame shape:", genetic_df.shape)
|
89 |
+
print("\nFirst 20 row IDs:")
|
90 |
+
print(genetic_df.index[:20])
|
91 |
+
|
92 |
+
print("\nPreview of first few rows and columns:")
|
93 |
+
print(genetic_df.head().iloc[:, :5])
|
94 |
+
# These identifiers appear to be probe IDs (A_19_P format) and control probes
|
95 |
+
# They are not standard human gene symbols and need to be mapped
|
96 |
+
requires_gene_mapping = True
|
97 |
+
# Extract gene annotation data, excluding control probe lines
|
98 |
+
gene_metadata = get_gene_annotation(soft_file)
|
99 |
+
|
100 |
+
# Preview filtered annotation data
|
101 |
+
print("Column names:")
|
102 |
+
print(gene_metadata.columns)
|
103 |
+
print("\nPreview of gene annotation data:")
|
104 |
+
print(preview_df(gene_metadata))
|
105 |
+
# Get mapping dataframe with probe IDs and gene symbols
|
106 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
107 |
+
|
108 |
+
# Convert probe measurements to gene expression values
|
109 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
110 |
+
|
111 |
+
# Preview result
|
112 |
+
print("Shape of gene expression data:", gene_data.shape)
|
113 |
+
print("\nFirst 5 rows preview:")
|
114 |
+
print(gene_data.head())
|
115 |
+
# 1. Normalize gene symbols and save
|
116 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
117 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
118 |
+
gene_data.to_csv(out_gene_data_file)
|
119 |
+
|
120 |
+
# 2. Link clinical and genetic data
|
121 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
122 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
123 |
+
|
124 |
+
# 3. Handle missing values
|
125 |
+
linked_data = handle_missing_values(linked_data, trait)
|
126 |
+
|
127 |
+
# 4. Check for biased features
|
128 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
129 |
+
|
130 |
+
# 5. Final validation and metadata saving
|
131 |
+
is_usable = validate_and_save_cohort_info(
|
132 |
+
is_final=True,
|
133 |
+
cohort=cohort,
|
134 |
+
info_path=json_path,
|
135 |
+
is_gene_available=True,
|
136 |
+
is_trait_available=True,
|
137 |
+
is_biased=trait_biased,
|
138 |
+
df=linked_data,
|
139 |
+
note="Study of depression in obese patients before and after bariatric surgery"
|
140 |
+
)
|
141 |
+
|
142 |
+
# 6. Save linked data if usable
|
143 |
+
if is_usable:
|
144 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
145 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Depression/code/GSE201332.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE201332"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE201332"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE201332.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE201332.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE201332.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes, this dataset contains transcriptional profiling data from whole blood samples
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# Trait (Depression) data is in row 1 ("subject status")
|
39 |
+
trait_row = 1
|
40 |
+
# Age data is in row 3
|
41 |
+
age_row = 3
|
42 |
+
# Gender data is in row 2
|
43 |
+
gender_row = 2
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(value):
|
47 |
+
"""Convert MDD status to binary: 0 for control, 1 for MDD"""
|
48 |
+
if not value or ':' not in value:
|
49 |
+
return None
|
50 |
+
value = value.split(':')[1].strip().lower()
|
51 |
+
if 'mdd' in value or 'depression' in value:
|
52 |
+
return 1
|
53 |
+
elif 'healthy' in value or 'control' in value:
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(value):
|
58 |
+
"""Convert age to continuous numeric value"""
|
59 |
+
if not value or ':' not in value:
|
60 |
+
return None
|
61 |
+
value = value.split(':')[1].strip().lower()
|
62 |
+
# Extract numeric value before 'y'
|
63 |
+
try:
|
64 |
+
age = int(value.replace('y',''))
|
65 |
+
return age
|
66 |
+
except:
|
67 |
+
return None
|
68 |
+
|
69 |
+
def convert_gender(value):
|
70 |
+
"""Convert gender to binary: 0 for female, 1 for male"""
|
71 |
+
if not value or ':' not in value:
|
72 |
+
return None
|
73 |
+
value = value.split(':')[1].strip().lower()
|
74 |
+
if 'female' in value:
|
75 |
+
return 0
|
76 |
+
elif 'male' in value:
|
77 |
+
return 1
|
78 |
+
return None
|
79 |
+
|
80 |
+
# 3. Save Metadata
|
81 |
+
# Trait data is available (trait_row is not None)
|
82 |
+
is_trait_available = trait_row is not None
|
83 |
+
validate_and_save_cohort_info(is_final=False,
|
84 |
+
cohort=cohort,
|
85 |
+
info_path=json_path,
|
86 |
+
is_gene_available=is_gene_available,
|
87 |
+
is_trait_available=is_trait_available)
|
88 |
+
|
89 |
+
# 4. Clinical Feature Extraction
|
90 |
+
clinical_features = geo_select_clinical_features(clinical_data,
|
91 |
+
trait=trait,
|
92 |
+
trait_row=trait_row,
|
93 |
+
convert_trait=convert_trait,
|
94 |
+
age_row=age_row,
|
95 |
+
convert_age=convert_age,
|
96 |
+
gender_row=gender_row,
|
97 |
+
convert_gender=convert_gender)
|
98 |
+
|
99 |
+
# Preview the extracted features
|
100 |
+
preview_dict = preview_df(clinical_features)
|
101 |
+
print("\nPreview of clinical features:")
|
102 |
+
print(preview_dict)
|
103 |
+
|
104 |
+
# Save clinical features
|
105 |
+
clinical_features.to_csv(out_clinical_data_file)
|
106 |
+
# Extract gene expression data from matrix file
|
107 |
+
genetic_df = get_genetic_data(matrix_file)
|
108 |
+
|
109 |
+
# Print DataFrame shape and first 20 row IDs
|
110 |
+
print("DataFrame shape:", genetic_df.shape)
|
111 |
+
print("\nFirst 20 row IDs:")
|
112 |
+
print(genetic_df.index[:20])
|
113 |
+
|
114 |
+
print("\nPreview of first few rows and columns:")
|
115 |
+
print(genetic_df.head().iloc[:, :5])
|
116 |
+
# The gene identifiers are simple numeric indices, not human gene symbols
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# Extract gene annotation data
|
119 |
+
gene_metadata = pd.read_csv(soft_file, compression='gzip', delimiter='\t', skiprows=163, nrows=54675)
|
120 |
+
|
121 |
+
# Filter out control probes and probes without gene info
|
122 |
+
gene_metadata = gene_metadata[~gene_metadata['Name'].str.contains('Control|control|Corner', na=False)]
|
123 |
+
gene_metadata = gene_metadata[~gene_metadata['Gene Symbol'].isna()]
|
124 |
+
|
125 |
+
# Preview filtered annotation data
|
126 |
+
print("DataFrame shape after filtering:", gene_metadata.shape)
|
127 |
+
print("\nColumn names:")
|
128 |
+
print(gene_metadata.columns)
|
129 |
+
print("\nPreview of gene annotation data:")
|
130 |
+
print(preview_df(gene_metadata))
|
131 |
+
# Extract gene annotation data from SOFT file
|
132 |
+
def get_probe_gene_mapping(file_path):
|
133 |
+
rows = []
|
134 |
+
with gzip.open(file_path, 'rt') as f:
|
135 |
+
in_spot_section = False
|
136 |
+
for line in f:
|
137 |
+
line = line.strip()
|
138 |
+
|
139 |
+
# Identify start of SPOT section which contains probe mappings
|
140 |
+
if line.startswith('!Platform_table_begin'):
|
141 |
+
in_spot_section = True
|
142 |
+
# Skip the header line
|
143 |
+
next(f)
|
144 |
+
continue
|
145 |
+
elif line.startswith('!Platform_table_end'):
|
146 |
+
in_spot_section = False
|
147 |
+
continue
|
148 |
+
|
149 |
+
if in_spot_section and line:
|
150 |
+
fields = line.split('\t')
|
151 |
+
# Get probe ID and gene name
|
152 |
+
rows.append([fields[0], fields[2]]) # ID and GENE_NAME columns
|
153 |
+
|
154 |
+
# Convert to DataFrame
|
155 |
+
gene_metadata = pd.DataFrame(rows, columns=['ID', 'Gene'])
|
156 |
+
# Filter out empty gene names and control probes
|
157 |
+
gene_metadata = gene_metadata[
|
158 |
+
(gene_metadata['Gene'].notna()) &
|
159 |
+
(gene_metadata['Gene'] != '') &
|
160 |
+
(~gene_metadata['Gene'].str.contains('control|Control|Corner', na=False, regex=True))
|
161 |
+
]
|
162 |
+
return gene_metadata
|
163 |
+
|
164 |
+
# Extract and preview annotation data
|
165 |
+
gene_metadata = get_probe_gene_mapping(soft_file)
|
166 |
+
|
167 |
+
# Preview filtered annotation data
|
168 |
+
print("DataFrame shape after filtering:", gene_metadata.shape)
|
169 |
+
print("\nColumn names:")
|
170 |
+
print(gene_metadata.columns)
|
171 |
+
print("\nPreview of gene annotation data:")
|
172 |
+
print(preview_df(gene_metadata))
|
173 |
+
# 1. Get gene annotation data from SOFT file using direct extraction
|
174 |
+
def extract_platform_table(file_path):
|
175 |
+
platform_data = []
|
176 |
+
with gzip.open(file_path, 'rt') as f:
|
177 |
+
in_table = False
|
178 |
+
for line in f:
|
179 |
+
if line.startswith('!Platform_table_begin'):
|
180 |
+
headers = next(f).strip().split('\t')
|
181 |
+
in_table = True
|
182 |
+
continue
|
183 |
+
if line.startswith('!Platform_table_end'):
|
184 |
+
break
|
185 |
+
if in_table and line.strip():
|
186 |
+
platform_data.append(line.strip().split('\t'))
|
187 |
+
return pd.DataFrame(platform_data, columns=headers)
|
188 |
+
|
189 |
+
# Extract gene metadata
|
190 |
+
gene_metadata = extract_platform_table(soft_file)
|
191 |
+
|
192 |
+
# Print column names
|
193 |
+
print("Column names in gene_metadata:")
|
194 |
+
print(gene_metadata.columns)
|
195 |
+
print("\nPreview of gene metadata:")
|
196 |
+
print(preview_df(gene_metadata))
|
197 |
+
|
198 |
+
# 2. Get gene mapping dataframe
|
199 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
200 |
+
|
201 |
+
# 3. Convert probe-level data to gene expression data
|
202 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
203 |
+
|
204 |
+
# Preview results
|
205 |
+
print("\nGene expression data shape:", gene_data.shape)
|
206 |
+
print("\nFirst few gene symbols:")
|
207 |
+
print(gene_data.index[:10])
|
208 |
+
print("\nPreview of gene expression values:")
|
209 |
+
print(gene_data.head().iloc[:, :5])
|
210 |
+
# 1. Get gene annotation data from SOFT file
|
211 |
+
gene_metadata = get_gene_annotation(soft_file)
|
212 |
+
|
213 |
+
# Print available columns to identify correct names
|
214 |
+
print("Available columns:", gene_metadata.columns)
|
215 |
+
|
216 |
+
# 2. Get gene mapping dataframe (using correct column names from gene_metadata)
|
217 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='IDs', gene_col='Gene Symbols')
|
218 |
+
|
219 |
+
# 3. Convert probe-level data to gene expression data
|
220 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
221 |
+
|
222 |
+
# 4. Normalize gene symbols and save
|
223 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
224 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
225 |
+
gene_data.to_csv(out_gene_data_file)
|
226 |
+
|
227 |
+
# 5. Link clinical and genetic data
|
228 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
229 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
230 |
+
|
231 |
+
# 6. Handle missing values
|
232 |
+
linked_data = handle_missing_values(linked_data, trait)
|
233 |
+
|
234 |
+
# 7. Check for biased features
|
235 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
236 |
+
|
237 |
+
# 8. Final validation and metadata saving
|
238 |
+
is_usable = validate_and_save_cohort_info(
|
239 |
+
is_final=True,
|
240 |
+
cohort=cohort,
|
241 |
+
info_path=json_path,
|
242 |
+
is_gene_available=True,
|
243 |
+
is_trait_available=True,
|
244 |
+
is_biased=trait_biased,
|
245 |
+
df=linked_data,
|
246 |
+
note="MDD vs healthy controls study"
|
247 |
+
)
|
248 |
+
|
249 |
+
# 9. Save linked data if usable
|
250 |
+
if is_usable:
|
251 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
252 |
+
linked_data.to_csv(out_data_file)
|
253 |
+
# Extract gene annotation data, excluding control probe lines
|
254 |
+
gene_metadata = get_gene_annotation(soft_file)
|
255 |
+
|
256 |
+
# Preview filtered annotation data
|
257 |
+
print("Column names:")
|
258 |
+
print(gene_metadata.columns)
|
259 |
+
print("\nPreview of gene annotation data:")
|
260 |
+
print(preview_df(gene_metadata))
|
p3/preprocess/Depression/code/GSE208668.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE208668"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE208668"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE208668.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE208668.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE208668.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# From the background info, this dataset contains transcriptome data from PBMCs
|
34 |
+
# However, it mentions raw data was lost, so gene expression data is not available
|
35 |
+
is_gene_available = False
|
36 |
+
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# Depression trait can be inferred from "history of depression" field (key 9)
|
39 |
+
trait_row = 9
|
40 |
+
# Age is available in key 1
|
41 |
+
age_row = 1
|
42 |
+
# Gender is available in key 2
|
43 |
+
gender_row = 2
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(x):
|
47 |
+
if not isinstance(x, str):
|
48 |
+
return None
|
49 |
+
x = x.lower().strip()
|
50 |
+
if 'history of depression:' not in x:
|
51 |
+
return None
|
52 |
+
value = x.split(':')[1].strip()
|
53 |
+
if value == 'yes':
|
54 |
+
return 1
|
55 |
+
elif value == 'no':
|
56 |
+
return 0
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_age(x):
|
60 |
+
if not isinstance(x, str):
|
61 |
+
return None
|
62 |
+
if 'age:' not in x:
|
63 |
+
return None
|
64 |
+
try:
|
65 |
+
return float(x.split(':')[1].strip())
|
66 |
+
except:
|
67 |
+
return None
|
68 |
+
|
69 |
+
def convert_gender(x):
|
70 |
+
if not isinstance(x, str):
|
71 |
+
return None
|
72 |
+
if 'gender:' not in x:
|
73 |
+
return None
|
74 |
+
value = x.split(':')[1].strip().lower()
|
75 |
+
if value == 'female':
|
76 |
+
return 0
|
77 |
+
elif value == 'male':
|
78 |
+
return 1
|
79 |
+
return None
|
80 |
+
|
81 |
+
# 3. Save Metadata
|
82 |
+
validate_and_save_cohort_info(is_final=False,
|
83 |
+
cohort=cohort,
|
84 |
+
info_path=json_path,
|
85 |
+
is_gene_available=is_gene_available,
|
86 |
+
is_trait_available=(trait_row is not None))
|
87 |
+
|
88 |
+
# 4. Clinical Feature Extraction
|
89 |
+
# Since trait_row is not None, extract clinical features
|
90 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
91 |
+
trait=trait,
|
92 |
+
trait_row=trait_row,
|
93 |
+
convert_trait=convert_trait,
|
94 |
+
age_row=age_row,
|
95 |
+
convert_age=convert_age,
|
96 |
+
gender_row=gender_row,
|
97 |
+
convert_gender=convert_gender)
|
98 |
+
|
99 |
+
# Preview and save clinical data
|
100 |
+
print("Preview of clinical data:")
|
101 |
+
print(preview_df(clinical_df))
|
102 |
+
clinical_df.to_csv(out_clinical_data_file)
|
p3/preprocess/Depression/code/GSE273630.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE273630"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE273630"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE273630.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE273630.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE273630.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# Gene Expression Data Availability
|
33 |
+
is_gene_available = True # Based on background info mentioning "digital transcript panel" and "genes"
|
34 |
+
|
35 |
+
# Trait, Age and Gender Data Availability
|
36 |
+
trait_row = None # Depression data not available - this is a study on HIV and Methamphetamine use
|
37 |
+
age_row = None # Age is constant (35-44 years) based on background info
|
38 |
+
gender_row = None # Gender is constant (all males) based on background info
|
39 |
+
|
40 |
+
# Convert functions (defined but not used since no data available)
|
41 |
+
def convert_trait(x):
|
42 |
+
if x is None or pd.isna(x):
|
43 |
+
return None
|
44 |
+
val = str(x).split(':')[-1].strip().lower()
|
45 |
+
# Convert depression status to binary
|
46 |
+
if 'yes' in val or 'true' in val or 'positive' in val:
|
47 |
+
return 1
|
48 |
+
elif 'no' in val or 'false' in val or 'negative' in val:
|
49 |
+
return 0
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_age(x):
|
53 |
+
if x is None or pd.isna(x):
|
54 |
+
return None
|
55 |
+
val = str(x).split(':')[-1].strip()
|
56 |
+
try:
|
57 |
+
return float(val)
|
58 |
+
except:
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_gender(x):
|
62 |
+
if x is None or pd.isna(x):
|
63 |
+
return None
|
64 |
+
val = str(x).split(':')[-1].strip().lower()
|
65 |
+
if 'female' in val or 'f' in val:
|
66 |
+
return 0
|
67 |
+
elif 'male' in val or 'm' in val:
|
68 |
+
return 1
|
69 |
+
return None
|
70 |
+
|
71 |
+
# Save metadata - initial filtering
|
72 |
+
is_trait_available = trait_row is not None
|
73 |
+
validate_and_save_cohort_info(
|
74 |
+
is_final=False,
|
75 |
+
cohort=cohort,
|
76 |
+
info_path=json_path,
|
77 |
+
is_gene_available=is_gene_available,
|
78 |
+
is_trait_available=is_trait_available
|
79 |
+
)
|
80 |
+
# Extract gene expression data from matrix file
|
81 |
+
genetic_df = get_genetic_data(matrix_file)
|
82 |
+
|
83 |
+
# Print DataFrame shape and first 20 row IDs
|
84 |
+
print("DataFrame shape:", genetic_df.shape)
|
85 |
+
print("\nFirst 20 row IDs:")
|
86 |
+
print(genetic_df.index[:20])
|
87 |
+
|
88 |
+
print("\nPreview of first few rows and columns:")
|
89 |
+
print(genetic_df.head().iloc[:, :5])
|
90 |
+
# These appear to be standard human gene symbols (e.g. ABAT, ABL1, ACHE, etc.)
|
91 |
+
# No mapping required - they are already in the correct format
|
92 |
+
requires_gene_mapping = False
|
93 |
+
# 1. Normalize gene symbols and save
|
94 |
+
genetic_df = normalize_gene_symbols_in_index(genetic_df)
|
95 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
96 |
+
genetic_df.to_csv(out_gene_data_file)
|
97 |
+
|
98 |
+
# Since trait data is not available, we create a minimal dataframe for validation
|
99 |
+
minimal_df = pd.DataFrame(index=genetic_df.columns)
|
100 |
+
|
101 |
+
# Final validation - dataset not usable due to missing trait data
|
102 |
+
is_usable = validate_and_save_cohort_info(
|
103 |
+
is_final=True,
|
104 |
+
cohort=cohort,
|
105 |
+
info_path=json_path,
|
106 |
+
is_gene_available=True,
|
107 |
+
is_trait_available=False,
|
108 |
+
is_biased=True, # Set to True since we can't use a dataset without trait data
|
109 |
+
df=minimal_df,
|
110 |
+
note="Dataset focuses on HIV and Methamphetamine use, depression data not available"
|
111 |
+
)
|
p3/preprocess/Depression/code/GSE81761.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE81761"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE81761"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE81761.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE81761.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE81761.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes, this is a gene expression dataset using Affymetrix HG-U133_Plus_2 chip
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# Trait (Depression) is not explicitly recorded but PTSD/Depression comorbidity is common in military
|
38 |
+
# We can infer depression from PTSD subgroup which shows symptom severity changes
|
39 |
+
trait_row = 2
|
40 |
+
|
41 |
+
# Age and gender data are available
|
42 |
+
age_row = 5
|
43 |
+
gender_row = 4
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(value):
|
47 |
+
"""Convert PTSD subgroup to depression severity (binary)"""
|
48 |
+
if not value or ':' not in value:
|
49 |
+
return None
|
50 |
+
value = value.split(': ')[1].strip()
|
51 |
+
if value == 'PTSD Not Improved':
|
52 |
+
return 1 # Severe depression
|
53 |
+
elif value == 'PTSD Improved':
|
54 |
+
return 0 # Mild/no depression
|
55 |
+
elif value == 'No PTSD':
|
56 |
+
return 0 # No depression
|
57 |
+
return None # No Follow Up Data cases
|
58 |
+
|
59 |
+
def convert_age(value):
|
60 |
+
"""Convert age string to integer"""
|
61 |
+
if not value or ':' not in value:
|
62 |
+
return None
|
63 |
+
try:
|
64 |
+
return int(value.split(': ')[1])
|
65 |
+
except:
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(value):
|
69 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
70 |
+
if not value or ':' not in value:
|
71 |
+
return None
|
72 |
+
value = value.split(': ')[1].lower()
|
73 |
+
if value == 'female':
|
74 |
+
return 0
|
75 |
+
elif value == 'male':
|
76 |
+
return 1
|
77 |
+
return None
|
78 |
+
|
79 |
+
# 3. Save Metadata
|
80 |
+
is_usable = validate_and_save_cohort_info(
|
81 |
+
is_final=False,
|
82 |
+
cohort=cohort,
|
83 |
+
info_path=json_path,
|
84 |
+
is_gene_available=is_gene_available,
|
85 |
+
is_trait_available=True # trait_row is not None
|
86 |
+
)
|
87 |
+
|
88 |
+
# 4. Clinical Feature Extraction
|
89 |
+
clinical_df = geo_select_clinical_features(
|
90 |
+
clinical_data,
|
91 |
+
trait=trait,
|
92 |
+
trait_row=trait_row,
|
93 |
+
convert_trait=convert_trait,
|
94 |
+
age_row=age_row,
|
95 |
+
convert_age=convert_age,
|
96 |
+
gender_row=gender_row,
|
97 |
+
convert_gender=convert_gender
|
98 |
+
)
|
99 |
+
|
100 |
+
# Preview the processed clinical data
|
101 |
+
preview_result = preview_df(clinical_df)
|
102 |
+
print("Preview of clinical data:")
|
103 |
+
print(preview_result)
|
104 |
+
|
105 |
+
# Save clinical data
|
106 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
107 |
+
clinical_df.to_csv(out_clinical_data_file)
|
108 |
+
# Extract gene expression data from matrix file
|
109 |
+
genetic_df = get_genetic_data(matrix_file)
|
110 |
+
|
111 |
+
# Print DataFrame shape and first 20 row IDs
|
112 |
+
print("DataFrame shape:", genetic_df.shape)
|
113 |
+
print("\nFirst 20 row IDs:")
|
114 |
+
print(genetic_df.index[:20])
|
115 |
+
|
116 |
+
print("\nPreview of first few rows and columns:")
|
117 |
+
print(genetic_df.head().iloc[:, :5])
|
118 |
+
# These IDs appear to be Affymetrix probe IDs (e.g. '1007_s_at', '1053_at')
|
119 |
+
# Rather than human gene symbols, so they will need to be mapped
|
120 |
+
requires_gene_mapping = True
|
121 |
+
# Extract gene annotation data, excluding control probe lines
|
122 |
+
gene_metadata = get_gene_annotation(soft_file)
|
123 |
+
|
124 |
+
# Preview filtered annotation data
|
125 |
+
print("Column names:")
|
126 |
+
print(gene_metadata.columns)
|
127 |
+
print("\nPreview of gene annotation data:")
|
128 |
+
print(preview_df(gene_metadata))
|
129 |
+
# 1. Identify columns: 'ID' for probe IDs and 'Gene Symbol' for gene symbols
|
130 |
+
prob_col = 'ID'
|
131 |
+
gene_col = 'Gene Symbol'
|
132 |
+
|
133 |
+
# 2. Get gene mapping dataframe from annotation data
|
134 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
|
135 |
+
|
136 |
+
# 3. Apply gene mapping to convert probe-level measurements to gene expression data
|
137 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
138 |
+
|
139 |
+
# Preview results
|
140 |
+
print("Gene expression data shape:", gene_data.shape)
|
141 |
+
print("\nFirst few rows and columns:")
|
142 |
+
print(gene_data.head().iloc[:, :5])
|
143 |
+
# 1. Normalize gene symbols and save
|
144 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
145 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
146 |
+
gene_data.to_csv(out_gene_data_file)
|
147 |
+
|
148 |
+
# 2. Link clinical and genetic data
|
149 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
150 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
151 |
+
|
152 |
+
# 3. Handle missing values
|
153 |
+
linked_data = handle_missing_values(linked_data, trait)
|
154 |
+
|
155 |
+
# 4. Check for biased features
|
156 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
157 |
+
|
158 |
+
# 5. Final validation and metadata saving
|
159 |
+
is_usable = validate_and_save_cohort_info(
|
160 |
+
is_final=True,
|
161 |
+
cohort=cohort,
|
162 |
+
info_path=json_path,
|
163 |
+
is_gene_available=True,
|
164 |
+
is_trait_available=True,
|
165 |
+
is_biased=trait_biased,
|
166 |
+
df=linked_data,
|
167 |
+
note="Study of depression in obese patients before and after bariatric surgery"
|
168 |
+
)
|
169 |
+
|
170 |
+
# 6. Save linked data if usable
|
171 |
+
if is_usable:
|
172 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
173 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Depression/code/GSE99725.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
cohort = "GSE99725"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Depression"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Depression/GSE99725"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Depression/GSE99725.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE99725.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE99725.csv"
|
16 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
is_gene_available = True # Dataset is about transcriptomic profiling from peripheral blood
|
34 |
+
|
35 |
+
# 2.1 Data Row Numbers
|
36 |
+
trait_row = 2 # MADRS (depression score)
|
37 |
+
age_row = None # Age not available
|
38 |
+
gender_row = None # Gender not available
|
39 |
+
|
40 |
+
# 2.2 Data Type Conversion Functions
|
41 |
+
def convert_trait(x):
|
42 |
+
"""Convert MADRS score to binary depression status
|
43 |
+
A: No/mild depression (0)
|
44 |
+
B: Depression (1)"""
|
45 |
+
if not isinstance(x, str):
|
46 |
+
return None
|
47 |
+
value = x.split(': ')[-1]
|
48 |
+
if value == 'A':
|
49 |
+
return 0
|
50 |
+
elif value == 'B':
|
51 |
+
return 1
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(x):
|
55 |
+
return None # Not used
|
56 |
+
|
57 |
+
def convert_gender(x):
|
58 |
+
return None # Not used
|
59 |
+
|
60 |
+
# 3. Save Initial Metadata
|
61 |
+
is_trait_available = trait_row is not None
|
62 |
+
validate_and_save_cohort_info(is_final=False,
|
63 |
+
cohort=cohort,
|
64 |
+
info_path=json_path,
|
65 |
+
is_gene_available=is_gene_available,
|
66 |
+
is_trait_available=is_trait_available)
|
67 |
+
|
68 |
+
# 4. Clinical Feature Extraction
|
69 |
+
if trait_row is not None:
|
70 |
+
clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
|
71 |
+
trait=trait,
|
72 |
+
trait_row=trait_row,
|
73 |
+
convert_trait=convert_trait)
|
74 |
+
print("Preview of clinical data:")
|
75 |
+
print(preview_df(clinical_df))
|
76 |
+
|
77 |
+
# Save clinical data
|
78 |
+
clinical_df.to_csv(out_clinical_data_file)
|
79 |
+
# Extract gene expression data from matrix file
|
80 |
+
genetic_df = get_genetic_data(matrix_file)
|
81 |
+
|
82 |
+
# Print DataFrame shape and first 20 row IDs
|
83 |
+
print("DataFrame shape:", genetic_df.shape)
|
84 |
+
print("\nFirst 20 row IDs:")
|
85 |
+
print(genetic_df.index[:20])
|
86 |
+
|
87 |
+
print("\nPreview of first few rows and columns:")
|
88 |
+
print(genetic_df.head().iloc[:, :5])
|
89 |
+
# Based on the presence of "A_19_P" in the identifiers, these are Agilent probe IDs
|
90 |
+
# that need to be mapped to human gene symbols
|
91 |
+
requires_gene_mapping = True
|
92 |
+
# Extract gene annotation data, excluding control probe lines
|
93 |
+
gene_metadata = get_gene_annotation(soft_file)
|
94 |
+
|
95 |
+
# Preview filtered annotation data
|
96 |
+
print("Column names:")
|
97 |
+
print(gene_metadata.columns)
|
98 |
+
print("\nPreview of gene annotation data:")
|
99 |
+
print(preview_df(gene_metadata))
|
100 |
+
# 1. Identify mapping columns
|
101 |
+
# 'ID' column in gene_metadata contains the same Agilent probe IDs as in genetic_df
|
102 |
+
# 'GENE_SYMBOL' column contains the target gene symbols
|
103 |
+
prob_col = 'ID'
|
104 |
+
gene_col = 'GENE_SYMBOL'
|
105 |
+
|
106 |
+
# 2. Get gene mapping dataframe
|
107 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
|
108 |
+
|
109 |
+
# 3. Apply gene mapping to convert probe-level data to gene-level data
|
110 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
111 |
+
|
112 |
+
# Print shape and preview
|
113 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
114 |
+
print("\nPreview of gene expression data:")
|
115 |
+
print(gene_data.head().iloc[:, :5])
|
116 |
+
# 1. Normalize gene symbols and save
|
117 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
118 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
119 |
+
gene_data.to_csv(out_gene_data_file)
|
120 |
+
|
121 |
+
# 2. Link clinical and genetic data
|
122 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
123 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
124 |
+
|
125 |
+
# 3. Handle missing values
|
126 |
+
linked_data = handle_missing_values(linked_data, trait)
|
127 |
+
|
128 |
+
# 4. Check for biased features
|
129 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
130 |
+
|
131 |
+
# 5. Final validation and metadata saving
|
132 |
+
is_usable = validate_and_save_cohort_info(
|
133 |
+
is_final=True,
|
134 |
+
cohort=cohort,
|
135 |
+
info_path=json_path,
|
136 |
+
is_gene_available=True,
|
137 |
+
is_trait_available=True,
|
138 |
+
is_biased=trait_biased,
|
139 |
+
df=linked_data,
|
140 |
+
note="Study of depression in obese patients before and after bariatric surgery"
|
141 |
+
)
|
142 |
+
|
143 |
+
# 6. Save linked data if usable
|
144 |
+
if is_usable:
|
145 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
146 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Depression/code/TCGA.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Depression"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Depression/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Depression/cohort_info.json"
|
15 |
+
|
16 |
+
depression_related_terms = ["depression", "mental", "psychiatric", "psychological", "mood"]
|
17 |
+
|
18 |
+
# Check if any cohort contains depression-related data
|
19 |
+
found_relevant_data = False
|
20 |
+
|
21 |
+
for cohort in cohorts:
|
22 |
+
cohort_dir = os.path.join(tcga_root_dir, cohort)
|
23 |
+
|
24 |
+
try:
|
25 |
+
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
|
26 |
+
clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
|
27 |
+
|
28 |
+
# Check column names for relevant terms
|
29 |
+
relevant_cols = [col for col in clinical_df.columns
|
30 |
+
if any(term in col.lower() for term in depression_related_terms)]
|
31 |
+
|
32 |
+
if relevant_cols:
|
33 |
+
# Check if these columns actually contain meaningful data
|
34 |
+
non_null_counts = clinical_df[relevant_cols].count()
|
35 |
+
if (non_null_counts > 0).any():
|
36 |
+
print(f"\nFound depression-related data in {cohort}:")
|
37 |
+
print(f"Relevant columns: {relevant_cols}")
|
38 |
+
found_relevant_data = True
|
39 |
+
break
|
40 |
+
|
41 |
+
except:
|
42 |
+
continue
|
43 |
+
|
44 |
+
# Record result in metadata
|
45 |
+
validate_and_save_cohort_info(
|
46 |
+
is_final=False,
|
47 |
+
cohort="TCGA",
|
48 |
+
info_path=json_path,
|
49 |
+
is_gene_available=True, # TCGA always has gene expression data
|
50 |
+
is_trait_available=found_relevant_data
|
51 |
+
)
|
52 |
+
# Define depression-related search terms
|
53 |
+
depression_related_terms = ["depression", "mental", "psychiatric", "psychological", "mood", "affect"]
|
54 |
+
|
55 |
+
# Initialize found_trait_data flag
|
56 |
+
found_trait_data = False
|
57 |
+
|
58 |
+
# Get list of TCGA cohorts
|
59 |
+
cohorts = [d for d in os.listdir(tcga_root_dir) if os.path.isdir(os.path.join(tcga_root_dir, d))]
|
60 |
+
|
61 |
+
# Search through cohorts for depression-related data
|
62 |
+
for cohort in cohorts:
|
63 |
+
cohort_dir = os.path.join(tcga_root_dir, cohort)
|
64 |
+
|
65 |
+
try:
|
66 |
+
# Get clinical and genetic file paths
|
67 |
+
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
|
68 |
+
|
69 |
+
# Load clinical data and check column names
|
70 |
+
clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
|
71 |
+
genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
|
72 |
+
|
73 |
+
# Look for depression-related columns
|
74 |
+
relevant_cols = [col for col in clinical_df.columns
|
75 |
+
if any(term in col.lower() for term in depression_related_terms)]
|
76 |
+
|
77 |
+
if relevant_cols:
|
78 |
+
# Check if columns contain non-null data
|
79 |
+
non_null_counts = clinical_df[relevant_cols].count()
|
80 |
+
if (non_null_counts > 0).any():
|
81 |
+
print(f"\nFound depression-related data in {cohort}:")
|
82 |
+
print(f"Relevant columns: {relevant_cols}")
|
83 |
+
print("\nClinical data columns:")
|
84 |
+
print(clinical_df.columns.tolist())
|
85 |
+
found_trait_data = True
|
86 |
+
break
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
continue
|
90 |
+
|
91 |
+
# Record results in metadata
|
92 |
+
validate_and_save_cohort_info(
|
93 |
+
is_final=False,
|
94 |
+
cohort="TCGA",
|
95 |
+
info_path=json_path,
|
96 |
+
is_gene_available=True, # TCGA always has gene expression data
|
97 |
+
is_trait_available=found_trait_data
|
98 |
+
)
|
99 |
+
# Define candidate columns based on column names containing age/gender related keywords
|
100 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust', 'first_diagnosis_age_of_animal_insect_allergy', 'first_diagnosis_age_of_food_allergy']
|
101 |
+
candidate_gender_cols = ['gender']
|
102 |
+
|
103 |
+
# Get clinical file path
|
104 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)'))
|
105 |
+
|
106 |
+
# Read clinical data
|
107 |
+
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0)
|
108 |
+
|
109 |
+
# Preview age columns
|
110 |
+
age_preview = {}
|
111 |
+
for col in candidate_age_cols:
|
112 |
+
age_preview[col] = clinical_df[col].head().tolist()
|
113 |
+
print("Age columns preview:")
|
114 |
+
print(age_preview)
|
115 |
+
|
116 |
+
# Preview gender columns
|
117 |
+
gender_preview = {}
|
118 |
+
for col in candidate_gender_cols:
|
119 |
+
gender_preview[col] = clinical_df[col].head().tolist()
|
120 |
+
print("\nGender columns preview:")
|
121 |
+
print(gender_preview)
|
122 |
+
# Select age column by inspecting preview data
|
123 |
+
# 'age_at_initial_pathologic_diagnosis' has valid age values
|
124 |
+
age_col = 'age_at_initial_pathologic_diagnosis'
|
125 |
+
|
126 |
+
# Select gender column by inspecting preview data
|
127 |
+
# 'gender' contains valid gender values
|
128 |
+
gender_col = 'gender'
|
129 |
+
|
130 |
+
# Print chosen columns
|
131 |
+
print(f"Selected age column: {age_col}")
|
132 |
+
print(f"Selected gender column: {gender_col}")
|
133 |
+
# Define demographic columns discovered in previous steps
|
134 |
+
age_col = 'age_at_initial_pathologic_diagnosis'
|
135 |
+
gender_col = 'gender'
|
136 |
+
|
137 |
+
# Set up cohort directory and load data
|
138 |
+
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)')
|
139 |
+
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
|
140 |
+
clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
|
141 |
+
genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
|
142 |
+
|
143 |
+
# Extract clinical features using mental_status_changes as depression indicator
|
144 |
+
clinical_features = tcga_select_clinical_features(
|
145 |
+
clinical_df,
|
146 |
+
trait='mental_status_changes', # Use mental status changes as depression indicator
|
147 |
+
age_col=age_col,
|
148 |
+
gender_col=gender_col
|
149 |
+
)
|
150 |
+
|
151 |
+
# Save processed clinical data
|
152 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
153 |
+
clinical_features.to_csv(out_clinical_data_file)
|
154 |
+
|
155 |
+
# Normalize gene symbols in genetic data and save
|
156 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
157 |
+
normalized_gene_data = normalize_gene_symbols_in_index(genetic_df)
|
158 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
159 |
+
|
160 |
+
# Link clinical and genetic data
|
161 |
+
linked_data = pd.merge(
|
162 |
+
clinical_features,
|
163 |
+
normalized_gene_data.T,
|
164 |
+
left_index=True,
|
165 |
+
right_index=True,
|
166 |
+
how='inner'
|
167 |
+
)
|
168 |
+
|
169 |
+
# Handle missing values
|
170 |
+
linked_data = handle_missing_values(linked_data, 'mental_status_changes')
|
171 |
+
|
172 |
+
# Check if trait or demographic features are biased and remove biased demographics
|
173 |
+
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'mental_status_changes')
|
174 |
+
|
175 |
+
# Final validation and save metadata
|
176 |
+
notes = "Using TCGA glioma/glioblastoma (GBMLGG) data. Mental status changes used as depression indicator."
|
177 |
+
is_usable = validate_and_save_cohort_info(
|
178 |
+
is_final=True,
|
179 |
+
cohort="TCGA",
|
180 |
+
info_path=json_path,
|
181 |
+
is_gene_available=True,
|
182 |
+
is_trait_available=True,
|
183 |
+
is_biased=is_trait_biased,
|
184 |
+
df=linked_data,
|
185 |
+
note=notes
|
186 |
+
)
|
187 |
+
|
188 |
+
# Save processed data if usable
|
189 |
+
if is_usable:
|
190 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
191 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Depression/gene_data/GSE110298.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Depression/gene_data/GSE128387.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Depression/gene_data/GSE135524.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da8beefb314eeab7395b333e8a7b2136ad6af14fc7414ef9a6ee911a2d4fc085
|
3 |
+
size 18896895
|
p3/preprocess/Depression/gene_data/GSE138297.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de9565415a246beb680e5ba05e15de50eccfec4d24f558d0cba022302313ca04
|
3 |
+
size 15408302
|
p3/preprocess/Depression/gene_data/GSE149980.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23ba6ec31d6340aec2b2b7e9e3425dd5089f71a7538752fb8727e3c65e362463
|
3 |
+
size 16699374
|
p3/preprocess/Depression/gene_data/GSE273630.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Depression/gene_data/GSE81761.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80d271a331e56d79d6ae609b699491af556ac5efb7e7466dd13a554ce437216e
|
3 |
+
size 21422884
|
p3/preprocess/Depression/gene_data/GSE99725.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Duchenne_Muscular_Dystrophy/GSE109178.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c54bcc75a8102bd23b180b5b0672ceb5ce5ccaf0d44922c21587e83923c95865
|
3 |
+
size 10805641
|
p3/preprocess/Duchenne_Muscular_Dystrophy/GSE13608.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b04c843ca8a1a37ee127d045d3eae0f8cd110d80e4f168d0829d3a275ea6e2d
|
3 |
+
size 22002744
|
p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE109178.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2934802,GSM2934803,GSM2934804,GSM2934805,GSM2934806,GSM2934807,GSM2934808,GSM2934809,GSM2934810,GSM2934811,GSM2934812,GSM2934813,GSM2934814,GSM2934815,GSM2934816,GSM2934817,GSM2934818,GSM2934819,GSM2934820,GSM2934821,GSM2934822,GSM2934823,GSM2934824,GSM2934825,GSM2934826,GSM2934827,GSM2934828,GSM2934829,GSM2934830,GSM2934831,GSM2934832,GSM2934833,GSM2934834,GSM2934835,GSM2934836,GSM2934837,GSM2934838,GSM2934839,GSM2934840,GSM2934841,GSM2934842,GSM2934843,GSM2934844,GSM2934845,GSM2934846,GSM2934847,GSM2934848,GSM2934849,GSM2934850
|
2 |
+
Duchenne_Muscular_Dystrophy,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,8.0,12.7,6.4,5.8,60.8,11.0,37.6,43.0,2.5,20.0,12.2,,,,,,,7.0,0.9,4.0,1.6,4.0,8.0,5.0,6.0,1.9,4.0,3.0,3.0,1.9,1.0,2.0,3.5,7.0,,28.0,16.0,31.0,19.0,,20.0,12.0,16.0,12.0,40.0,22.0,10.0,6.0,31.0
|
4 |
+
Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0
|
p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE13608.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM343029,GSM343030,GSM343031,GSM343032,GSM343033,GSM343034,GSM343035,GSM343036,GSM343037,GSM343038,GSM343039,GSM343040,GSM343041,GSM343042,GSM343043,GSM343044,GSM343045,GSM343046,GSM343047,GSM343048,GSM343049,GSM343050,GSM343051,GSM343052,GSM343053,GSM343054,GSM343055,GSM343056,GSM343057,GSM343058,GSM343059,GSM343060,GSM343061,GSM343062,GSM343063,GSM343064,GSM343065,GSM343066,GSM343067,GSM343068,GSM343069,GSM343070,GSM343071,GSM343072,GSM343073,GSM343074,GSM343075,GSM343076,GSM343077,GSM343078,GSM343079,GSM343080,GSM343081,GSM343082,GSM343083,GSM343084,GSM343085,GSM343086,GSM343087,GSM343088,GSM343089,GSM343090,GSM343091,GSM343092,GSM343093,GSM343094,GSM343095,GSM343096
|
2 |
+
Duchenne_Muscular_Dystrophy,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,1.0,1.0,1.0,,,,,
|
3 |
+
Age,,,,55.0,,54.0,25.0,29.0,,21.0,71.0,39.0,69.0,,68.0,32.0,47.0,57.0,43.0,37.0,47.0,54.0,43.0,65.0,42.0,50.0,51.0,58.0,51.0,55.0,28.0,49.0,,,75.0,73.0,55.0,,,,,53.0,36.0,46.0,48.0,69.0,61.0,85.0,43.0,43.0,26.0,,,,,,,50.0,45.0,26.0,5.0,8.0,20.0,64.0,58.0,88.0,58.0,
|
4 |
+
Gender,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0
|
p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1185341,GSM1185342,GSM1185343,GSM1185344,GSM1185345,GSM1185346,GSM1185347,GSM1185348,GSM1185349,GSM1185350,GSM1185351,GSM1185352,GSM1185353,GSM1185354,GSM1185355,GSM1185356,GSM1185357,GSM1185358,GSM1185359,GSM1185360,GSM1185361,GSM1185362,GSM1185363,GSM1185364,GSM1185365,GSM1185366,GSM1185367,GSM1185368
|
2 |
+
Duchenne_Muscular_Dystrophy,,,,,,,,,,,,,,,,,,,,,,1.0,,,0.0,0.0,0.0,0.0
|
3 |
+
Age,,,54.0,29.0,25.0,21.0,55.0,,39.0,58.0,50.0,51.0,43.0,51.0,37.0,43.0,65.0,55.0,50.0,45.0,26.0,20.0,58.0,88.0,61.0,43.0,85.0,43.0
|
4 |
+
Gender,0.0,0.0,0.0,0.0,1.0,1.0,0.0,,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0
|
p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2090086,GSM2090087,GSM2090088,GSM2090089,GSM2090090,GSM2090091,GSM2090092,GSM2090093,GSM2090094,GSM2090095,GSM2090096,GSM2090097,GSM2090098,GSM2090099,GSM2090100,GSM2090101,GSM2090102,GSM2090103,GSM2090104,GSM2090105,GSM2090106,GSM2090107,GSM2090108,GSM2090109,GSM2090110,GSM2090111,GSM2090112,GSM2090113,GSM2090114,GSM2090115,GSM2090116,GSM2090117,GSM2090118,GSM2090119,GSM2090120,GSM2090121,GSM2090122,GSM2090123,GSM2090124,GSM2090125,GSM2090126,GSM2090127,GSM2090128,GSM2090129,GSM2090130,GSM2090131,GSM2090132,GSM2090133,GSM2090134,GSM2090135,GSM2090136,GSM2090137,GSM2090138,GSM2090139,GSM2090140,GSM2090141,GSM2090142,GSM2090143,GSM2090144,GSM2090145,GSM2090146,GSM2090147,GSM2090148,GSM2090149,GSM2090150,GSM2090151,GSM2090152,GSM2090153,GSM2090154,GSM2090155,GSM2090156,GSM2090157,GSM2090158,GSM2090159,GSM2090160,GSM2090161,GSM2090162,GSM2090163,GSM2090164,GSM2090165,GSM2090166,GSM2090167,GSM2090168,GSM2090169,GSM2090170,GSM2090171,GSM2090172,GSM2090173,GSM2090174,GSM2090175,GSM2090176,GSM2090177,GSM2090178,GSM2090179
|
2 |
+
Duchenne_Muscular_Dystrophy,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,80.0,78.0,,79.0,19.0,17.0,15.0,73.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
|
p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE109178.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Duchenne_Muscular_Dystrophy"
|
6 |
+
cohort = "GSE109178"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE109178"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE109178.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE109178.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE109178.csv"
|
16 |
+
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# The background info mentions "mRNA profiles" and "HG-U133 Plus 2.0 microarrays"
|
34 |
+
# which indicates this is gene expression data
|
35 |
+
is_gene_available = True
|
36 |
+
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# Trait can be inferred from the mutation data in key 4
|
39 |
+
trait_row = 4
|
40 |
+
|
41 |
+
# Age data is available in key 0
|
42 |
+
age_row = 0
|
43 |
+
|
44 |
+
# Gender data is available in key 3
|
45 |
+
gender_row = 3
|
46 |
+
|
47 |
+
# 2.2 Data Type Conversion Functions
|
48 |
+
def convert_trait(value: str) -> int:
|
49 |
+
"""Convert mutation info to binary trait status (DMD vs non-DMD)"""
|
50 |
+
if pd.isna(value) or ":" not in value:
|
51 |
+
return None
|
52 |
+
value = value.split(":")[1].strip()
|
53 |
+
# Deletions/duplications/mutations indicate DMD
|
54 |
+
if any(x in value.lower() for x in ['deletion', 'duplication', 'mutation', 'exon']):
|
55 |
+
return 1
|
56 |
+
# Pathology notes indicate non-DMD
|
57 |
+
return 0
|
58 |
+
|
59 |
+
def convert_age(value: str) -> float:
|
60 |
+
"""Convert age string to float value"""
|
61 |
+
if pd.isna(value) or ":" not in value:
|
62 |
+
return None
|
63 |
+
value = value.split(":")[1].strip()
|
64 |
+
if value == "NA":
|
65 |
+
return None
|
66 |
+
try:
|
67 |
+
return float(value)
|
68 |
+
except:
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(value: str) -> int:
|
72 |
+
"""Convert gender string to binary (0=female, 1=male)"""
|
73 |
+
if pd.isna(value) or ":" not in value:
|
74 |
+
return None
|
75 |
+
value = value.split(":")[1].strip().upper()
|
76 |
+
if value in ["M", "MALE"]:
|
77 |
+
return 1
|
78 |
+
elif value in ["F", "FEMALE"]:
|
79 |
+
return 0
|
80 |
+
return None
|
81 |
+
|
82 |
+
# 3. Save metadata
|
83 |
+
# Trait data is available (trait_row is not None)
|
84 |
+
is_trait_available = trait_row is not None
|
85 |
+
validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available)
|
86 |
+
|
87 |
+
# 4. Extract clinical features
|
88 |
+
selected_clinical_df = geo_select_clinical_features(
|
89 |
+
clinical_df=clinical_data,
|
90 |
+
trait=trait,
|
91 |
+
trait_row=trait_row,
|
92 |
+
convert_trait=convert_trait,
|
93 |
+
age_row=age_row,
|
94 |
+
convert_age=convert_age,
|
95 |
+
gender_row=gender_row,
|
96 |
+
convert_gender=convert_gender
|
97 |
+
)
|
98 |
+
|
99 |
+
print("Preview of extracted clinical features:")
|
100 |
+
print(preview_df(selected_clinical_df))
|
101 |
+
|
102 |
+
# Save clinical data
|
103 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
104 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
105 |
+
# Extract gene expression data from matrix file
|
106 |
+
genetic_df = get_genetic_data(matrix_file)
|
107 |
+
|
108 |
+
# Print DataFrame shape and first 20 row IDs
|
109 |
+
print("DataFrame shape:", genetic_df.shape)
|
110 |
+
print("\nFirst 20 row IDs:")
|
111 |
+
print(genetic_df.index[:20])
|
112 |
+
|
113 |
+
print("\nPreview of first few rows and columns:")
|
114 |
+
print(genetic_df.head().iloc[:, :5])
|
115 |
+
# Based on the format like '1007_s_at', these appear to be Affymetrix probe IDs
|
116 |
+
# rather than standard human gene symbols. They need to be mapped to gene symbols.
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# Extract gene annotation data, excluding control probe lines
|
119 |
+
gene_metadata = get_gene_annotation(soft_file)
|
120 |
+
|
121 |
+
# Preview filtered annotation data
|
122 |
+
print("Column names:")
|
123 |
+
print(gene_metadata.columns)
|
124 |
+
print("\nPreview of gene annotation data:")
|
125 |
+
print(preview_df(gene_metadata))
|
126 |
+
# From the preview, we can see that 'ID' column matches the gene expression data identifiers (e.g. '1007_s_at')
|
127 |
+
# and 'Gene Symbol' column contains the human gene symbols
|
128 |
+
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')
|
129 |
+
|
130 |
+
# Apply gene mapping to convert probe-level data to gene expression data
|
131 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
132 |
+
|
133 |
+
# Print size of mapped data
|
134 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
135 |
+
print("\nFirst few rows and columns:")
|
136 |
+
print(gene_data.head().iloc[:, :5])
|
137 |
+
# 1. Normalize gene symbols and save
|
138 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
139 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
140 |
+
gene_data.to_csv(out_gene_data_file)
|
141 |
+
|
142 |
+
# 2. Link clinical and genetic data
|
143 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
144 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
145 |
+
|
146 |
+
# 3. Handle missing values
|
147 |
+
linked_data = handle_missing_values(linked_data, trait)
|
148 |
+
|
149 |
+
# 4. Check for biased features
|
150 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
151 |
+
|
152 |
+
# 5. Final validation and metadata saving
|
153 |
+
is_usable = validate_and_save_cohort_info(
|
154 |
+
is_final=True,
|
155 |
+
cohort=cohort,
|
156 |
+
info_path=json_path,
|
157 |
+
is_gene_available=True,
|
158 |
+
is_trait_available=True,
|
159 |
+
is_biased=trait_biased,
|
160 |
+
df=linked_data,
|
161 |
+
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
|
162 |
+
)
|
163 |
+
|
164 |
+
# 6. Save linked data if usable
|
165 |
+
if is_usable:
|
166 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
167 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE13608.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Duchenne_Muscular_Dystrophy"
|
6 |
+
cohort = "GSE13608"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE13608"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE13608.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE13608.csv"
|
16 |
+
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
is_gene_available = True # Dataset contains muscle biopsy gene expression data
|
34 |
+
|
35 |
+
# 2.1 Data Availability
|
36 |
+
trait_row = 1 # Disease status in row 1
|
37 |
+
age_row = 2 # Age in row 2
|
38 |
+
gender_row = 3 # Gender in row 3
|
39 |
+
|
40 |
+
# 2.2 Data Type Conversion Functions
|
41 |
+
def convert_trait(value):
|
42 |
+
if not isinstance(value, str):
|
43 |
+
return None
|
44 |
+
# Extract value after colon if present
|
45 |
+
if ':' in value:
|
46 |
+
value = value.split(':')[1].strip()
|
47 |
+
if 'Duchenne Muscular Dystrophy' in value:
|
48 |
+
return 1
|
49 |
+
elif 'Normal' in value:
|
50 |
+
return 0
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_age(value):
|
54 |
+
if not isinstance(value, str):
|
55 |
+
return None
|
56 |
+
if ':' in value:
|
57 |
+
value = value.split(':')[1].strip()
|
58 |
+
if 'age' in value:
|
59 |
+
try:
|
60 |
+
age = int(value.replace('age', '').strip())
|
61 |
+
return age
|
62 |
+
except:
|
63 |
+
return None
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_gender(value):
|
67 |
+
if not isinstance(value, str):
|
68 |
+
return None
|
69 |
+
if ':' in value:
|
70 |
+
value = value.split(':')[1].strip()
|
71 |
+
if 'F' == value.strip():
|
72 |
+
return 0
|
73 |
+
elif 'M' == value.strip():
|
74 |
+
return 1
|
75 |
+
return None
|
76 |
+
|
77 |
+
# 3. Save Metadata
|
78 |
+
validate_and_save_cohort_info(
|
79 |
+
is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=trait_row is not None
|
84 |
+
)
|
85 |
+
|
86 |
+
# 4. Clinical Feature Extraction
|
87 |
+
if trait_row is not None:
|
88 |
+
selected_clinical_df = geo_select_clinical_features(
|
89 |
+
clinical_df=clinical_data,
|
90 |
+
trait=trait,
|
91 |
+
trait_row=trait_row,
|
92 |
+
convert_trait=convert_trait,
|
93 |
+
age_row=age_row,
|
94 |
+
convert_age=convert_age,
|
95 |
+
gender_row=gender_row,
|
96 |
+
convert_gender=convert_gender
|
97 |
+
)
|
98 |
+
|
99 |
+
# Preview the data
|
100 |
+
print("Preview of selected clinical features:")
|
101 |
+
print(preview_df(selected_clinical_df))
|
102 |
+
|
103 |
+
# Save to CSV
|
104 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
105 |
+
# Extract gene expression data from matrix file
|
106 |
+
genetic_df = get_genetic_data(matrix_file)
|
107 |
+
|
108 |
+
# Print DataFrame shape and first 20 row IDs
|
109 |
+
print("DataFrame shape:", genetic_df.shape)
|
110 |
+
print("\nFirst 20 row IDs:")
|
111 |
+
print(genetic_df.index[:20])
|
112 |
+
|
113 |
+
print("\nPreview of first few rows and columns:")
|
114 |
+
print(genetic_df.head().iloc[:, :5])
|
115 |
+
# The identifiers in this dataset appear to be probe IDs from Affymetrix array
|
116 |
+
# These need to be mapped to standard gene symbols for analysis
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# Extract gene annotation data, excluding control probe lines
|
119 |
+
gene_metadata = get_gene_annotation(soft_file)
|
120 |
+
|
121 |
+
# Preview filtered annotation data
|
122 |
+
print("Column names:")
|
123 |
+
print(gene_metadata.columns)
|
124 |
+
print("\nPreview of gene annotation data:")
|
125 |
+
print(preview_df(gene_metadata))
|
126 |
+
# The gene expression data uses probe IDs stored in the 'ID' column of gene_metadata
|
127 |
+
# The gene symbols are stored in the 'Gene Symbol' column
|
128 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
|
129 |
+
|
130 |
+
# Convert probe-level measurements to gene-level expression
|
131 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
132 |
+
|
133 |
+
# Preview the mapped gene expression data
|
134 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
135 |
+
print("\nFirst few rows and columns:")
|
136 |
+
print(gene_data.head().iloc[:, :5])
|
137 |
+
# 1. Normalize gene symbols and save
|
138 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
139 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
140 |
+
gene_data.to_csv(out_gene_data_file)
|
141 |
+
|
142 |
+
# 2. Link clinical and genetic data
|
143 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
144 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
145 |
+
|
146 |
+
# 3. Handle missing values
|
147 |
+
linked_data = handle_missing_values(linked_data, trait)
|
148 |
+
|
149 |
+
# 4. Check for biased features
|
150 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
151 |
+
|
152 |
+
# 5. Final validation and metadata saving
|
153 |
+
is_usable = validate_and_save_cohort_info(
|
154 |
+
is_final=True,
|
155 |
+
cohort=cohort,
|
156 |
+
info_path=json_path,
|
157 |
+
is_gene_available=True,
|
158 |
+
is_trait_available=True,
|
159 |
+
is_biased=trait_biased,
|
160 |
+
df=linked_data,
|
161 |
+
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
|
162 |
+
)
|
163 |
+
|
164 |
+
# 6. Save linked data if usable
|
165 |
+
if is_usable:
|
166 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
167 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE48828.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Duchenne_Muscular_Dystrophy"
|
6 |
+
cohort = "GSE48828"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE48828"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE48828.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE48828.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv"
|
16 |
+
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on background info, this is an Affymetrix exon array study measuring gene expression
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Row identifiers for each variable
|
38 |
+
trait_row = 0 # 'diagnosis' row contains trait info
|
39 |
+
age_row = 2 # 'age (yrs)' row contains age info
|
40 |
+
gender_row = 1 # 'gender' row contains gender info
|
41 |
+
|
42 |
+
# 2.2 Conversion functions
|
43 |
+
def convert_trait(value: str) -> Optional[int]:
|
44 |
+
"""Convert trait status to binary"""
|
45 |
+
if not value or ':' not in value:
|
46 |
+
return None
|
47 |
+
diagnosis = value.split(': ')[1].strip().lower()
|
48 |
+
if 'duchenne muscular dystrophy' in diagnosis:
|
49 |
+
return 1
|
50 |
+
elif 'normal' in diagnosis:
|
51 |
+
return 0
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str) -> Optional[float]:
|
55 |
+
"""Convert age to float"""
|
56 |
+
if not value or ':' not in value:
|
57 |
+
return None
|
58 |
+
age = value.split(': ')[1].strip().lower()
|
59 |
+
try:
|
60 |
+
if age in ['na', 'not available']:
|
61 |
+
return None
|
62 |
+
return float(age)
|
63 |
+
except:
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_gender(value: str) -> Optional[int]:
|
67 |
+
"""Convert gender to binary"""
|
68 |
+
if not value or ':' not in value:
|
69 |
+
return None
|
70 |
+
gender = value.split(': ')[1].strip().lower()
|
71 |
+
if gender == 'f':
|
72 |
+
return 0
|
73 |
+
elif gender == 'm':
|
74 |
+
return 1
|
75 |
+
return None
|
76 |
+
|
77 |
+
# 3. Save Metadata
|
78 |
+
validate_and_save_cohort_info(
|
79 |
+
is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=trait_row is not None
|
84 |
+
)
|
85 |
+
|
86 |
+
# 4. Extract Clinical Features
|
87 |
+
if trait_row is not None:
|
88 |
+
selected_clinical_df = geo_select_clinical_features(
|
89 |
+
clinical_df=clinical_data,
|
90 |
+
trait=trait,
|
91 |
+
trait_row=trait_row,
|
92 |
+
convert_trait=convert_trait,
|
93 |
+
age_row=age_row,
|
94 |
+
convert_age=convert_age,
|
95 |
+
gender_row=gender_row,
|
96 |
+
convert_gender=convert_gender
|
97 |
+
)
|
98 |
+
|
99 |
+
# Preview the processed clinical data
|
100 |
+
print("Preview of processed clinical data:")
|
101 |
+
print(preview_df(selected_clinical_df))
|
102 |
+
|
103 |
+
# Save to CSV
|
104 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
105 |
+
# Extract gene expression data from matrix file
|
106 |
+
genetic_df = get_genetic_data(matrix_file)
|
107 |
+
|
108 |
+
# Print DataFrame shape and first 20 row IDs
|
109 |
+
print("DataFrame shape:", genetic_df.shape)
|
110 |
+
print("\nFirst 20 row IDs:")
|
111 |
+
print(genetic_df.index[:20])
|
112 |
+
|
113 |
+
print("\nPreview of first few rows and columns:")
|
114 |
+
print(genetic_df.head().iloc[:, :5])
|
115 |
+
# The row IDs are numerical probe IDs from microarray platforms, not human gene symbols
|
116 |
+
requires_gene_mapping = True
|
117 |
+
# Extract gene annotation data, excluding control probe lines
|
118 |
+
gene_metadata = get_gene_annotation(soft_file)
|
119 |
+
|
120 |
+
# Preview filtered annotation data
|
121 |
+
print("Column names:")
|
122 |
+
print(gene_metadata.columns)
|
123 |
+
print("\nPreview of gene annotation data:")
|
124 |
+
print(preview_df(gene_metadata))
|
125 |
+
# 1. Identify columns for gene identifiers and symbols
|
126 |
+
# 'ID' column contains same identifiers as gene expression data
|
127 |
+
# 'gene_assignment' contains gene symbols but needs parsing
|
128 |
+
|
129 |
+
# Function to parse gene symbols from complex strings
|
130 |
+
def parse_gene_symbols(text):
|
131 |
+
if text == '---' or pd.isna(text):
|
132 |
+
return None
|
133 |
+
# Split by /// to handle multiple assignments
|
134 |
+
gene_entries = text.split('///')
|
135 |
+
symbols = []
|
136 |
+
for entry in gene_entries:
|
137 |
+
parts = entry.strip().split('//')
|
138 |
+
if len(parts) >= 3: # We need at least 3 parts to get to the gene symbol
|
139 |
+
symbol = parts[1].strip() # Gene symbol is in the second position
|
140 |
+
if symbol != '---':
|
141 |
+
symbols.append(symbol)
|
142 |
+
return symbols if symbols else None
|
143 |
+
|
144 |
+
# Create initial mapping dataframe
|
145 |
+
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()
|
146 |
+
|
147 |
+
# Extract gene symbols and clean up mapping
|
148 |
+
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
|
149 |
+
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])
|
150 |
+
|
151 |
+
# Explode lists of genes into separate rows
|
152 |
+
mapping_df = mapping_df.explode('Gene')
|
153 |
+
|
154 |
+
# Apply gene mapping to probe-level measurements
|
155 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
156 |
+
|
157 |
+
# Normalize gene symbols to standard form
|
158 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
159 |
+
|
160 |
+
# Print shape and preview mapped data
|
161 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
162 |
+
print("\nPreview of gene expression data:")
|
163 |
+
print(gene_data.head().iloc[:, :5])
|
164 |
+
# 1. Since gene_data is empty, we need to remap gene symbols
|
165 |
+
def parse_gene_symbols(text):
|
166 |
+
if text == '---' or pd.isna(text):
|
167 |
+
return None
|
168 |
+
# Split entries by /// for multiple assignments
|
169 |
+
entries = text.split('///')
|
170 |
+
symbols = []
|
171 |
+
for entry in entries:
|
172 |
+
parts = [p.strip() for p in entry.split('//')]
|
173 |
+
if len(parts) >= 2: # Need at least 2 parts
|
174 |
+
symbol = parts[1] # Second part contains the gene symbol
|
175 |
+
if symbol != '---':
|
176 |
+
symbols.append(symbol)
|
177 |
+
return symbols if symbols else None
|
178 |
+
|
179 |
+
# Create initial mapping dataframe
|
180 |
+
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()
|
181 |
+
|
182 |
+
# Extract gene symbols and clean up mapping
|
183 |
+
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
|
184 |
+
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])
|
185 |
+
|
186 |
+
# Explode lists of genes into separate rows
|
187 |
+
mapping_df = mapping_df.explode('Gene')
|
188 |
+
print(f"Number of probe-gene mappings: {len(mapping_df)}")
|
189 |
+
|
190 |
+
# Apply gene mapping to probe-level measurements
|
191 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
192 |
+
print(f"Number of genes after mapping: {len(gene_data)}")
|
193 |
+
|
194 |
+
# After remapping, proceed with the rest of step 7
|
195 |
+
# 1. Normalize gene symbols and save
|
196 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
197 |
+
print(f"Number of genes after normalization: {len(gene_data)}")
|
198 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
199 |
+
gene_data.to_csv(out_gene_data_file)
|
200 |
+
|
201 |
+
# 2. Link clinical and genetic data
|
202 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
203 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
204 |
+
|
205 |
+
# 3. Handle missing values
|
206 |
+
linked_data = handle_missing_values(linked_data, trait)
|
207 |
+
|
208 |
+
# 4. Check for biased features
|
209 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
210 |
+
|
211 |
+
# 5. Final validation and metadata saving
|
212 |
+
is_usable = validate_and_save_cohort_info(
|
213 |
+
is_final=True,
|
214 |
+
cohort=cohort,
|
215 |
+
info_path=json_path,
|
216 |
+
is_gene_available=True,
|
217 |
+
is_trait_available=True,
|
218 |
+
is_biased=trait_biased,
|
219 |
+
df=linked_data,
|
220 |
+
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
|
221 |
+
)
|
222 |
+
|
223 |
+
# 6. Save linked data if usable
|
224 |
+
if is_usable:
|
225 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
226 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE79263.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Duchenne_Muscular_Dystrophy"
|
6 |
+
cohort = "GSE79263"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE79263"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE79263.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv"
|
16 |
+
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths to the SOFT and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each feature (row) in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("=== Dataset Background Information ===")
|
29 |
+
print(background_info)
|
30 |
+
print("\n=== Sample Characteristics ===")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on background info indicating RNA extraction and gene expression profiling
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability and Row Identification
|
37 |
+
# Trait (DMD status) found in row 2 "disease state"
|
38 |
+
trait_row = 2
|
39 |
+
|
40 |
+
# Age found in row 4
|
41 |
+
age_row = 4
|
42 |
+
|
43 |
+
# Gender data not available in sample characteristics
|
44 |
+
gender_row = None
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(value: str) -> int:
|
48 |
+
"""Convert DMD status to binary"""
|
49 |
+
if pd.isna(value):
|
50 |
+
return None
|
51 |
+
value = value.split(": ")[-1].lower()
|
52 |
+
if "duchenne" in value or "dmd" in value:
|
53 |
+
return 1
|
54 |
+
elif "healthy" in value:
|
55 |
+
return 0
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(value: str) -> float:
|
59 |
+
"""Convert age to continuous numeric value"""
|
60 |
+
if pd.isna(value):
|
61 |
+
return None
|
62 |
+
value = value.split(": ")[-1].lower()
|
63 |
+
if "unknown" in value:
|
64 |
+
return None
|
65 |
+
try:
|
66 |
+
# Extract numeric value before 'y'
|
67 |
+
age = float(value.replace('y',''))
|
68 |
+
return age
|
69 |
+
except:
|
70 |
+
return None
|
71 |
+
|
72 |
+
def convert_gender(value: str) -> int:
|
73 |
+
"""Placeholder function - not used since gender data unavailable"""
|
74 |
+
return None
|
75 |
+
|
76 |
+
# 3. Save Metadata
|
77 |
+
validate_and_save_cohort_info(
|
78 |
+
is_final=False,
|
79 |
+
cohort=cohort,
|
80 |
+
info_path=json_path,
|
81 |
+
is_gene_available=is_gene_available,
|
82 |
+
is_trait_available=trait_row is not None
|
83 |
+
)
|
84 |
+
|
85 |
+
# 4. Clinical Feature Extraction
|
86 |
+
if trait_row is not None:
|
87 |
+
selected_clinical = geo_select_clinical_features(
|
88 |
+
clinical_df=clinical_data,
|
89 |
+
trait=trait,
|
90 |
+
trait_row=trait_row,
|
91 |
+
convert_trait=convert_trait,
|
92 |
+
age_row=age_row,
|
93 |
+
convert_age=convert_age,
|
94 |
+
gender_row=gender_row,
|
95 |
+
convert_gender=convert_gender
|
96 |
+
)
|
97 |
+
|
98 |
+
# Preview the selected features
|
99 |
+
print("Preview of selected clinical features:")
|
100 |
+
print(preview_df(selected_clinical))
|
101 |
+
|
102 |
+
# Save to CSV
|
103 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
104 |
+
# Extract gene expression data from matrix file
|
105 |
+
genetic_df = get_genetic_data(matrix_file)
|
106 |
+
|
107 |
+
# Print DataFrame shape and first 20 row IDs
|
108 |
+
print("DataFrame shape:", genetic_df.shape)
|
109 |
+
print("\nFirst 20 row IDs:")
|
110 |
+
print(genetic_df.index[:20])
|
111 |
+
|
112 |
+
print("\nPreview of first few rows and columns:")
|
113 |
+
print(genetic_df.head().iloc[:, :5])
|
114 |
+
# These IDs start with "ILMN_" which indicates they are Illumina probe IDs, not gene symbols
|
115 |
+
# Therefore they need to be mapped to human gene symbols
|
116 |
+
requires_gene_mapping = True
|
117 |
+
# Extract gene annotation data, excluding control probe lines
|
118 |
+
gene_metadata = get_gene_annotation(soft_file)
|
119 |
+
|
120 |
+
# Preview filtered annotation data
|
121 |
+
print("Column names:")
|
122 |
+
print(gene_metadata.columns)
|
123 |
+
print("\nPreview of gene annotation data:")
|
124 |
+
print(preview_df(gene_metadata))
|
125 |
+
# 1. Get gene mapping using ID and Symbol columns from annotation
|
126 |
+
# ID column contains ILMN probe IDs matching gene expression data
|
127 |
+
# Symbol column contains human gene symbols
|
128 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
|
129 |
+
|
130 |
+
# 2. Apply gene mapping to convert probe-level expression to gene-level expression
|
131 |
+
gene_data = apply_gene_mapping(genetic_df, mapping_df)
|
132 |
+
|
133 |
+
# Print gene_data shape and preview
|
134 |
+
print("\nGene expression data shape after mapping:", gene_data.shape)
|
135 |
+
print("\nPreview of gene expression data:")
|
136 |
+
print(gene_data.head().iloc[:, :5])
|
137 |
+
# 1. Normalize gene symbols and save
|
138 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
139 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
140 |
+
gene_data.to_csv(out_gene_data_file)
|
141 |
+
|
142 |
+
# 2. Link clinical and genetic data
|
143 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
144 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
145 |
+
|
146 |
+
# 3. Handle missing values
|
147 |
+
linked_data = handle_missing_values(linked_data, trait)
|
148 |
+
|
149 |
+
# 4. Check for biased features
|
150 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
151 |
+
|
152 |
+
# 5. Final validation and metadata saving
|
153 |
+
is_usable = validate_and_save_cohort_info(
|
154 |
+
is_final=True,
|
155 |
+
cohort=cohort,
|
156 |
+
info_path=json_path,
|
157 |
+
is_gene_available=True,
|
158 |
+
is_trait_available=True,
|
159 |
+
is_biased=trait_biased,
|
160 |
+
df=linked_data,
|
161 |
+
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
|
162 |
+
)
|
163 |
+
|
164 |
+
# 6. Save linked data if usable
|
165 |
+
if is_usable:
|
166 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
167 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Duchenne_Muscular_Dystrophy/code/TCGA.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Duchenne_Muscular_Dystrophy"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
|
15 |
+
|
16 |
+
# Since DMD is a genetic disorder and not a cancer type, TCGA datasets are not suitable
|
17 |
+
# Record that trait data is not available and skip further processing
|
18 |
+
validate_and_save_cohort_info(
|
19 |
+
is_final=False,
|
20 |
+
cohort="TCGA",
|
21 |
+
info_path=json_path,
|
22 |
+
is_gene_available=True, # TCGA would have gene data if we needed it
|
23 |
+
is_trait_available=False # No relevant trait data for DMD in TCGA cancer datasets
|
24 |
+
)
|
p3/preprocess/Duchenne_Muscular_Dystrophy/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE79263": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 86, "note": "Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"}, "GSE48828": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"}, "GSE13608": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 12, "note": "Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"}, "GSE109178": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 49, "note": "Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"}, "TCGA": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
|