Liu-Hy commited on
Commit
75faa94
·
verified ·
1 Parent(s): 5716e25

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +24 -0
  2. p3/preprocess/Chronic_kidney_disease/TCGA.csv +3 -0
  3. p3/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv +3 -0
  4. p3/preprocess/Crohns_Disease/GSE186582.csv +3 -0
  5. p3/preprocess/Crohns_Disease/gene_data/GSE186582.csv +3 -0
  6. p3/preprocess/Cystic_Fibrosis/GSE60690.csv +3 -0
  7. p3/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv +3 -0
  8. p3/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv +3 -0
  9. p3/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv +3 -0
  10. p3/preprocess/Depression/GSE135524.csv +3 -0
  11. p3/preprocess/Depression/GSE138297.csv +3 -0
  12. p3/preprocess/Depression/GSE149980.csv +3 -0
  13. p3/preprocess/Depression/GSE81761.csv +3 -0
  14. p3/preprocess/Depression/GSE99725.csv +0 -0
  15. p3/preprocess/Depression/clinical_data/GSE208668.csv +4 -0
  16. p3/preprocess/Depression/clinical_data/GSE81761.csv +4 -0
  17. p3/preprocess/Depression/clinical_data/GSE99725.csv +2 -0
  18. p3/preprocess/Depression/clinical_data/TCGA.csv +1149 -0
  19. p3/preprocess/Depression/code/GSE110298.py +166 -0
  20. p3/preprocess/Depression/code/GSE128387.py +167 -0
  21. p3/preprocess/Depression/code/GSE135524.py +160 -0
  22. p3/preprocess/Depression/code/GSE138297.py +183 -0
  23. p3/preprocess/Depression/code/GSE149980.py +145 -0
  24. p3/preprocess/Depression/code/GSE201332.py +260 -0
  25. p3/preprocess/Depression/code/GSE208668.py +102 -0
  26. p3/preprocess/Depression/code/GSE273630.py +111 -0
  27. p3/preprocess/Depression/code/GSE81761.py +173 -0
  28. p3/preprocess/Depression/code/GSE99725.py +146 -0
  29. p3/preprocess/Depression/code/TCGA.py +191 -0
  30. p3/preprocess/Depression/gene_data/GSE110298.csv +0 -0
  31. p3/preprocess/Depression/gene_data/GSE128387.csv +0 -0
  32. p3/preprocess/Depression/gene_data/GSE135524.csv +3 -0
  33. p3/preprocess/Depression/gene_data/GSE138297.csv +3 -0
  34. p3/preprocess/Depression/gene_data/GSE149980.csv +3 -0
  35. p3/preprocess/Depression/gene_data/GSE273630.csv +0 -0
  36. p3/preprocess/Depression/gene_data/GSE81761.csv +3 -0
  37. p3/preprocess/Depression/gene_data/GSE99725.csv +0 -0
  38. p3/preprocess/Duchenne_Muscular_Dystrophy/GSE109178.csv +3 -0
  39. p3/preprocess/Duchenne_Muscular_Dystrophy/GSE13608.csv +0 -0
  40. p3/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv +3 -0
  41. p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE109178.csv +4 -0
  42. p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE13608.csv +4 -0
  43. p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv +4 -0
  44. p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv +3 -0
  45. p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE109178.py +167 -0
  46. p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE13608.py +167 -0
  47. p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE48828.py +226 -0
  48. p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE79263.py +167 -0
  49. p3/preprocess/Duchenne_Muscular_Dystrophy/code/TCGA.py +24 -0
  50. p3/preprocess/Duchenne_Muscular_Dystrophy/cohort_info.json +1 -0
.gitattributes CHANGED
@@ -1612,3 +1612,27 @@ p3/preprocess/Colon_and_Rectal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs mer
1612
  p3/preprocess/Craniosynostosis/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
1613
  p3/preprocess/Craniosynostosis/gene_data/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
1614
  p3/preprocess/Cystic_Fibrosis/gene_data/GSE100521.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612
  p3/preprocess/Craniosynostosis/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
1613
  p3/preprocess/Craniosynostosis/gene_data/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
1614
  p3/preprocess/Cystic_Fibrosis/gene_data/GSE100521.csv filter=lfs diff=lfs merge=lfs -text
1615
+ p3/preprocess/Crohns_Disease/GSE186582.csv filter=lfs diff=lfs merge=lfs -text
1616
+ p3/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv filter=lfs diff=lfs merge=lfs -text
1617
+ p3/preprocess/Depression/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
1618
+ p3/preprocess/Depression/GSE135524.csv filter=lfs diff=lfs merge=lfs -text
1619
+ p3/preprocess/Depression/GSE149980.csv filter=lfs diff=lfs merge=lfs -text
1620
+ p3/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv filter=lfs diff=lfs merge=lfs -text
1621
+ p3/preprocess/Chronic_kidney_disease/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1622
+ p3/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv filter=lfs diff=lfs merge=lfs -text
1623
+ p3/preprocess/Crohns_Disease/gene_data/GSE186582.csv filter=lfs diff=lfs merge=lfs -text
1624
+ p3/preprocess/Depression/GSE81761.csv filter=lfs diff=lfs merge=lfs -text
1625
+ p3/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1626
+ p3/preprocess/Depression/gene_data/GSE149980.csv filter=lfs diff=lfs merge=lfs -text
1627
+ p3/preprocess/Depression/gene_data/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
1628
+ p3/preprocess/Depression/gene_data/GSE135524.csv filter=lfs diff=lfs merge=lfs -text
1629
+ p3/preprocess/Depression/gene_data/GSE81761.csv filter=lfs diff=lfs merge=lfs -text
1630
+ p3/preprocess/Cystic_Fibrosis/GSE60690.csv filter=lfs diff=lfs merge=lfs -text
1631
+ p3/preprocess/Duchenne_Muscular_Dystrophy/GSE109178.csv filter=lfs diff=lfs merge=lfs -text
1632
+ p3/preprocess/Eczema/GSE150797.csv filter=lfs diff=lfs merge=lfs -text
1633
+ p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE109178.csv filter=lfs diff=lfs merge=lfs -text
1634
+ p3/preprocess/Eczema/GSE182740.csv filter=lfs diff=lfs merge=lfs -text
1635
+ p3/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv filter=lfs diff=lfs merge=lfs -text
1636
+ p3/preprocess/Eczema/GSE57225.csv filter=lfs diff=lfs merge=lfs -text
1637
+ p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv filter=lfs diff=lfs merge=lfs -text
1638
+ p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Chronic_kidney_disease/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fe778458667fef8f2ec0e3ff9321e5caceff14458bf65a8b0e550c3ece1cc94
3
+ size 182071783
p3/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad56d64496541ee0872327215eca3da6769d5e7ccee6a3d8759e9c00555c00ed
3
+ size 182067513
p3/preprocess/Crohns_Disease/GSE186582.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d015dd5f8636768fd0a03f151915cbb16b1c748f10048e29c249ae096e0b9266
3
+ size 80354199
p3/preprocess/Crohns_Disease/gene_data/GSE186582.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a9c7f53a5f6ea3c35153efb348986dccceb6882564285f9c3b52df03b7521f5
3
+ size 80350269
p3/preprocess/Cystic_Fibrosis/GSE60690.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74241b741e7cca4f4f313dc052ea8e3ab0bdda5a8d284f67df60e5837fa0d60a
3
+ size 75320453
p3/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b3d31e790d43703fae5e61d5b9a7f004629a173084bed93d0ef0286a56a80f1
3
+ size 24255296
p3/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5debcb1fde444713779eb28ea53e4d9bb3422da7eba5bf8fadcc86b4796e403
3
+ size 20220285
p3/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7903e22d5fcdd3b3d196dbbb637d009e3b76e76aa4d59a6d5c5f3bad17e810a1
3
+ size 25978567
p3/preprocess/Depression/GSE135524.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd501b9d55ae6c713e70b8e89e5357806a97be1113efce74c91b23a031ab286c
3
+ size 18898145
p3/preprocess/Depression/GSE138297.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1498ccf74f91c8669eacbc4807488d88d37c330623d9c3865f2c99e5e7214711
3
+ size 15408905
p3/preprocess/Depression/GSE149980.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ff9d15dedbfc5c5325163ae04e4843961bdc75de38ce48c5a2e6ed5fa0b0154
3
+ size 16699653
p3/preprocess/Depression/GSE81761.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a49ca1588819fa63cf0f9fc2ca8c95735ba75348dc9d3039bf879463fe5e81d5
3
+ size 18298746
p3/preprocess/Depression/GSE99725.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Depression/clinical_data/GSE208668.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM6360934,GSM6360935,GSM6360936,GSM6360937,GSM6360938,GSM6360939,GSM6360940,GSM6360941,GSM6360942,GSM6360943,GSM6360944,GSM6360945,GSM6360946,GSM6360947,GSM6360948,GSM6360949,GSM6360950,GSM6360951,GSM6360952,GSM6360953,GSM6360954,GSM6360955,GSM6360956,GSM6360957,GSM6360958,GSM6360959,GSM6360960,GSM6360961,GSM6360962,GSM6360963,GSM6360964,GSM6360965,GSM6360966,GSM6360967,GSM6360968,GSM6360969,GSM6360970,GSM6360971,GSM6360972,GSM6360973,GSM6360974,GSM6360975
2
+ Depression,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0
3
+ Age,65.0,75.0,77.0,64.0,60.0,67.0,72.0,62.0,73.0,74.0,73.0,68.0,62.0,73.0,70.0,60.0,61.0,66.0,69.0,62.0,67.0,62.0,71.0,63.0,62.0,61.0,67.0,78.0,79.0,72.0,73.0,77.0,72.0,62.0,70.0,65.0,63.0,74.0,71.0,80.0,78.0,65.0
4
+ Gender,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0
p3/preprocess/Depression/clinical_data/GSE81761.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2175165,GSM2175166,GSM2175167,GSM2175168,GSM2175169,GSM2175170,GSM2175171,GSM2175172,GSM2175173,GSM2175174,GSM2175175,GSM2175176,GSM2175177,GSM2175178,GSM2175179,GSM2175180,GSM2175181,GSM2175182,GSM2175183,GSM2175184,GSM2175185,GSM2175186,GSM2175187,GSM2175188,GSM2175189,GSM2175190,GSM2175191,GSM2175192,GSM2175193,GSM2175194,GSM2175195,GSM2175196,GSM2175197,GSM2175198,GSM2175199,GSM2175200,GSM2175201,GSM2175202,GSM2175203,GSM2175204,GSM2175205,GSM2175206,GSM2175207,GSM2175208,GSM2175209,GSM2175210,GSM2175211,GSM2175212,GSM2175213,GSM2175214,GSM2175215,GSM2175216,GSM2175217,GSM2175218,GSM2175219,GSM2175220,GSM2175221,GSM2175222,GSM2175223,GSM2175224,GSM2175225,GSM2175226,GSM2175227,GSM2175228,GSM2175229,GSM2175230,GSM2175231,GSM2175232,GSM2175233,GSM2175234,GSM2175235,GSM2175236,GSM2175237,GSM2175238,GSM2175239,GSM2175240,GSM2175241,GSM2175242,GSM2175243,GSM2175244,GSM2175245,GSM2175246,GSM2175247,GSM2175248,GSM2175249,GSM2175250,GSM2175251,GSM2175252,GSM2175253,GSM2175254,GSM2175255,GSM2175256,GSM2175257,GSM2175258,GSM2175259,GSM2175260,GSM2175261,GSM2175262,GSM2175263,GSM2175264,GSM2175265,GSM2175266,GSM2175267,GSM2175268,GSM2175269,GSM2175270,GSM2175271,GSM2175272,GSM2175273
2
+ Depression,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,1.0,0.0,0.0,0.0,,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,,1.0,,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,,,,,,,,
3
+ Age,30.0,38.0,39.0,38.0,23.0,48.0,49.0,34.0,33.0,45.0,25.0,25.0,30.0,39.0,23.0,22.0,46.0,35.0,22.0,23.0,48.0,23.0,49.0,38.0,25.0,33.0,30.0,36.0,43.0,34.0,22.0,26.0,46.0,39.0,27.0,23.0,28.0,22.0,29.0,41.0,25.0,39.0,38.0,25.0,46.0,35.0,44.0,34.0,23.0,46.0,43.0,26.0,34.0,31.0,30.0,36.0,23.0,25.0,28.0,27.0,39.0,26.0,38.0,25.0,31.0,39.0,29.0,34.0,23.0,42.0,44.0,46.0,21.0,35.0,44.0,34.0,28.0,37.0,23.0,26.0,28.0,52.0,31.0,36.0,41.0,21.0,42.0,30.0,24.0,41.0,35.0,44.0,26.0,27.0,37.0,52.0,36.0,41.0,24.0,26.0,27.0,26.0,37.0,22.0,32.0,45.0,23.0,35.0,27.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Depression/clinical_data/GSE99725.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM2650879,GSM2650880,GSM2650881,GSM2650882,GSM2650883,GSM2650884,GSM2650885,GSM2650886,GSM2650887,GSM2650888,GSM2650889,GSM2650890,GSM2650891,GSM2650892,GSM2650893,GSM2650894,GSM2650895,GSM2650896,GSM2650897,GSM2650898,GSM2650899,GSM2650900,GSM2650901,GSM2650902,GSM2650903,GSM2650904,GSM2650905,GSM2650906,GSM2650907,GSM2650908,GSM2650909,GSM2650910,GSM2650911,GSM2650912,GSM2650913,GSM2650914,GSM2650915,GSM2650916,GSM2650917,GSM2650918,GSM2650919,GSM2650920,GSM2650921,GSM2650922,GSM2650923,GSM2650924,GSM2650925,GSM2650926,GSM2650927,GSM2650928,GSM2650929,GSM2650930,GSM2650931,GSM2650932,GSM2650933,GSM2650934,GSM2650935
2
+ Depression,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0
p3/preprocess/Depression/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,1149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ sampleID,mental_status_changes,Age,Gender
2
+ TCGA-02-0001-01,1,44.0,0.0
3
+ TCGA-02-0003-01,1,50.0,1.0
4
+ TCGA-02-0004-01,1,59.0,1.0
5
+ TCGA-02-0006-01,1,56.0,0.0
6
+ TCGA-02-0007-01,1,40.0,0.0
7
+ TCGA-02-0009-01,1,61.0,0.0
8
+ TCGA-02-0010-01,1,20.0,0.0
9
+ TCGA-02-0011-01,1,18.0,0.0
10
+ TCGA-02-0014-01,1,25.0,1.0
11
+ TCGA-02-0015-01,1,50.0,1.0
12
+ TCGA-02-0016-01,1,50.0,1.0
13
+ TCGA-02-0021-01,1,43.0,0.0
14
+ TCGA-02-0023-01,1,38.0,0.0
15
+ TCGA-02-0024-01,1,35.0,1.0
16
+ TCGA-02-0025-01,1,47.0,1.0
17
+ TCGA-02-0026-01,1,27.0,1.0
18
+ TCGA-02-0027-01,1,33.0,0.0
19
+ TCGA-02-0028-01,1,39.0,1.0
20
+ TCGA-02-0033-01,1,54.0,1.0
21
+ TCGA-02-0034-01,1,60.0,1.0
22
+ TCGA-02-0037-01,1,74.0,0.0
23
+ TCGA-02-0038-01,1,48.0,0.0
24
+ TCGA-02-0039-01,1,54.0,1.0
25
+ TCGA-02-0043-01,1,54.0,0.0
26
+ TCGA-02-0046-01,1,61.0,1.0
27
+ TCGA-02-0047-01,1,78.0,1.0
28
+ TCGA-02-0048-01,1,80.0,1.0
29
+ TCGA-02-0051-01,1,43.0,1.0
30
+ TCGA-02-0052-01,1,49.0,1.0
31
+ TCGA-02-0054-01,1,44.0,0.0
32
+ TCGA-02-0055-01,1,62.0,0.0
33
+ TCGA-02-0057-01,1,66.0,0.0
34
+ TCGA-02-0058-01,1,28.0,0.0
35
+ TCGA-02-0059-01,1,68.0,0.0
36
+ TCGA-02-0060-01,1,66.0,0.0
37
+ TCGA-02-0064-01,1,50.0,1.0
38
+ TCGA-02-0068-01,1,57.0,1.0
39
+ TCGA-02-0069-01,1,31.0,0.0
40
+ TCGA-02-0070-01,1,70.0,1.0
41
+ TCGA-02-0071-01,1,53.0,1.0
42
+ TCGA-02-0074-01,1,68.0,0.0
43
+ TCGA-02-0075-01,1,63.0,1.0
44
+ TCGA-02-0079-01,1,57.0,1.0
45
+ TCGA-02-0080-01,1,28.0,1.0
46
+ TCGA-02-0083-01,1,59.0,0.0
47
+ TCGA-02-0084-01,1,36.0,0.0
48
+ TCGA-02-0085-01,1,63.0,0.0
49
+ TCGA-02-0086-01,1,45.0,0.0
50
+ TCGA-02-0087-01,1,27.0,0.0
51
+ TCGA-02-0089-01,1,52.0,1.0
52
+ TCGA-02-0099-01,1,46.0,1.0
53
+ TCGA-02-0102-01,1,42.0,1.0
54
+ TCGA-02-0104-01,1,29.0,0.0
55
+ TCGA-02-0106-01,1,54.0,1.0
56
+ TCGA-02-0107-01,1,56.0,1.0
57
+ TCGA-02-0111-01,1,56.0,1.0
58
+ TCGA-02-0113-01,1,43.0,0.0
59
+ TCGA-02-0114-01,1,37.0,0.0
60
+ TCGA-02-0115-01,1,52.0,1.0
61
+ TCGA-02-0116-01,1,51.0,1.0
62
+ TCGA-02-0258-01,1,36.0,0.0
63
+ TCGA-02-0260-01,1,54.0,1.0
64
+ TCGA-02-0266-01,1,14.0,1.0
65
+ TCGA-02-0269-01,1,68.0,1.0
66
+ TCGA-02-0271-01,1,26.0,1.0
67
+ TCGA-02-0281-01,1,78.0,0.0
68
+ TCGA-02-0285-01,1,50.0,0.0
69
+ TCGA-02-0289-01,1,57.0,1.0
70
+ TCGA-02-0290-01,1,49.0,1.0
71
+ TCGA-02-0317-01,1,40.0,1.0
72
+ TCGA-02-0321-01,1,74.0,1.0
73
+ TCGA-02-0324-01,1,69.0,0.0
74
+ TCGA-02-0325-01,1,61.0,1.0
75
+ TCGA-02-0326-01,1,82.0,0.0
76
+ TCGA-02-0330-01,1,51.0,0.0
77
+ TCGA-02-0332-01,1,46.0,0.0
78
+ TCGA-02-0333-01,1,77.0,0.0
79
+ TCGA-02-0337-01,1,48.0,1.0
80
+ TCGA-02-0338-01,1,41.0,1.0
81
+ TCGA-02-0339-01,1,67.0,1.0
82
+ TCGA-02-0422-01,1,50.0,1.0
83
+ TCGA-02-0430-01,1,67.0,0.0
84
+ TCGA-02-0432-01,1,36.0,1.0
85
+ TCGA-02-0439-01,1,70.0,0.0
86
+ TCGA-02-0440-01,1,62.0,1.0
87
+ TCGA-02-0446-01,1,61.0,1.0
88
+ TCGA-02-0451-01,1,62.0,0.0
89
+ TCGA-02-0456-01,1,67.0,0.0
90
+ TCGA-02-2466-01,1,61.0,1.0
91
+ TCGA-02-2470-01,1,57.0,1.0
92
+ TCGA-02-2483-01,1,43.0,1.0
93
+ TCGA-02-2485-01,1,53.0,1.0
94
+ TCGA-02-2486-01,1,64.0,1.0
95
+ TCGA-06-0119-01,1,81.0,0.0
96
+ TCGA-06-0121-01,1,,
97
+ TCGA-06-0122-01,1,84.0,0.0
98
+ TCGA-06-0124-01,1,67.0,1.0
99
+ TCGA-06-0125-01,1,63.0,0.0
100
+ TCGA-06-0125-02,1,63.0,0.0
101
+ TCGA-06-0126-01,1,86.0,1.0
102
+ TCGA-06-0127-01,1,67.0,1.0
103
+ TCGA-06-0128-01,1,66.0,1.0
104
+ TCGA-06-0129-01,1,30.0,1.0
105
+ TCGA-06-0130-01,1,54.0,1.0
106
+ TCGA-06-0132-01,1,49.0,1.0
107
+ TCGA-06-0133-01,1,64.0,1.0
108
+ TCGA-06-0137-01,1,63.0,0.0
109
+ TCGA-06-0138-01,1,43.0,1.0
110
+ TCGA-06-0139-01,1,40.0,1.0
111
+ TCGA-06-0140-01,1,86.0,1.0
112
+ TCGA-06-0141-01,1,62.0,1.0
113
+ TCGA-06-0142-01,1,81.0,1.0
114
+ TCGA-06-0143-01,1,58.0,1.0
115
+ TCGA-06-0145-01,1,53.0,0.0
116
+ TCGA-06-0146-01,1,33.0,0.0
117
+ TCGA-06-0147-01,1,51.0,0.0
118
+ TCGA-06-0148-01,1,76.0,1.0
119
+ TCGA-06-0149-01,1,74.0,0.0
120
+ TCGA-06-0150-01,1,45.0,1.0
121
+ TCGA-06-0151-01,1,32.0,0.0
122
+ TCGA-06-0152-01,1,68.0,1.0
123
+ TCGA-06-0152-02,1,68.0,1.0
124
+ TCGA-06-0154-01,1,54.0,1.0
125
+ TCGA-06-0155-01,1,61.0,1.0
126
+ TCGA-06-0156-01,1,57.0,1.0
127
+ TCGA-06-0157-01,1,63.0,0.0
128
+ TCGA-06-0158-01,1,73.0,1.0
129
+ TCGA-06-0159-01,1,74.0,1.0
130
+ TCGA-06-0160-01,1,56.0,0.0
131
+ TCGA-06-0162-01,1,47.0,0.0
132
+ TCGA-06-0164-01,1,47.0,1.0
133
+ TCGA-06-0165-01,1,52.0,1.0
134
+ TCGA-06-0166-01,1,51.0,1.0
135
+ TCGA-06-0167-01,1,44.0,1.0
136
+ TCGA-06-0168-01,1,59.0,0.0
137
+ TCGA-06-0169-01,1,68.0,1.0
138
+ TCGA-06-0171-01,1,65.0,1.0
139
+ TCGA-06-0171-02,1,65.0,1.0
140
+ TCGA-06-0173-01,1,72.0,0.0
141
+ TCGA-06-0174-01,1,54.0,1.0
142
+ TCGA-06-0175-01,1,69.0,1.0
143
+ TCGA-06-0176-01,1,34.0,1.0
144
+ TCGA-06-0177-01,1,64.0,1.0
145
+ TCGA-06-0178-01,1,38.0,1.0
146
+ TCGA-06-0179-01,1,64.0,1.0
147
+ TCGA-06-0182-01,1,76.0,1.0
148
+ TCGA-06-0184-01,1,63.0,1.0
149
+ TCGA-06-0185-01,1,54.0,1.0
150
+ TCGA-06-0187-01,1,69.0,1.0
151
+ TCGA-06-0188-01,1,71.0,1.0
152
+ TCGA-06-0189-01,1,55.0,1.0
153
+ TCGA-06-0190-01,1,62.0,1.0
154
+ TCGA-06-0190-02,1,62.0,1.0
155
+ TCGA-06-0192-01,1,58.0,1.0
156
+ TCGA-06-0194-01,1,37.0,0.0
157
+ TCGA-06-0195-01,1,63.0,1.0
158
+ TCGA-06-0197-01,1,65.0,0.0
159
+ TCGA-06-0201-01,1,51.0,0.0
160
+ TCGA-06-0206-01,1,40.0,1.0
161
+ TCGA-06-0208-01,1,52.0,0.0
162
+ TCGA-06-0209-01,1,76.0,1.0
163
+ TCGA-06-0210-01,1,72.0,0.0
164
+ TCGA-06-0210-02,1,72.0,0.0
165
+ TCGA-06-0211-01,1,47.0,1.0
166
+ TCGA-06-0211-02,1,47.0,1.0
167
+ TCGA-06-0213-01,1,55.0,0.0
168
+ TCGA-06-0214-01,1,66.0,1.0
169
+ TCGA-06-0216-01,1,61.0,0.0
170
+ TCGA-06-0219-01,1,67.0,1.0
171
+ TCGA-06-0221-01,1,31.0,1.0
172
+ TCGA-06-0221-02,1,31.0,1.0
173
+ TCGA-06-0237-01,1,75.0,0.0
174
+ TCGA-06-0238-01,1,46.0,1.0
175
+ TCGA-06-0240-01,1,57.0,1.0
176
+ TCGA-06-0241-01,1,65.0,0.0
177
+ TCGA-06-0394-01,1,51.0,1.0
178
+ TCGA-06-0397-01,1,57.0,0.0
179
+ TCGA-06-0402-01,1,71.0,1.0
180
+ TCGA-06-0409-01,1,43.0,1.0
181
+ TCGA-06-0410-01,1,76.0,0.0
182
+ TCGA-06-0412-01,1,56.0,0.0
183
+ TCGA-06-0413-01,1,77.0,0.0
184
+ TCGA-06-0414-01,1,63.0,1.0
185
+ TCGA-06-0644-01,1,71.0,1.0
186
+ TCGA-06-0645-01,1,55.0,0.0
187
+ TCGA-06-0646-01,1,60.0,1.0
188
+ TCGA-06-0648-01,1,77.0,1.0
189
+ TCGA-06-0649-01,1,73.0,0.0
190
+ TCGA-06-0650-01,1,39.0,0.0
191
+ TCGA-06-0675-11,0,,
192
+ TCGA-06-0678-11,0,,
193
+ TCGA-06-0680-11,0,,
194
+ TCGA-06-0681-11,0,,
195
+ TCGA-06-0686-01,1,53.0,1.0
196
+ TCGA-06-0743-01,1,69.0,1.0
197
+ TCGA-06-0744-01,1,66.0,1.0
198
+ TCGA-06-0745-01,1,59.0,1.0
199
+ TCGA-06-0747-01,1,53.0,1.0
200
+ TCGA-06-0749-01,1,50.0,1.0
201
+ TCGA-06-0750-01,1,43.0,1.0
202
+ TCGA-06-0875-01,1,61.0,0.0
203
+ TCGA-06-0876-01,1,72.0,0.0
204
+ TCGA-06-0877-01,1,78.0,1.0
205
+ TCGA-06-0878-01,1,74.0,1.0
206
+ TCGA-06-0879-01,1,52.0,1.0
207
+ TCGA-06-0881-01,1,50.0,1.0
208
+ TCGA-06-0882-01,1,30.0,1.0
209
+ TCGA-06-0939-01,1,79.0,0.0
210
+ TCGA-06-1084-01,1,54.0,1.0
211
+ TCGA-06-1086-01,1,42.0,1.0
212
+ TCGA-06-1087-01,1,75.0,1.0
213
+ TCGA-06-1800-01,1,61.0,1.0
214
+ TCGA-06-1801-01,1,56.0,0.0
215
+ TCGA-06-1802-01,1,61.0,1.0
216
+ TCGA-06-1804-01,1,81.0,0.0
217
+ TCGA-06-1805-01,1,28.0,0.0
218
+ TCGA-06-1806-01,1,47.0,1.0
219
+ TCGA-06-2557-01,1,76.0,1.0
220
+ TCGA-06-2558-01,1,75.0,0.0
221
+ TCGA-06-2559-01,1,83.0,1.0
222
+ TCGA-06-2561-01,1,53.0,0.0
223
+ TCGA-06-2562-01,1,81.0,1.0
224
+ TCGA-06-2563-01,1,72.0,0.0
225
+ TCGA-06-2564-01,1,50.0,1.0
226
+ TCGA-06-2565-01,1,59.0,1.0
227
+ TCGA-06-2566-01,1,23.0,0.0
228
+ TCGA-06-2567-01,1,65.0,1.0
229
+ TCGA-06-2569-01,1,24.0,0.0
230
+ TCGA-06-2570-01,1,21.0,0.0
231
+ TCGA-06-5408-01,1,54.0,0.0
232
+ TCGA-06-5410-01,1,72.0,0.0
233
+ TCGA-06-5411-01,1,51.0,1.0
234
+ TCGA-06-5412-01,1,78.0,0.0
235
+ TCGA-06-5413-01,1,67.0,1.0
236
+ TCGA-06-5414-01,1,61.0,1.0
237
+ TCGA-06-5415-01,1,60.0,1.0
238
+ TCGA-06-5416-01,1,23.0,0.0
239
+ TCGA-06-5417-01,1,45.0,0.0
240
+ TCGA-06-5418-01,1,75.0,0.0
241
+ TCGA-06-5856-01,1,58.0,1.0
242
+ TCGA-06-5858-01,1,45.0,0.0
243
+ TCGA-06-5859-01,1,63.0,1.0
244
+ TCGA-06-6388-01,1,64.0,0.0
245
+ TCGA-06-6389-01,1,49.0,0.0
246
+ TCGA-06-6390-01,1,58.0,1.0
247
+ TCGA-06-6391-01,1,44.0,0.0
248
+ TCGA-06-6693-01,1,64.0,0.0
249
+ TCGA-06-6694-01,1,76.0,0.0
250
+ TCGA-06-6695-01,1,64.0,1.0
251
+ TCGA-06-6697-01,1,65.0,1.0
252
+ TCGA-06-6698-01,1,53.0,0.0
253
+ TCGA-06-6699-01,1,58.0,0.0
254
+ TCGA-06-6700-01,1,76.0,1.0
255
+ TCGA-06-6701-01,1,60.0,1.0
256
+ TCGA-06-A5U0-01,1,21.0,0.0
257
+ TCGA-06-A5U1-01,1,78.0,0.0
258
+ TCGA-06-A6S0-01,1,79.0,1.0
259
+ TCGA-06-A6S1-01,1,53.0,0.0
260
+ TCGA-06-A7TK-01,1,64.0,1.0
261
+ TCGA-06-A7TL-01,1,30.0,0.0
262
+ TCGA-06-AABW-11,0,,
263
+ TCGA-08-0244-01,1,62.0,1.0
264
+ TCGA-08-0245-01,1,31.0,0.0
265
+ TCGA-08-0246-01,1,57.0,0.0
266
+ TCGA-08-0344-01,1,66.0,1.0
267
+ TCGA-08-0345-01,1,71.0,0.0
268
+ TCGA-08-0346-01,1,69.0,1.0
269
+ TCGA-08-0347-01,1,50.0,1.0
270
+ TCGA-08-0348-01,1,63.0,1.0
271
+ TCGA-08-0349-01,1,46.0,1.0
272
+ TCGA-08-0350-01,1,32.0,1.0
273
+ TCGA-08-0351-01,1,40.0,1.0
274
+ TCGA-08-0352-01,1,79.0,1.0
275
+ TCGA-08-0353-01,1,58.0,1.0
276
+ TCGA-08-0354-01,1,52.0,0.0
277
+ TCGA-08-0355-01,1,30.0,0.0
278
+ TCGA-08-0356-01,1,59.0,0.0
279
+ TCGA-08-0357-01,1,49.0,1.0
280
+ TCGA-08-0358-01,1,50.0,1.0
281
+ TCGA-08-0359-01,1,59.0,0.0
282
+ TCGA-08-0360-01,1,76.0,1.0
283
+ TCGA-08-0373-01,1,69.0,1.0
284
+ TCGA-08-0375-01,1,51.0,0.0
285
+ TCGA-08-0380-01,1,74.0,0.0
286
+ TCGA-08-0385-01,1,71.0,1.0
287
+ TCGA-08-0386-01,1,74.0,1.0
288
+ TCGA-08-0389-01,1,59.0,1.0
289
+ TCGA-08-0390-01,1,69.0,1.0
290
+ TCGA-08-0392-01,1,60.0,1.0
291
+ TCGA-08-0509-01,1,63.0,1.0
292
+ TCGA-08-0510-01,1,75.0,1.0
293
+ TCGA-08-0511-01,1,69.0,1.0
294
+ TCGA-08-0512-01,1,48.0,1.0
295
+ TCGA-08-0514-01,1,69.0,0.0
296
+ TCGA-08-0516-01,1,14.0,1.0
297
+ TCGA-08-0517-01,1,34.0,0.0
298
+ TCGA-08-0518-01,1,60.0,0.0
299
+ TCGA-08-0520-01,1,70.0,1.0
300
+ TCGA-08-0521-01,1,17.0,1.0
301
+ TCGA-08-0522-01,1,61.0,1.0
302
+ TCGA-08-0524-01,1,17.0,0.0
303
+ TCGA-08-0525-01,1,52.0,1.0
304
+ TCGA-08-0529-01,1,56.0,0.0
305
+ TCGA-08-0531-01,1,64.0,1.0
306
+ TCGA-12-0615-01,1,78.0,0.0
307
+ TCGA-12-0616-01,1,36.0,0.0
308
+ TCGA-12-0618-01,1,49.0,1.0
309
+ TCGA-12-0619-01,1,60.0,1.0
310
+ TCGA-12-0620-01,1,57.0,1.0
311
+ TCGA-12-0654-01,1,48.0,0.0
312
+ TCGA-12-0656-01,1,48.0,0.0
313
+ TCGA-12-0657-01,1,69.0,1.0
314
+ TCGA-12-0662-01,1,51.0,1.0
315
+ TCGA-12-0670-01,1,60.0,1.0
316
+ TCGA-12-0688-01,1,74.0,1.0
317
+ TCGA-12-0691-01,1,63.0,1.0
318
+ TCGA-12-0692-01,1,75.0,0.0
319
+ TCGA-12-0703-01,1,46.0,1.0
320
+ TCGA-12-0707-01,1,55.0,1.0
321
+ TCGA-12-0769-01,1,52.0,1.0
322
+ TCGA-12-0772-01,1,46.0,1.0
323
+ TCGA-12-0773-01,1,24.0,1.0
324
+ TCGA-12-0775-01,1,75.0,0.0
325
+ TCGA-12-0776-01,1,52.0,1.0
326
+ TCGA-12-0778-01,1,53.0,1.0
327
+ TCGA-12-0780-01,1,51.0,0.0
328
+ TCGA-12-0818-01,1,45.0,0.0
329
+ TCGA-12-0819-01,1,49.0,0.0
330
+ TCGA-12-0820-01,1,40.0,1.0
331
+ TCGA-12-0821-01,1,62.0,1.0
332
+ TCGA-12-0822-01,1,46.0,1.0
333
+ TCGA-12-0826-01,1,38.0,0.0
334
+ TCGA-12-0827-01,1,38.0,0.0
335
+ TCGA-12-0828-01,1,57.0,1.0
336
+ TCGA-12-0829-01,1,75.0,1.0
337
+ TCGA-12-1088-01,1,53.0,0.0
338
+ TCGA-12-1089-01,1,64.0,1.0
339
+ TCGA-12-1090-01,1,58.0,1.0
340
+ TCGA-12-1091-01,1,10.0,0.0
341
+ TCGA-12-1092-01,1,58.0,1.0
342
+ TCGA-12-1093-01,1,66.0,0.0
343
+ TCGA-12-1094-01,1,56.0,1.0
344
+ TCGA-12-1095-01,1,65.0,0.0
345
+ TCGA-12-1096-01,1,55.0,1.0
346
+ TCGA-12-1097-01,1,61.0,1.0
347
+ TCGA-12-1098-01,1,75.0,0.0
348
+ TCGA-12-1099-01,1,68.0,0.0
349
+ TCGA-12-1597-01,1,62.0,0.0
350
+ TCGA-12-1598-01,1,75.0,0.0
351
+ TCGA-12-1599-01,1,47.0,0.0
352
+ TCGA-12-1600-01,1,86.0,1.0
353
+ TCGA-12-1602-01,1,58.0,1.0
354
+ TCGA-12-3644-01,1,47.0,0.0
355
+ TCGA-12-3646-01,1,59.0,0.0
356
+ TCGA-12-3648-01,1,61.0,0.0
357
+ TCGA-12-3649-01,1,76.0,1.0
358
+ TCGA-12-3650-01,1,46.0,1.0
359
+ TCGA-12-3651-01,1,77.0,1.0
360
+ TCGA-12-3652-01,1,60.0,1.0
361
+ TCGA-12-3653-01,1,34.0,0.0
362
+ TCGA-12-5295-01,1,60.0,0.0
363
+ TCGA-12-5299-01,1,56.0,0.0
364
+ TCGA-12-5301-01,1,59.0,1.0
365
+ TCGA-14-0736-01,1,49.0,1.0
366
+ TCGA-14-0736-02,1,49.0,1.0
367
+ TCGA-14-0740-01,1,70.0,1.0
368
+ TCGA-14-0781-01,1,49.0,1.0
369
+ TCGA-14-0783-01,1,36.0,0.0
370
+ TCGA-14-0786-01,1,50.0,0.0
371
+ TCGA-14-0787-01,1,69.0,1.0
372
+ TCGA-14-0789-01,1,54.0,1.0
373
+ TCGA-14-0790-01,1,64.0,0.0
374
+ TCGA-14-0812-01,1,65.0,1.0
375
+ TCGA-14-0813-01,1,78.0,1.0
376
+ TCGA-14-0817-01,1,69.0,0.0
377
+ TCGA-14-0862-01,1,60.0,1.0
378
+ TCGA-14-0865-01,1,67.0,1.0
379
+ TCGA-14-0866-01,1,55.0,1.0
380
+ TCGA-14-0867-01,1,67.0,1.0
381
+ TCGA-14-0871-01,1,74.0,0.0
382
+ TCGA-14-1034-01,1,60.0,0.0
383
+ TCGA-14-1034-02,1,60.0,0.0
384
+ TCGA-14-1037-01,1,66.0,0.0
385
+ TCGA-14-1043-01,1,61.0,1.0
386
+ TCGA-14-1395-01,1,52.0,1.0
387
+ TCGA-14-1396-01,1,78.0,0.0
388
+ TCGA-14-1401-01,1,54.0,1.0
389
+ TCGA-14-1402-01,1,58.0,0.0
390
+ TCGA-14-1402-02,1,58.0,0.0
391
+ TCGA-14-1450-01,1,57.0,0.0
392
+ TCGA-14-1451-01,1,39.0,1.0
393
+ TCGA-14-1452-01,1,60.0,1.0
394
+ TCGA-14-1453-01,1,69.0,1.0
395
+ TCGA-14-1454-01,1,54.0,0.0
396
+ TCGA-14-1455-01,1,61.0,1.0
397
+ TCGA-14-1456-01,1,23.0,1.0
398
+ TCGA-14-1458-01,1,54.0,1.0
399
+ TCGA-14-1459-01,1,63.0,0.0
400
+ TCGA-14-1794-01,1,59.0,1.0
401
+ TCGA-14-1795-01,1,66.0,1.0
402
+ TCGA-14-1821-01,1,31.0,1.0
403
+ TCGA-14-1823-01,1,58.0,0.0
404
+ TCGA-14-1825-01,1,70.0,1.0
405
+ TCGA-14-1827-01,1,51.0,1.0
406
+ TCGA-14-1829-01,1,57.0,1.0
407
+ TCGA-14-2554-01,1,52.0,0.0
408
+ TCGA-14-2555-01,1,44.0,0.0
409
+ TCGA-14-3476-01,1,74.0,1.0
410
+ TCGA-14-3477-01,1,38.0,0.0
411
+ TCGA-14-4157-01,1,40.0,1.0
412
+ TCGA-15-0742-01,1,65.0,1.0
413
+ TCGA-15-1444-01,1,21.0,1.0
414
+ TCGA-15-1446-01,1,55.0,1.0
415
+ TCGA-15-1447-01,1,36.0,0.0
416
+ TCGA-15-1449-01,1,65.0,1.0
417
+ TCGA-16-0846-01,1,85.0,1.0
418
+ TCGA-16-0848-01,1,57.0,1.0
419
+ TCGA-16-0849-01,1,54.0,1.0
420
+ TCGA-16-0850-01,1,52.0,0.0
421
+ TCGA-16-0861-01,1,65.0,1.0
422
+ TCGA-16-1045-01,1,49.0,0.0
423
+ TCGA-16-1047-01,1,66.0,0.0
424
+ TCGA-16-1048-01,1,,
425
+ TCGA-16-1055-01,1,48.0,1.0
426
+ TCGA-16-1056-01,1,55.0,1.0
427
+ TCGA-16-1060-01,1,70.0,0.0
428
+ TCGA-16-1062-01,1,57.0,0.0
429
+ TCGA-16-1063-01,1,72.0,1.0
430
+ TCGA-16-1460-01,1,36.0,0.0
431
+ TCGA-19-0955-01,1,71.0,1.0
432
+ TCGA-19-0957-01,1,48.0,0.0
433
+ TCGA-19-0957-02,1,48.0,0.0
434
+ TCGA-19-0960-01,1,83.0,0.0
435
+ TCGA-19-0962-01,1,77.0,0.0
436
+ TCGA-19-0963-01,1,61.0,1.0
437
+ TCGA-19-0964-01,1,70.0,1.0
438
+ TCGA-19-1385-01,1,69.0,1.0
439
+ TCGA-19-1386-01,1,51.0,1.0
440
+ TCGA-19-1387-01,1,81.0,1.0
441
+ TCGA-19-1388-01,1,58.0,1.0
442
+ TCGA-19-1389-01,1,51.0,1.0
443
+ TCGA-19-1389-02,1,51.0,1.0
444
+ TCGA-19-1390-01,1,63.0,0.0
445
+ TCGA-19-1392-01,1,72.0,0.0
446
+ TCGA-19-1786-01,1,64.0,0.0
447
+ TCGA-19-1787-01,1,48.0,1.0
448
+ TCGA-19-1788-01,1,39.0,1.0
449
+ TCGA-19-1789-01,1,69.0,0.0
450
+ TCGA-19-1790-01,1,56.0,1.0
451
+ TCGA-19-1791-01,1,82.0,0.0
452
+ TCGA-19-2619-01,1,55.0,0.0
453
+ TCGA-19-2620-01,1,70.0,1.0
454
+ TCGA-19-2621-01,1,83.0,1.0
455
+ TCGA-19-2623-01,1,65.0,1.0
456
+ TCGA-19-2624-01,1,51.0,1.0
457
+ TCGA-19-2625-01,1,76.0,0.0
458
+ TCGA-19-2629-01,1,60.0,1.0
459
+ TCGA-19-2631-01,1,74.0,0.0
460
+ TCGA-19-4065-01,1,36.0,1.0
461
+ TCGA-19-4065-02,1,36.0,1.0
462
+ TCGA-19-4068-01,1,68.0,0.0
463
+ TCGA-19-5947-01,1,47.0,0.0
464
+ TCGA-19-5950-01,1,52.0,0.0
465
+ TCGA-19-5951-01,1,76.0,0.0
466
+ TCGA-19-5952-01,1,62.0,1.0
467
+ TCGA-19-5953-01,1,58.0,1.0
468
+ TCGA-19-5954-01,1,72.0,0.0
469
+ TCGA-19-5955-01,1,83.0,1.0
470
+ TCGA-19-5956-01,1,53.0,0.0
471
+ TCGA-19-5958-01,1,56.0,1.0
472
+ TCGA-19-5959-01,1,77.0,0.0
473
+ TCGA-19-5960-01,1,56.0,1.0
474
+ TCGA-19-A60I-01,1,39.0,1.0
475
+ TCGA-19-A6J4-01,1,68.0,1.0
476
+ TCGA-19-A6J5-01,1,40.0,1.0
477
+ TCGA-26-1438-01,1,36.0,1.0
478
+ TCGA-26-1439-01,1,63.0,1.0
479
+ TCGA-26-1440-01,1,48.0,1.0
480
+ TCGA-26-1442-01,1,43.0,1.0
481
+ TCGA-26-1443-01,1,60.0,0.0
482
+ TCGA-26-1799-01,1,68.0,1.0
483
+ TCGA-26-5132-01,1,74.0,1.0
484
+ TCGA-26-5133-01,1,59.0,1.0
485
+ TCGA-26-5134-01,1,74.0,1.0
486
+ TCGA-26-5135-01,1,72.0,0.0
487
+ TCGA-26-5136-01,1,78.0,0.0
488
+ TCGA-26-5139-01,1,65.0,0.0
489
+ TCGA-26-6173-01,1,57.0,1.0
490
+ TCGA-26-6174-01,1,65.0,0.0
491
+ TCGA-26-A7UX-01,1,47.0,1.0
492
+ TCGA-27-1830-01,1,57.0,1.0
493
+ TCGA-27-1831-01,1,66.0,1.0
494
+ TCGA-27-1832-01,1,59.0,0.0
495
+ TCGA-27-1833-01,1,67.0,0.0
496
+ TCGA-27-1834-01,1,56.0,1.0
497
+ TCGA-27-1835-01,1,53.0,0.0
498
+ TCGA-27-1836-01,1,33.0,0.0
499
+ TCGA-27-1837-01,1,36.0,1.0
500
+ TCGA-27-1838-01,1,59.0,0.0
501
+ TCGA-27-2518-01,1,52.0,1.0
502
+ TCGA-27-2519-01,1,48.0,1.0
503
+ TCGA-27-2521-01,1,34.0,1.0
504
+ TCGA-27-2523-01,1,63.0,1.0
505
+ TCGA-27-2524-01,1,56.0,1.0
506
+ TCGA-27-2526-01,1,79.0,0.0
507
+ TCGA-27-2527-01,1,81.0,1.0
508
+ TCGA-27-2528-01,1,62.0,1.0
509
+ TCGA-28-1745-01,1,76.0,1.0
510
+ TCGA-28-1746-01,1,77.0,0.0
511
+ TCGA-28-1747-01,1,44.0,1.0
512
+ TCGA-28-1749-01,1,73.0,1.0
513
+ TCGA-28-1750-01,1,40.0,0.0
514
+ TCGA-28-1751-01,1,61.0,0.0
515
+ TCGA-28-1752-01,1,42.0,0.0
516
+ TCGA-28-1753-01,1,53.0,1.0
517
+ TCGA-28-1755-01,1,52.0,0.0
518
+ TCGA-28-1756-01,1,78.0,1.0
519
+ TCGA-28-1757-01,1,71.0,1.0
520
+ TCGA-28-1760-01,1,48.0,1.0
521
+ TCGA-28-2499-01,1,59.0,1.0
522
+ TCGA-28-2501-01,1,,
523
+ TCGA-28-2502-01,1,65.0,1.0
524
+ TCGA-28-2506-01,1,63.0,0.0
525
+ TCGA-28-2509-01,1,77.0,0.0
526
+ TCGA-28-2510-01,1,,
527
+ TCGA-28-2513-01,1,69.0,0.0
528
+ TCGA-28-2514-01,1,45.0,1.0
529
+ TCGA-28-5204-01,1,72.0,1.0
530
+ TCGA-28-5207-01,1,71.0,1.0
531
+ TCGA-28-5208-01,1,52.0,1.0
532
+ TCGA-28-5209-01,1,66.0,0.0
533
+ TCGA-28-5211-01,1,42.0,1.0
534
+ TCGA-28-5213-01,1,72.0,1.0
535
+ TCGA-28-5214-01,1,53.0,1.0
536
+ TCGA-28-5215-01,1,62.0,0.0
537
+ TCGA-28-5216-01,1,52.0,1.0
538
+ TCGA-28-5218-01,1,63.0,1.0
539
+ TCGA-28-5219-01,1,47.0,0.0
540
+ TCGA-28-5220-01,1,67.0,1.0
541
+ TCGA-28-6450-01,1,60.0,1.0
542
+ TCGA-32-1970-01,1,59.0,1.0
543
+ TCGA-32-1973-01,1,21.0,1.0
544
+ TCGA-32-1976-01,1,65.0,1.0
545
+ TCGA-32-1977-01,1,63.0,0.0
546
+ TCGA-32-1978-01,1,57.0,1.0
547
+ TCGA-32-1979-01,1,69.0,0.0
548
+ TCGA-32-1980-01,1,72.0,1.0
549
+ TCGA-32-1982-01,1,76.0,0.0
550
+ TCGA-32-1986-01,1,68.0,1.0
551
+ TCGA-32-1987-01,1,49.0,0.0
552
+ TCGA-32-1991-01,1,60.0,1.0
553
+ TCGA-32-2491-01,1,63.0,1.0
554
+ TCGA-32-2494-01,1,58.0,0.0
555
+ TCGA-32-2495-01,1,59.0,0.0
556
+ TCGA-32-2498-01,1,,
557
+ TCGA-32-2615-01,1,62.0,1.0
558
+ TCGA-32-2616-01,1,48.0,0.0
559
+ TCGA-32-2632-01,1,80.0,1.0
560
+ TCGA-32-2634-01,1,82.0,1.0
561
+ TCGA-32-2638-01,1,67.0,1.0
562
+ TCGA-32-4208-01,1,25.0,1.0
563
+ TCGA-32-4209-01,1,40.0,1.0
564
+ TCGA-32-4210-01,1,73.0,1.0
565
+ TCGA-32-4211-01,1,56.0,1.0
566
+ TCGA-32-4213-01,1,47.0,0.0
567
+ TCGA-32-4719-01,1,73.0,1.0
568
+ TCGA-32-5222-01,1,66.0,1.0
569
+ TCGA-41-2571-01,1,89.0,1.0
570
+ TCGA-41-2572-01,1,67.0,1.0
571
+ TCGA-41-2573-01,1,59.0,1.0
572
+ TCGA-41-2575-01,1,75.0,1.0
573
+ TCGA-41-3392-01,1,88.0,1.0
574
+ TCGA-41-3393-01,1,81.0,0.0
575
+ TCGA-41-3915-01,1,48.0,1.0
576
+ TCGA-41-4097-01,1,63.0,0.0
577
+ TCGA-41-5651-01,1,59.0,0.0
578
+ TCGA-41-6646-01,1,73.0,0.0
579
+ TCGA-4W-AA9R-01,1,61.0,1.0
580
+ TCGA-4W-AA9S-01,1,69.0,1.0
581
+ TCGA-4W-AA9T-01,1,54.0,0.0
582
+ TCGA-74-6573-01,1,67.0,1.0
583
+ TCGA-74-6573-11,0,67.0,1.0
584
+ TCGA-74-6575-01,1,73.0,0.0
585
+ TCGA-74-6577-01,1,51.0,1.0
586
+ TCGA-74-6578-01,1,58.0,1.0
587
+ TCGA-74-6581-01,1,77.0,1.0
588
+ TCGA-74-6584-01,1,55.0,0.0
589
+ TCGA-76-4925-01,1,76.0,1.0
590
+ TCGA-76-4926-01,1,68.0,1.0
591
+ TCGA-76-4927-01,1,58.0,1.0
592
+ TCGA-76-4928-01,1,85.0,0.0
593
+ TCGA-76-4929-01,1,76.0,0.0
594
+ TCGA-76-4931-01,1,70.0,0.0
595
+ TCGA-76-4932-01,1,50.0,0.0
596
+ TCGA-76-4934-01,1,66.0,0.0
597
+ TCGA-76-4935-01,1,52.0,0.0
598
+ TCGA-76-6191-01,1,57.0,1.0
599
+ TCGA-76-6192-01,1,74.0,1.0
600
+ TCGA-76-6193-01,1,78.0,1.0
601
+ TCGA-76-6280-01,1,57.0,1.0
602
+ TCGA-76-6282-01,1,63.0,1.0
603
+ TCGA-76-6283-01,1,71.0,0.0
604
+ TCGA-76-6285-01,1,64.0,0.0
605
+ TCGA-76-6286-01,1,60.0,1.0
606
+ TCGA-76-6656-01,1,66.0,1.0
607
+ TCGA-76-6657-01,1,74.0,1.0
608
+ TCGA-76-6660-01,1,73.0,1.0
609
+ TCGA-76-6661-01,1,54.0,1.0
610
+ TCGA-76-6662-01,1,58.0,1.0
611
+ TCGA-76-6663-01,1,44.0,0.0
612
+ TCGA-76-6664-01,1,49.0,0.0
613
+ TCGA-81-5910-01,1,64.0,1.0
614
+ TCGA-81-5911-01,1,33.0,1.0
615
+ TCGA-87-5896-01,1,50.0,0.0
616
+ TCGA-CS-4938-01,1,31.0,0.0
617
+ TCGA-CS-4941-01,1,67.0,1.0
618
+ TCGA-CS-4942-01,1,44.0,0.0
619
+ TCGA-CS-4943-01,1,37.0,1.0
620
+ TCGA-CS-4944-01,1,50.0,1.0
621
+ TCGA-CS-5390-01,1,47.0,0.0
622
+ TCGA-CS-5393-01,1,39.0,1.0
623
+ TCGA-CS-5394-01,1,40.0,1.0
624
+ TCGA-CS-5395-01,1,43.0,1.0
625
+ TCGA-CS-5396-01,1,53.0,0.0
626
+ TCGA-CS-5397-01,1,54.0,0.0
627
+ TCGA-CS-6186-01,1,58.0,1.0
628
+ TCGA-CS-6188-01,1,48.0,1.0
629
+ TCGA-CS-6290-01,1,31.0,1.0
630
+ TCGA-CS-6665-01,1,51.0,0.0
631
+ TCGA-CS-6666-01,1,22.0,1.0
632
+ TCGA-CS-6667-01,1,39.0,0.0
633
+ TCGA-CS-6668-01,1,57.0,0.0
634
+ TCGA-CS-6669-01,1,26.0,0.0
635
+ TCGA-CS-6670-01,1,43.0,1.0
636
+ TCGA-DB-5270-01,1,38.0,0.0
637
+ TCGA-DB-5273-01,1,33.0,1.0
638
+ TCGA-DB-5274-01,1,37.0,0.0
639
+ TCGA-DB-5275-01,1,36.0,1.0
640
+ TCGA-DB-5276-01,1,32.0,1.0
641
+ TCGA-DB-5277-01,1,34.0,1.0
642
+ TCGA-DB-5278-01,1,17.0,1.0
643
+ TCGA-DB-5279-01,1,59.0,1.0
644
+ TCGA-DB-5280-01,1,43.0,1.0
645
+ TCGA-DB-5281-01,1,61.0,1.0
646
+ TCGA-DB-A4X9-01,1,33.0,0.0
647
+ TCGA-DB-A4XA-01,1,30.0,1.0
648
+ TCGA-DB-A4XB-01,1,38.0,1.0
649
+ TCGA-DB-A4XC-01,1,26.0,1.0
650
+ TCGA-DB-A4XD-01,1,32.0,1.0
651
+ TCGA-DB-A4XE-01,1,27.0,0.0
652
+ TCGA-DB-A4XF-01,1,41.0,0.0
653
+ TCGA-DB-A4XG-01,1,34.0,1.0
654
+ TCGA-DB-A4XH-01,1,53.0,0.0
655
+ TCGA-DB-A64L-01,1,67.0,0.0
656
+ TCGA-DB-A64O-01,1,59.0,1.0
657
+ TCGA-DB-A64P-01,1,40.0,1.0
658
+ TCGA-DB-A64Q-01,1,31.0,0.0
659
+ TCGA-DB-A64R-01,1,24.0,0.0
660
+ TCGA-DB-A64S-01,1,20.0,1.0
661
+ TCGA-DB-A64U-01,1,38.0,0.0
662
+ TCGA-DB-A64V-01,1,54.0,1.0
663
+ TCGA-DB-A64W-01,1,65.0,0.0
664
+ TCGA-DB-A64X-01,1,56.0,0.0
665
+ TCGA-DB-A75K-01,1,55.0,0.0
666
+ TCGA-DB-A75L-01,1,36.0,0.0
667
+ TCGA-DB-A75M-01,1,47.0,1.0
668
+ TCGA-DB-A75O-01,1,29.0,1.0
669
+ TCGA-DB-A75P-01,1,25.0,0.0
670
+ TCGA-DH-5140-01,1,38.0,0.0
671
+ TCGA-DH-5141-01,1,32.0,1.0
672
+ TCGA-DH-5142-01,1,29.0,1.0
673
+ TCGA-DH-5143-01,1,30.0,1.0
674
+ TCGA-DH-5144-01,1,56.0,0.0
675
+ TCGA-DH-A669-01,1,70.0,1.0
676
+ TCGA-DH-A669-02,1,70.0,1.0
677
+ TCGA-DH-A66B-01,1,52.0,1.0
678
+ TCGA-DH-A66D-01,1,43.0,0.0
679
+ TCGA-DH-A66F-01,1,49.0,1.0
680
+ TCGA-DH-A66G-01,1,49.0,0.0
681
+ TCGA-DH-A7UR-01,1,59.0,0.0
682
+ TCGA-DH-A7US-01,1,50.0,1.0
683
+ TCGA-DH-A7UT-01,1,30.0,1.0
684
+ TCGA-DH-A7UU-01,1,43.0,1.0
685
+ TCGA-DH-A7UV-01,1,49.0,1.0
686
+ TCGA-DU-5847-01,1,34.0,0.0
687
+ TCGA-DU-5849-01,1,48.0,1.0
688
+ TCGA-DU-5851-01,1,40.0,0.0
689
+ TCGA-DU-5852-01,1,61.0,0.0
690
+ TCGA-DU-5853-01,1,29.0,1.0
691
+ TCGA-DU-5854-01,1,57.0,0.0
692
+ TCGA-DU-5855-01,1,49.0,0.0
693
+ TCGA-DU-5870-01,1,34.0,0.0
694
+ TCGA-DU-5870-02,1,34.0,0.0
695
+ TCGA-DU-5871-01,1,37.0,0.0
696
+ TCGA-DU-5872-01,1,43.0,0.0
697
+ TCGA-DU-5872-02,1,43.0,0.0
698
+ TCGA-DU-5874-01,1,62.0,0.0
699
+ TCGA-DU-6392-01,1,35.0,0.0
700
+ TCGA-DU-6393-01,1,66.0,1.0
701
+ TCGA-DU-6394-01,1,53.0,1.0
702
+ TCGA-DU-6395-01,1,31.0,1.0
703
+ TCGA-DU-6396-01,1,31.0,0.0
704
+ TCGA-DU-6397-01,1,45.0,1.0
705
+ TCGA-DU-6397-02,1,45.0,1.0
706
+ TCGA-DU-6399-01,1,54.0,1.0
707
+ TCGA-DU-6400-01,1,66.0,0.0
708
+ TCGA-DU-6401-01,1,31.0,0.0
709
+ TCGA-DU-6402-01,1,52.0,1.0
710
+ TCGA-DU-6403-01,1,60.0,0.0
711
+ TCGA-DU-6404-01,1,24.0,0.0
712
+ TCGA-DU-6404-02,1,24.0,0.0
713
+ TCGA-DU-6405-01,1,51.0,0.0
714
+ TCGA-DU-6406-01,1,59.0,0.0
715
+ TCGA-DU-6407-01,1,35.0,0.0
716
+ TCGA-DU-6407-02,1,35.0,0.0
717
+ TCGA-DU-6408-01,1,23.0,0.0
718
+ TCGA-DU-6410-01,1,56.0,1.0
719
+ TCGA-DU-6542-01,1,25.0,1.0
720
+ TCGA-DU-7006-01,1,60.0,0.0
721
+ TCGA-DU-7007-01,1,33.0,1.0
722
+ TCGA-DU-7008-01,1,41.0,0.0
723
+ TCGA-DU-7009-01,1,32.0,0.0
724
+ TCGA-DU-7010-01,1,58.0,0.0
725
+ TCGA-DU-7011-01,1,25.0,1.0
726
+ TCGA-DU-7012-01,1,74.0,0.0
727
+ TCGA-DU-7013-01,1,59.0,1.0
728
+ TCGA-DU-7014-01,1,59.0,1.0
729
+ TCGA-DU-7015-01,1,41.0,0.0
730
+ TCGA-DU-7018-01,1,57.0,0.0
731
+ TCGA-DU-7019-01,1,39.0,1.0
732
+ TCGA-DU-7290-01,1,45.0,0.0
733
+ TCGA-DU-7292-01,1,69.0,1.0
734
+ TCGA-DU-7294-01,1,53.0,0.0
735
+ TCGA-DU-7298-01,1,38.0,0.0
736
+ TCGA-DU-7299-01,1,33.0,1.0
737
+ TCGA-DU-7300-01,1,53.0,0.0
738
+ TCGA-DU-7301-01,1,53.0,1.0
739
+ TCGA-DU-7302-01,1,48.0,0.0
740
+ TCGA-DU-7304-01,1,43.0,1.0
741
+ TCGA-DU-7304-02,1,43.0,1.0
742
+ TCGA-DU-7306-01,1,67.0,1.0
743
+ TCGA-DU-7309-01,1,41.0,0.0
744
+ TCGA-DU-8158-01,1,57.0,0.0
745
+ TCGA-DU-8161-01,1,63.0,0.0
746
+ TCGA-DU-8162-01,1,61.0,0.0
747
+ TCGA-DU-8163-01,1,29.0,1.0
748
+ TCGA-DU-8164-01,1,51.0,1.0
749
+ TCGA-DU-8165-01,1,60.0,0.0
750
+ TCGA-DU-8166-01,1,29.0,0.0
751
+ TCGA-DU-8167-01,1,69.0,0.0
752
+ TCGA-DU-8168-01,1,55.0,0.0
753
+ TCGA-DU-A5TP-01,1,33.0,1.0
754
+ TCGA-DU-A5TR-01,1,51.0,1.0
755
+ TCGA-DU-A5TS-01,1,42.0,1.0
756
+ TCGA-DU-A5TT-01,1,70.0,1.0
757
+ TCGA-DU-A5TU-01,1,62.0,0.0
758
+ TCGA-DU-A5TW-01,1,33.0,0.0
759
+ TCGA-DU-A5TY-01,1,46.0,0.0
760
+ TCGA-DU-A6S2-01,1,37.0,0.0
761
+ TCGA-DU-A6S3-01,1,60.0,1.0
762
+ TCGA-DU-A6S6-01,1,35.0,0.0
763
+ TCGA-DU-A6S7-01,1,27.0,0.0
764
+ TCGA-DU-A6S8-01,1,74.0,0.0
765
+ TCGA-DU-A76K-01,1,87.0,1.0
766
+ TCGA-DU-A76L-01,1,54.0,1.0
767
+ TCGA-DU-A76O-01,1,30.0,1.0
768
+ TCGA-DU-A76R-01,1,51.0,1.0
769
+ TCGA-DU-A7T6-01,1,73.0,0.0
770
+ TCGA-DU-A7T8-01,1,35.0,1.0
771
+ TCGA-DU-A7TA-01,1,32.0,1.0
772
+ TCGA-DU-A7TB-01,1,56.0,1.0
773
+ TCGA-DU-A7TC-01,1,32.0,1.0
774
+ TCGA-DU-A7TD-01,1,52.0,1.0
775
+ TCGA-DU-A7TG-01,1,40.0,1.0
776
+ TCGA-DU-A7TI-01,1,32.0,1.0
777
+ TCGA-DU-A7TJ-01,1,55.0,1.0
778
+ TCGA-E1-5302-01,1,41.0,1.0
779
+ TCGA-E1-5303-01,1,38.0,1.0
780
+ TCGA-E1-5304-01,1,42.0,1.0
781
+ TCGA-E1-5305-01,1,34.0,1.0
782
+ TCGA-E1-5307-01,1,62.0,0.0
783
+ TCGA-E1-5311-01,1,31.0,1.0
784
+ TCGA-E1-5318-01,1,42.0,0.0
785
+ TCGA-E1-5319-01,1,48.0,0.0
786
+ TCGA-E1-5322-01,1,38.0,0.0
787
+ TCGA-E1-A7YD-01,1,57.0,1.0
788
+ TCGA-E1-A7YE-01,1,32.0,0.0
789
+ TCGA-E1-A7YH-01,1,47.0,0.0
790
+ TCGA-E1-A7YI-01,1,33.0,0.0
791
+ TCGA-E1-A7YJ-01,1,55.0,1.0
792
+ TCGA-E1-A7YK-01,1,52.0,1.0
793
+ TCGA-E1-A7YL-01,1,46.0,1.0
794
+ TCGA-E1-A7YM-01,1,63.0,1.0
795
+ TCGA-E1-A7YN-01,1,63.0,0.0
796
+ TCGA-E1-A7YO-01,1,45.0,1.0
797
+ TCGA-E1-A7YQ-01,1,58.0,0.0
798
+ TCGA-E1-A7YS-01,1,71.0,1.0
799
+ TCGA-E1-A7YU-01,1,42.0,1.0
800
+ TCGA-E1-A7YV-01,1,26.0,0.0
801
+ TCGA-E1-A7YW-01,1,28.0,1.0
802
+ TCGA-E1-A7YY-01,1,27.0,0.0
803
+ TCGA-E1-A7Z2-01,1,58.0,0.0
804
+ TCGA-E1-A7Z3-01,1,31.0,0.0
805
+ TCGA-E1-A7Z4-01,1,35.0,1.0
806
+ TCGA-E1-A7Z6-01,1,41.0,0.0
807
+ TCGA-EZ-7264-01,1,47.0,0.0
808
+ TCGA-F6-A8O3-01,1,34.0,1.0
809
+ TCGA-F6-A8O4-01,1,44.0,1.0
810
+ TCGA-FG-5962-01,1,54.0,1.0
811
+ TCGA-FG-5963-01,1,23.0,1.0
812
+ TCGA-FG-5963-02,1,23.0,1.0
813
+ TCGA-FG-5964-01,1,62.0,1.0
814
+ TCGA-FG-5965-01,1,39.0,0.0
815
+ TCGA-FG-5965-02,1,39.0,0.0
816
+ TCGA-FG-6688-01,1,59.0,0.0
817
+ TCGA-FG-6689-01,1,30.0,1.0
818
+ TCGA-FG-6690-01,1,70.0,1.0
819
+ TCGA-FG-6691-01,1,23.0,0.0
820
+ TCGA-FG-6692-01,1,63.0,1.0
821
+ TCGA-FG-7634-01,1,28.0,1.0
822
+ TCGA-FG-7636-01,1,48.0,1.0
823
+ TCGA-FG-7637-01,1,49.0,1.0
824
+ TCGA-FG-7638-01,1,31.0,0.0
825
+ TCGA-FG-7641-01,1,31.0,1.0
826
+ TCGA-FG-7643-01,1,49.0,0.0
827
+ TCGA-FG-8181-01,1,23.0,1.0
828
+ TCGA-FG-8182-01,1,35.0,1.0
829
+ TCGA-FG-8185-01,1,37.0,1.0
830
+ TCGA-FG-8186-01,1,42.0,0.0
831
+ TCGA-FG-8187-01,1,31.0,1.0
832
+ TCGA-FG-8188-01,1,41.0,1.0
833
+ TCGA-FG-8189-01,1,33.0,0.0
834
+ TCGA-FG-8191-01,1,30.0,1.0
835
+ TCGA-FG-A4MT-01,1,27.0,0.0
836
+ TCGA-FG-A4MT-02,1,27.0,0.0
837
+ TCGA-FG-A4MU-01,1,58.0,1.0
838
+ TCGA-FG-A4MW-01,1,63.0,1.0
839
+ TCGA-FG-A4MX-01,1,47.0,1.0
840
+ TCGA-FG-A4MY-01,1,44.0,0.0
841
+ TCGA-FG-A60J-01,1,47.0,0.0
842
+ TCGA-FG-A60K-01,1,34.0,0.0
843
+ TCGA-FG-A60L-01,1,34.0,0.0
844
+ TCGA-FG-A6IZ-01,1,60.0,1.0
845
+ TCGA-FG-A6J1-01,1,44.0,0.0
846
+ TCGA-FG-A6J3-01,1,52.0,0.0
847
+ TCGA-FG-A70Y-01,1,20.0,0.0
848
+ TCGA-FG-A70Z-01,1,53.0,0.0
849
+ TCGA-FG-A710-01,1,50.0,0.0
850
+ TCGA-FG-A711-01,1,33.0,0.0
851
+ TCGA-FG-A713-01,1,74.0,0.0
852
+ TCGA-FG-A87N-01,1,37.0,0.0
853
+ TCGA-FG-A87Q-01,1,61.0,0.0
854
+ TCGA-FN-7833-01,1,25.0,1.0
855
+ TCGA-HT-7467-01,1,54.0,1.0
856
+ TCGA-HT-7468-01,1,30.0,1.0
857
+ TCGA-HT-7469-01,1,30.0,1.0
858
+ TCGA-HT-7470-01,1,37.0,1.0
859
+ TCGA-HT-7471-01,1,37.0,0.0
860
+ TCGA-HT-7472-01,1,38.0,1.0
861
+ TCGA-HT-7473-01,1,28.0,1.0
862
+ TCGA-HT-7474-01,1,52.0,1.0
863
+ TCGA-HT-7475-01,1,67.0,1.0
864
+ TCGA-HT-7476-01,1,26.0,1.0
865
+ TCGA-HT-7477-01,1,62.0,1.0
866
+ TCGA-HT-7478-01,1,36.0,1.0
867
+ TCGA-HT-7479-01,1,44.0,1.0
868
+ TCGA-HT-7480-01,1,33.0,1.0
869
+ TCGA-HT-7481-01,1,39.0,1.0
870
+ TCGA-HT-7482-01,1,18.0,0.0
871
+ TCGA-HT-7483-01,1,14.0,1.0
872
+ TCGA-HT-7485-01,1,42.0,1.0
873
+ TCGA-HT-7601-01,1,30.0,0.0
874
+ TCGA-HT-7602-01,1,21.0,1.0
875
+ TCGA-HT-7603-01,1,29.0,1.0
876
+ TCGA-HT-7604-01,1,50.0,1.0
877
+ TCGA-HT-7605-01,1,38.0,1.0
878
+ TCGA-HT-7606-01,1,30.0,0.0
879
+ TCGA-HT-7607-01,1,61.0,0.0
880
+ TCGA-HT-7608-01,1,61.0,1.0
881
+ TCGA-HT-7609-01,1,34.0,1.0
882
+ TCGA-HT-7610-01,1,25.0,0.0
883
+ TCGA-HT-7611-01,1,36.0,1.0
884
+ TCGA-HT-7616-01,1,75.0,1.0
885
+ TCGA-HT-7620-01,1,40.0,1.0
886
+ TCGA-HT-7676-01,1,26.0,1.0
887
+ TCGA-HT-7677-01,1,53.0,1.0
888
+ TCGA-HT-7680-01,1,32.0,0.0
889
+ TCGA-HT-7681-01,1,29.0,0.0
890
+ TCGA-HT-7684-01,1,58.0,1.0
891
+ TCGA-HT-7686-01,1,29.0,0.0
892
+ TCGA-HT-7687-01,1,74.0,1.0
893
+ TCGA-HT-7688-01,1,59.0,1.0
894
+ TCGA-HT-7689-01,1,58.0,0.0
895
+ TCGA-HT-7690-01,1,29.0,1.0
896
+ TCGA-HT-7691-01,1,31.0,0.0
897
+ TCGA-HT-7692-01,1,43.0,1.0
898
+ TCGA-HT-7693-01,1,51.0,0.0
899
+ TCGA-HT-7694-01,1,60.0,1.0
900
+ TCGA-HT-7695-01,1,29.0,0.0
901
+ TCGA-HT-7854-01,1,62.0,1.0
902
+ TCGA-HT-7855-01,1,39.0,1.0
903
+ TCGA-HT-7856-01,1,35.0,1.0
904
+ TCGA-HT-7857-01,1,24.0,0.0
905
+ TCGA-HT-7858-01,1,28.0,1.0
906
+ TCGA-HT-7860-01,1,60.0,0.0
907
+ TCGA-HT-7873-01,1,29.0,1.0
908
+ TCGA-HT-7874-01,1,41.0,0.0
909
+ TCGA-HT-7875-01,1,56.0,1.0
910
+ TCGA-HT-7877-01,1,20.0,0.0
911
+ TCGA-HT-7879-01,1,31.0,1.0
912
+ TCGA-HT-7880-01,1,30.0,1.0
913
+ TCGA-HT-7881-01,1,38.0,1.0
914
+ TCGA-HT-7882-01,1,66.0,1.0
915
+ TCGA-HT-7884-01,1,44.0,0.0
916
+ TCGA-HT-7902-01,1,30.0,0.0
917
+ TCGA-HT-8010-01,1,64.0,0.0
918
+ TCGA-HT-8011-01,1,55.0,1.0
919
+ TCGA-HT-8012-01,1,30.0,0.0
920
+ TCGA-HT-8013-01,1,37.0,0.0
921
+ TCGA-HT-8015-01,1,21.0,1.0
922
+ TCGA-HT-8018-01,1,40.0,0.0
923
+ TCGA-HT-8019-01,1,34.0,0.0
924
+ TCGA-HT-8104-01,1,51.0,0.0
925
+ TCGA-HT-8105-01,1,54.0,1.0
926
+ TCGA-HT-8106-01,1,53.0,1.0
927
+ TCGA-HT-8107-01,1,62.0,1.0
928
+ TCGA-HT-8108-01,1,26.0,0.0
929
+ TCGA-HT-8109-01,1,64.0,1.0
930
+ TCGA-HT-8110-01,1,57.0,1.0
931
+ TCGA-HT-8111-01,1,32.0,1.0
932
+ TCGA-HT-8113-01,1,49.0,0.0
933
+ TCGA-HT-8114-01,1,36.0,1.0
934
+ TCGA-HT-8558-01,1,29.0,0.0
935
+ TCGA-HT-8563-01,1,30.0,0.0
936
+ TCGA-HT-8564-01,1,47.0,1.0
937
+ TCGA-HT-A4DS-01,1,55.0,0.0
938
+ TCGA-HT-A4DV-01,1,51.0,0.0
939
+ TCGA-HT-A5R5-01,1,33.0,0.0
940
+ TCGA-HT-A5R7-01,1,33.0,0.0
941
+ TCGA-HT-A5R9-01,1,48.0,0.0
942
+ TCGA-HT-A5RA-01,1,65.0,0.0
943
+ TCGA-HT-A5RB-01,1,24.0,1.0
944
+ TCGA-HT-A5RC-01,1,70.0,0.0
945
+ TCGA-HT-A614-01,1,47.0,1.0
946
+ TCGA-HT-A615-01,1,38.0,0.0
947
+ TCGA-HT-A616-01,1,36.0,0.0
948
+ TCGA-HT-A617-01,1,47.0,1.0
949
+ TCGA-HT-A618-01,1,37.0,0.0
950
+ TCGA-HT-A619-01,1,51.0,0.0
951
+ TCGA-HT-A61A-01,1,20.0,0.0
952
+ TCGA-HT-A61B-01,1,22.0,1.0
953
+ TCGA-HT-A61C-01,1,66.0,1.0
954
+ TCGA-HT-A74H-01,1,62.0,1.0
955
+ TCGA-HT-A74J-01,1,33.0,1.0
956
+ TCGA-HT-A74K-01,1,58.0,0.0
957
+ TCGA-HT-A74L-01,1,22.0,0.0
958
+ TCGA-HT-A74O-01,1,34.0,1.0
959
+ TCGA-HW-7486-01,1,37.0,1.0
960
+ TCGA-HW-7487-01,1,39.0,1.0
961
+ TCGA-HW-7489-01,1,38.0,1.0
962
+ TCGA-HW-7490-01,1,41.0,1.0
963
+ TCGA-HW-7491-01,1,35.0,1.0
964
+ TCGA-HW-7493-01,1,40.0,0.0
965
+ TCGA-HW-7495-01,1,45.0,0.0
966
+ TCGA-HW-8319-01,1,34.0,0.0
967
+ TCGA-HW-8320-01,1,36.0,1.0
968
+ TCGA-HW-8321-01,1,31.0,1.0
969
+ TCGA-HW-8322-01,1,39.0,1.0
970
+ TCGA-HW-A5KJ-01,1,68.0,1.0
971
+ TCGA-HW-A5KK-01,1,64.0,1.0
972
+ TCGA-HW-A5KL-01,1,42.0,0.0
973
+ TCGA-HW-A5KM-01,1,35.0,1.0
974
+ TCGA-IK-7675-01,1,43.0,1.0
975
+ TCGA-IK-8125-01,1,62.0,1.0
976
+ TCGA-KT-A74X-01,1,26.0,1.0
977
+ TCGA-KT-A7W1-01,1,45.0,0.0
978
+ TCGA-OX-A56R-01,1,68.0,1.0
979
+ TCGA-P5-A5ET-01,1,27.0,1.0
980
+ TCGA-P5-A5EU-01,1,35.0,1.0
981
+ TCGA-P5-A5EV-01,1,39.0,1.0
982
+ TCGA-P5-A5EW-01,1,20.0,0.0
983
+ TCGA-P5-A5EX-01,1,41.0,0.0
984
+ TCGA-P5-A5EY-01,1,21.0,1.0
985
+ TCGA-P5-A5EZ-01,1,39.0,1.0
986
+ TCGA-P5-A5F0-01,1,33.0,1.0
987
+ TCGA-P5-A5F1-01,1,30.0,1.0
988
+ TCGA-P5-A5F2-01,1,36.0,0.0
989
+ TCGA-P5-A5F4-01,1,35.0,0.0
990
+ TCGA-P5-A5F6-01,1,26.0,1.0
991
+ TCGA-P5-A72U-01,1,71.0,0.0
992
+ TCGA-P5-A72W-01,1,35.0,1.0
993
+ TCGA-P5-A72X-01,1,21.0,1.0
994
+ TCGA-P5-A72Z-01,1,64.0,0.0
995
+ TCGA-P5-A730-01,1,22.0,1.0
996
+ TCGA-P5-A731-01,1,59.0,0.0
997
+ TCGA-P5-A733-01,1,52.0,0.0
998
+ TCGA-P5-A735-01,1,38.0,0.0
999
+ TCGA-P5-A736-01,1,44.0,0.0
1000
+ TCGA-P5-A737-01,1,47.0,1.0
1001
+ TCGA-P5-A77W-01,1,37.0,0.0
1002
+ TCGA-P5-A77X-01,1,55.0,0.0
1003
+ TCGA-P5-A780-01,1,44.0,0.0
1004
+ TCGA-P5-A781-01,1,34.0,0.0
1005
+ TCGA-QH-A65R-01,1,38.0,0.0
1006
+ TCGA-QH-A65S-01,1,32.0,0.0
1007
+ TCGA-QH-A65V-01,1,43.0,0.0
1008
+ TCGA-QH-A65X-01,1,28.0,0.0
1009
+ TCGA-QH-A65Z-01,1,54.0,1.0
1010
+ TCGA-QH-A6CS-01,1,41.0,1.0
1011
+ TCGA-QH-A6CU-01,1,52.0,0.0
1012
+ TCGA-QH-A6CV-01,1,51.0,1.0
1013
+ TCGA-QH-A6CW-01,1,43.0,1.0
1014
+ TCGA-QH-A6CX-01,1,66.0,1.0
1015
+ TCGA-QH-A6CY-01,1,38.0,1.0
1016
+ TCGA-QH-A6CZ-01,1,38.0,1.0
1017
+ TCGA-QH-A6X3-01,1,27.0,1.0
1018
+ TCGA-QH-A6X4-01,1,47.0,1.0
1019
+ TCGA-QH-A6X5-01,1,58.0,0.0
1020
+ TCGA-QH-A6X8-01,1,56.0,0.0
1021
+ TCGA-QH-A6X9-01,1,73.0,0.0
1022
+ TCGA-QH-A6XA-01,1,23.0,0.0
1023
+ TCGA-QH-A6XC-01,1,48.0,1.0
1024
+ TCGA-QH-A86X-01,1,33.0,1.0
1025
+ TCGA-QH-A870-01,1,38.0,0.0
1026
+ TCGA-R8-A6MK-01,1,40.0,1.0
1027
+ TCGA-R8-A6ML-01,1,52.0,1.0
1028
+ TCGA-R8-A6MO-01,1,53.0,0.0
1029
+ TCGA-R8-A6YH-01,1,,
1030
+ TCGA-R8-A73M-01,1,48.0,0.0
1031
+ TCGA-RR-A6KA-01,1,72.0,0.0
1032
+ TCGA-RR-A6KB-01,1,51.0,1.0
1033
+ TCGA-RR-A6KC-01,1,55.0,1.0
1034
+ TCGA-RY-A83X-01,1,46.0,0.0
1035
+ TCGA-RY-A83Y-01,1,45.0,1.0
1036
+ TCGA-RY-A83Z-01,1,54.0,0.0
1037
+ TCGA-RY-A840-01,1,47.0,1.0
1038
+ TCGA-RY-A843-01,1,30.0,1.0
1039
+ TCGA-RY-A845-01,1,40.0,0.0
1040
+ TCGA-RY-A847-01,1,45.0,1.0
1041
+ TCGA-S9-A6TS-01,1,48.0,0.0
1042
+ TCGA-S9-A6TU-01,1,38.0,1.0
1043
+ TCGA-S9-A6TV-01,1,50.0,1.0
1044
+ TCGA-S9-A6TW-01,1,40.0,1.0
1045
+ TCGA-S9-A6TX-01,1,46.0,1.0
1046
+ TCGA-S9-A6TY-01,1,50.0,1.0
1047
+ TCGA-S9-A6TZ-01,1,39.0,0.0
1048
+ TCGA-S9-A6U0-01,1,46.0,1.0
1049
+ TCGA-S9-A6U1-01,1,22.0,0.0
1050
+ TCGA-S9-A6U2-01,1,48.0,0.0
1051
+ TCGA-S9-A6U5-01,1,33.0,1.0
1052
+ TCGA-S9-A6U6-01,1,28.0,1.0
1053
+ TCGA-S9-A6U8-01,1,24.0,1.0
1054
+ TCGA-S9-A6U9-01,1,36.0,1.0
1055
+ TCGA-S9-A6UA-01,1,66.0,1.0
1056
+ TCGA-S9-A6UB-01,1,52.0,1.0
1057
+ TCGA-S9-A6WD-01,1,58.0,1.0
1058
+ TCGA-S9-A6WE-01,1,34.0,1.0
1059
+ TCGA-S9-A6WG-01,1,31.0,1.0
1060
+ TCGA-S9-A6WH-01,1,73.0,0.0
1061
+ TCGA-S9-A6WI-01,1,56.0,0.0
1062
+ TCGA-S9-A6WL-01,1,52.0,1.0
1063
+ TCGA-S9-A6WM-01,1,59.0,0.0
1064
+ TCGA-S9-A6WN-01,1,38.0,0.0
1065
+ TCGA-S9-A6WO-01,1,29.0,1.0
1066
+ TCGA-S9-A6WP-01,1,42.0,1.0
1067
+ TCGA-S9-A6WQ-01,1,57.0,0.0
1068
+ TCGA-S9-A7IQ-01,1,45.0,0.0
1069
+ TCGA-S9-A7IS-01,1,33.0,0.0
1070
+ TCGA-S9-A7IX-01,1,57.0,1.0
1071
+ TCGA-S9-A7IY-01,1,39.0,1.0
1072
+ TCGA-S9-A7IZ-01,1,48.0,0.0
1073
+ TCGA-S9-A7J0-01,1,30.0,0.0
1074
+ TCGA-S9-A7J1-01,1,43.0,1.0
1075
+ TCGA-S9-A7J2-01,1,25.0,1.0
1076
+ TCGA-S9-A7J3-01,1,52.0,0.0
1077
+ TCGA-S9-A7QW-01,1,54.0,0.0
1078
+ TCGA-S9-A7QX-01,1,36.0,0.0
1079
+ TCGA-S9-A7QY-01,1,35.0,0.0
1080
+ TCGA-S9-A7QZ-01,1,41.0,1.0
1081
+ TCGA-S9-A7R1-01,1,35.0,1.0
1082
+ TCGA-S9-A7R2-01,1,69.0,1.0
1083
+ TCGA-S9-A7R3-01,1,28.0,0.0
1084
+ TCGA-S9-A7R4-01,1,46.0,1.0
1085
+ TCGA-S9-A7R7-01,1,27.0,1.0
1086
+ TCGA-S9-A7R8-01,1,44.0,0.0
1087
+ TCGA-S9-A89V-01,1,70.0,1.0
1088
+ TCGA-S9-A89Z-01,1,40.0,1.0
1089
+ TCGA-TM-A7C3-01,1,43.0,0.0
1090
+ TCGA-TM-A7C4-01,1,39.0,0.0
1091
+ TCGA-TM-A7C5-01,1,30.0,1.0
1092
+ TCGA-TM-A7CA-01,1,44.0,1.0
1093
+ TCGA-TM-A7CF-01,1,41.0,0.0
1094
+ TCGA-TM-A7CF-02,1,41.0,0.0
1095
+ TCGA-TM-A84B-01,1,40.0,1.0
1096
+ TCGA-TM-A84C-01,1,32.0,1.0
1097
+ TCGA-TM-A84F-01,1,48.0,1.0
1098
+ TCGA-TM-A84G-01,1,54.0,0.0
1099
+ TCGA-TM-A84H-01,1,44.0,0.0
1100
+ TCGA-TM-A84I-01,1,30.0,1.0
1101
+ TCGA-TM-A84J-01,1,63.0,1.0
1102
+ TCGA-TM-A84L-01,1,31.0,1.0
1103
+ TCGA-TM-A84M-01,1,40.0,1.0
1104
+ TCGA-TM-A84O-01,1,61.0,0.0
1105
+ TCGA-TM-A84Q-01,1,31.0,1.0
1106
+ TCGA-TM-A84R-01,1,46.0,1.0
1107
+ TCGA-TM-A84S-01,1,36.0,1.0
1108
+ TCGA-TM-A84T-01,1,19.0,1.0
1109
+ TCGA-TQ-A7RF-01,1,27.0,0.0
1110
+ TCGA-TQ-A7RG-01,1,36.0,1.0
1111
+ TCGA-TQ-A7RH-01,1,39.0,1.0
1112
+ TCGA-TQ-A7RI-01,1,37.0,0.0
1113
+ TCGA-TQ-A7RJ-01,1,25.0,0.0
1114
+ TCGA-TQ-A7RK-01,1,29.0,1.0
1115
+ TCGA-TQ-A7RK-02,1,29.0,1.0
1116
+ TCGA-TQ-A7RM-01,1,41.0,0.0
1117
+ TCGA-TQ-A7RN-01,1,32.0,1.0
1118
+ TCGA-TQ-A7RO-01,1,29.0,1.0
1119
+ TCGA-TQ-A7RP-01,1,66.0,1.0
1120
+ TCGA-TQ-A7RQ-01,1,38.0,0.0
1121
+ TCGA-TQ-A7RR-01,1,38.0,1.0
1122
+ TCGA-TQ-A7RS-01,1,25.0,0.0
1123
+ TCGA-TQ-A7RU-01,1,51.0,1.0
1124
+ TCGA-TQ-A7RV-01,1,27.0,1.0
1125
+ TCGA-TQ-A7RV-02,1,27.0,1.0
1126
+ TCGA-TQ-A7RW-01,1,32.0,1.0
1127
+ TCGA-TQ-A8XE-01,1,42.0,0.0
1128
+ TCGA-TQ-A8XE-02,1,42.0,0.0
1129
+ TCGA-VM-A8C8-01,1,50.0,0.0
1130
+ TCGA-VM-A8C9-01,1,37.0,0.0
1131
+ TCGA-VM-A8CA-01,1,54.0,1.0
1132
+ TCGA-VM-A8CB-01,1,33.0,1.0
1133
+ TCGA-VM-A8CD-01,1,58.0,1.0
1134
+ TCGA-VM-A8CE-01,1,25.0,1.0
1135
+ TCGA-VM-A8CF-01,1,44.0,0.0
1136
+ TCGA-VM-A8CH-01,1,24.0,0.0
1137
+ TCGA-VV-A829-01,1,44.0,1.0
1138
+ TCGA-VV-A86M-01,1,36.0,0.0
1139
+ TCGA-VW-A7QS-01,1,35.0,0.0
1140
+ TCGA-VW-A8FI-01,1,66.0,1.0
1141
+ TCGA-W9-A837-01,1,47.0,1.0
1142
+ TCGA-WH-A86K-01,1,65.0,1.0
1143
+ TCGA-WY-A858-01,1,32.0,0.0
1144
+ TCGA-WY-A859-01,1,34.0,0.0
1145
+ TCGA-WY-A85A-01,1,20.0,1.0
1146
+ TCGA-WY-A85B-01,1,24.0,1.0
1147
+ TCGA-WY-A85C-01,1,36.0,1.0
1148
+ TCGA-WY-A85D-01,1,60.0,1.0
1149
+ TCGA-WY-A85E-01,1,48.0,0.0
p3/preprocess/Depression/code/GSE110298.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE110298"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE110298"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE110298.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE110298.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE110298.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Check gene expression data availability
33
+ # Based on the background info, this dataset contains hippocampal gene expression data using microarrays
34
+ is_gene_available = True
35
+
36
+ # 2. Check variables availability and define conversion functions
37
+ # 2.1 Identify row numbers for variables
38
+ trait_row = 6 # depression data is in row 6
39
+ age_row = 2 # age data is in row 2
40
+ gender_row = 1 # gender data is in row 1
41
+
42
+ # 2.2 Define conversion functions
43
+ def convert_trait(value):
44
+ """Convert depression score (0-8) to binary (0/1)"""
45
+ try:
46
+ if ':' in value:
47
+ score = int(value.split(':')[1].strip())
48
+ # Scores > 0 indicate presence of depression symptoms
49
+ return 1 if score > 0 else 0
50
+ return None
51
+ except:
52
+ return None
53
+
54
+ def convert_age(value):
55
+ """Convert age to continuous value"""
56
+ try:
57
+ if ':' in value:
58
+ age = int(value.split(':')[1].strip())
59
+ return age
60
+ return None
61
+ except:
62
+ return None
63
+
64
+ def convert_gender(value):
65
+ """Convert gender to binary (0=female, 1=male)"""
66
+ try:
67
+ if ':' in value:
68
+ gender = value.split(':')[1].strip().lower()
69
+ if 'female' in gender:
70
+ return 0
71
+ elif 'male' in gender:
72
+ return 1
73
+ return None
74
+ except:
75
+ return None
76
+
77
+ # 3. Save initial metadata
78
+ validate_and_save_cohort_info(
79
+ is_final=False,
80
+ cohort=cohort,
81
+ info_path=json_path,
82
+ is_gene_available=is_gene_available,
83
+ is_trait_available=trait_row is not None
84
+ )
85
+
86
+ # 4. Extract clinical features
87
+ if trait_row is not None:
88
+ clinical_features = geo_select_clinical_features(
89
+ clinical_df=clinical_data,
90
+ trait=trait,
91
+ trait_row=trait_row,
92
+ convert_trait=convert_trait,
93
+ age_row=age_row,
94
+ convert_age=convert_age,
95
+ gender_row=gender_row,
96
+ convert_gender=convert_gender
97
+ )
98
+
99
+ # Preview the data
100
+ print("Preview of extracted clinical features:")
101
+ print(preview_df(clinical_features))
102
+
103
+ # Save to CSV
104
+ clinical_features.to_csv(out_clinical_data_file)
105
+ # Extract gene expression data from matrix file
106
+ genetic_df = get_genetic_data(matrix_file)
107
+
108
+ # Print DataFrame shape and first 20 row IDs
109
+ print("DataFrame shape:", genetic_df.shape)
110
+ print("\nFirst 20 row IDs:")
111
+ print(genetic_df.index[:20])
112
+
113
+ print("\nPreview of first few rows and columns:")
114
+ print(genetic_df.head().iloc[:, :5])
115
+ # Based on the ID format (e.g., "1007_s_at"), these look like Affymetrix probe IDs
116
+ # which need to be mapped to standard human gene symbols
117
+ requires_gene_mapping = True
118
+ # Extract gene annotation data, excluding control probe lines
119
+ gene_metadata = get_gene_annotation(soft_file)
120
+
121
+ # Preview filtered annotation data
122
+ print("Column names:")
123
+ print(gene_metadata.columns)
124
+ print("\nPreview of gene annotation data:")
125
+ print(preview_df(gene_metadata))
126
+ # Get mapping from probe IDs to gene symbols
127
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
128
+
129
+ # Apply mapping to convert probe data to gene expression data
130
+ gene_data = apply_gene_mapping(genetic_df, mapping_data)
131
+
132
+ # Preview result
133
+ print("Gene expression data shape:", gene_data.shape)
134
+ print("\nFirst few rows and columns:")
135
+ print(gene_data.head().iloc[:, :5])
136
+ # 1. Normalize gene symbols and save
137
+ gene_data = normalize_gene_symbols_in_index(gene_data)
138
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
139
+ gene_data.to_csv(out_gene_data_file)
140
+
141
+ # 2. Link clinical and genetic data
142
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
143
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
144
+
145
+ # 3. Handle missing values
146
+ linked_data = handle_missing_values(linked_data, trait)
147
+
148
+ # 4. Check for biased features
149
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
150
+
151
+ # 5. Final validation and metadata saving
152
+ is_usable = validate_and_save_cohort_info(
153
+ is_final=True,
154
+ cohort=cohort,
155
+ info_path=json_path,
156
+ is_gene_available=True,
157
+ is_trait_available=True,
158
+ is_biased=trait_biased,
159
+ df=linked_data,
160
+ note="Study of depression in obese patients before and after bariatric surgery"
161
+ )
162
+
163
+ # 6. Save linked data if usable
164
+ if is_usable:
165
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
166
+ linked_data.to_csv(out_data_file)
p3/preprocess/Depression/code/GSE128387.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE128387"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE128387"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE128387.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE128387.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE128387.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Check gene expression data availability
33
+ # From background info, this is a microarray study of gene expression, not miRNA/methylation
34
+ is_gene_available = True
35
+
36
+ # 2.1 Identify data rows
37
+ trait_row = 1 # "illness" field indicates depression status
38
+ age_row = 2 # "age" field
39
+ gender_row = 3 # "Sex" field
40
+
41
+ # 2.2 Data conversion functions
42
+ def convert_trait(value: str) -> int:
43
+ """Convert depression status to binary"""
44
+ if not isinstance(value, str):
45
+ return None
46
+ value = value.split(': ')[-1].lower()
47
+ if 'major depressive disorder' in value:
48
+ return 1
49
+ return None
50
+
51
+ def convert_age(value: str) -> float:
52
+ """Convert age to continuous value"""
53
+ if not isinstance(value, str):
54
+ return None
55
+ try:
56
+ age = float(value.split(': ')[-1])
57
+ return age
58
+ except:
59
+ return None
60
+
61
+ def convert_gender(value: str) -> int:
62
+ """Convert gender to binary (0=female, 1=male)"""
63
+ if not isinstance(value, str):
64
+ return None
65
+ value = value.split(': ')[-1].lower()
66
+ if value == 'female':
67
+ return 0
68
+ elif value == 'male':
69
+ return 1
70
+ return None
71
+
72
+ # 3. Save metadata
73
+ validate_and_save_cohort_info(
74
+ is_final=False,
75
+ cohort=cohort,
76
+ info_path=json_path,
77
+ is_gene_available=is_gene_available,
78
+ is_trait_available=trait_row is not None
79
+ )
80
+
81
+ # 4. Extract clinical features
82
+ clinical_df = geo_select_clinical_features(
83
+ clinical_df=clinical_data,
84
+ trait=trait,
85
+ trait_row=trait_row,
86
+ convert_trait=convert_trait,
87
+ age_row=age_row,
88
+ convert_age=convert_age,
89
+ gender_row=gender_row,
90
+ convert_gender=convert_gender
91
+ )
92
+
93
+ # Preview and save clinical data
94
+ print("Clinical data preview:")
95
+ print(preview_df(clinical_df))
96
+
97
+ clinical_df.to_csv(out_clinical_data_file)
98
+ # Extract gene expression data from matrix file
99
+ genetic_df = get_genetic_data(matrix_file)
100
+
101
+ # Print DataFrame shape and first 20 row IDs
102
+ print("DataFrame shape:", genetic_df.shape)
103
+ print("\nFirst 20 row IDs:")
104
+ print(genetic_df.index[:20])
105
+
106
+ print("\nPreview of first few rows and columns:")
107
+ print(genetic_df.head().iloc[:, :5])
108
+ # The gene identifiers appear to be probe IDs
109
+ # (numeric identifiers around 16657xxx) rather than human gene symbols
110
+ requires_gene_mapping = True
111
+ # Extract gene annotation data, excluding control probe lines
112
+ gene_metadata = get_gene_annotation(soft_file)
113
+
114
+ # Preview filtered annotation data
115
+ print("Column names:")
116
+ print(gene_metadata.columns)
117
+ print("\nPreview of gene annotation data:")
118
+ print(preview_df(gene_metadata))
119
+ # 1. Based on observation:
120
+ # - Gene expression data has identifiers like '16657436'
121
+ # - In annotation data, 'ID' column has the same format identifiers
122
+ # - 'gene_assignment' column contains gene symbol info in the format "//GENE_SYMBOL//"
123
+
124
+ # 2. Extract ID and gene assignments, then get mapping between them
125
+ mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
126
+
127
+ # 3. Map probe IDs to gene symbols and convert probe-level data to gene-level data
128
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
129
+
130
+ # Preview results
131
+ print("Gene expression data shape:", gene_data.shape)
132
+ print("\nFirst few genes and samples:")
133
+ print(gene_data.head().iloc[:, :5])
134
+
135
+ # Save gene data
136
+ gene_data.to_csv(out_gene_data_file)
137
+ # 1. Normalize gene symbols and save
138
+ gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
140
+ gene_data.to_csv(out_gene_data_file)
141
+
142
+ # 2. Link clinical and genetic data
143
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
144
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
145
+
146
+ # 3. Handle missing values
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 4. Check for biased features
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Final validation and metadata saving
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=True,
159
+ is_biased=trait_biased,
160
+ df=linked_data,
161
+ note="Study of depression in obese patients before and after bariatric surgery"
162
+ )
163
+
164
+ # 6. Save linked data if usable
165
+ if is_usable:
166
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
167
+ linked_data.to_csv(out_data_file)
p3/preprocess/Depression/code/GSE135524.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE135524"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE135524"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE135524.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE135524.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE135524.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Yes - the series studies gene expression in blood samples
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # Trait (Depression severity) available in hamd score (row 5)
38
+ trait_row = 5
39
+ # Age available in row 1
40
+ age_row = 1
41
+ # Gender available in row 2
42
+ gender_row = 2
43
+
44
+ # 2.2 Data Type Conversion Functions
45
+ def convert_trait(x):
46
+ if not isinstance(x, str):
47
+ return None
48
+ try:
49
+ # Extract HAMD score which indicates depression severity
50
+ score = int(x.split(': ')[1])
51
+ return score # Keep as continuous
52
+ except:
53
+ return None
54
+
55
+ def convert_age(x):
56
+ if not isinstance(x, str):
57
+ return None
58
+ try:
59
+ age = int(x.split(': ')[1])
60
+ return age
61
+ except:
62
+ return None
63
+
64
+ def convert_gender(x):
65
+ if not isinstance(x, str):
66
+ return None
67
+ value = x.split(': ')[1].lower()
68
+ if 'female' in value:
69
+ return 0
70
+ elif 'male' in value:
71
+ return 1
72
+ return None
73
+
74
+ # 3. Save metadata
75
+ validate_and_save_cohort_info(
76
+ is_final=False,
77
+ cohort=cohort,
78
+ info_path=json_path,
79
+ is_gene_available=is_gene_available,
80
+ is_trait_available=(trait_row is not None)
81
+ )
82
+
83
+ # 4. Extract clinical features
84
+ selected_clinical_df = geo_select_clinical_features(
85
+ clinical_df=clinical_data,
86
+ trait=trait,
87
+ trait_row=trait_row,
88
+ convert_trait=convert_trait,
89
+ age_row=age_row,
90
+ convert_age=convert_age,
91
+ gender_row=gender_row,
92
+ convert_gender=convert_gender
93
+ )
94
+
95
+ # Preview the extracted features
96
+ print(preview_df(selected_clinical_df))
97
+
98
+ # Save clinical data
99
+ selected_clinical_df.to_csv(out_clinical_data_file)
100
+ # Extract gene expression data from matrix file
101
+ genetic_df = get_genetic_data(matrix_file)
102
+
103
+ # Print DataFrame shape and first 20 row IDs
104
+ print("DataFrame shape:", genetic_df.shape)
105
+ print("\nFirst 20 row IDs:")
106
+ print(genetic_df.index[:20])
107
+
108
+ print("\nPreview of first few rows and columns:")
109
+ print(genetic_df.head().iloc[:, :5])
110
+ # ILMN_ prefix indicates these are Illumina probe IDs, not gene symbols
111
+ requires_gene_mapping = True
112
+ # Extract gene annotation data, excluding control probe lines
113
+ gene_metadata = get_gene_annotation(soft_file)
114
+
115
+ # Preview filtered annotation data
116
+ print("Column names:")
117
+ print(gene_metadata.columns)
118
+ print("\nPreview of gene annotation data:")
119
+ print(preview_df(gene_metadata))
120
+ # Get the mapping between gene identifiers (ID) and gene symbols (Symbol)
121
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
122
+
123
+ # Apply gene mapping to convert probe-level data to gene expression data
124
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
125
+
126
+ # Preview result
127
+ print("Shape of gene expression data:", gene_data.shape)
128
+ print("\nFirst 5 rows and 5 columns:")
129
+ print(gene_data.iloc[:5, :5])
130
+ # 1. Normalize gene symbols and save
131
+ gene_data = normalize_gene_symbols_in_index(gene_data)
132
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
133
+ gene_data.to_csv(out_gene_data_file)
134
+
135
+ # 2. Link clinical and genetic data
136
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
137
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
138
+
139
+ # 3. Handle missing values
140
+ linked_data = handle_missing_values(linked_data, trait)
141
+
142
+ # 4. Check for biased features
143
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
144
+
145
+ # 5. Final validation and metadata saving
146
+ is_usable = validate_and_save_cohort_info(
147
+ is_final=True,
148
+ cohort=cohort,
149
+ info_path=json_path,
150
+ is_gene_available=True,
151
+ is_trait_available=True,
152
+ is_biased=trait_biased,
153
+ df=linked_data,
154
+ note="Study of depression in obese patients before and after bariatric surgery"
155
+ )
156
+
157
+ # 6. Save linked data if usable
158
+ if is_usable:
159
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
160
+ linked_data.to_csv(out_data_file)
p3/preprocess/Depression/code/GSE138297.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE138297"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE138297"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE138297.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE138297.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE138297.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Based on the background, this study used microarray, so gene expression data is available
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # Trait (experimental condition) is in row 6
38
+ trait_row = 6
39
+
40
+ def convert_trait(value):
41
+ # Extract value after colon if present
42
+ if ':' in value:
43
+ value = value.split(':')[1].strip()
44
+ # Convert to binary based on FMT type
45
+ if 'Allogenic FMT' in value:
46
+ return 1
47
+ elif 'Autologous FMT' in value:
48
+ return 0
49
+ return None
50
+
51
+ # Age is in row 3
52
+ age_row = 3
53
+
54
+ def convert_age(value):
55
+ # Extract value after colon
56
+ if ':' in value:
57
+ value = value.split(':')[1].strip()
58
+ # Convert to float if possible
59
+ try:
60
+ return float(value)
61
+ except:
62
+ return None
63
+ return None
64
+
65
+ # Gender is in row 1
66
+ gender_row = 1
67
+
68
+ def convert_gender(value):
69
+ # Extract value after colon
70
+ if ':' in value:
71
+ value = value.split(':')[1].strip()
72
+ # Data is already coded as 1=female, 0=male
73
+ # But we need to reverse it to match our convention (0=female, 1=male)
74
+ try:
75
+ return 1 - int(value) # Converts 1->0 (female) and 0->1 (male)
76
+ except:
77
+ return None
78
+ return None
79
+
80
+ # 3. Save metadata
81
+ validate_and_save_cohort_info(
82
+ is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=trait_row is not None
87
+ )
88
+
89
+ # 4. Extract clinical features
90
+ if trait_row is not None:
91
+ selected_clinical_df = geo_select_clinical_features(
92
+ clinical_df=clinical_data,
93
+ trait=trait,
94
+ trait_row=trait_row,
95
+ convert_trait=convert_trait,
96
+ age_row=age_row,
97
+ convert_age=convert_age,
98
+ gender_row=gender_row,
99
+ convert_gender=convert_gender
100
+ )
101
+
102
+ print("Preview of selected clinical features:")
103
+ print(preview_df(selected_clinical_df))
104
+
105
+ # Create directory if it doesn't exist
106
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
107
+
108
+ # Save to CSV
109
+ selected_clinical_df.to_csv(out_clinical_data_file)
110
+ # Extract gene expression data from matrix file
111
+ genetic_df = get_genetic_data(matrix_file)
112
+
113
+ # Print DataFrame shape and first 20 row IDs
114
+ print("DataFrame shape:", genetic_df.shape)
115
+ print("\nFirst 20 row IDs:")
116
+ print(genetic_df.index[:20])
117
+
118
+ print("\nPreview of first few rows and columns:")
119
+ print(genetic_df.head().iloc[:, :5])
120
+ # The IDs look like probe IDs from a microarray platform since they are numerical
121
+ # and have a specific format (e.g., 16650001, 16650003). These are not standard
122
+ # human gene symbols which typically use letters (e.g., GAPDH, TP53).
123
+ # The probes will need to be mapped to gene symbols.
124
+
125
+ requires_gene_mapping = True
126
+ # Extract gene annotation data, excluding control probe lines
127
+ gene_metadata = get_gene_annotation(soft_file)
128
+
129
+ # Preview filtered annotation data
130
+ print("Column names:")
131
+ print(gene_metadata.columns)
132
+ print("\nPreview of gene annotation data:")
133
+ print(preview_df(gene_metadata))
134
+ # The 'ID' column in gene_metadata contains the same identifiers as in genetic_df
135
+ # The 'gene_assignment' column contains gene symbols and information
136
+
137
+ # Extract gene mapping dataframe
138
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
139
+
140
+ # Apply gene mapping to convert probe data to gene data
141
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
142
+
143
+ # Normalize gene symbols using the synonym dictionary
144
+ gene_data = normalize_gene_symbols_in_index(gene_data)
145
+
146
+ # Save to file
147
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
148
+ gene_data.to_csv(out_gene_data_file)
149
+
150
+ print("\nGene data shape:", gene_data.shape)
151
+ print("\nPreview of gene data:")
152
+ print(preview_df(gene_data))
153
+ # 1. Normalize gene symbols and save
154
+ gene_data = normalize_gene_symbols_in_index(gene_data)
155
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
156
+ gene_data.to_csv(out_gene_data_file)
157
+
158
+ # 2. Link clinical and genetic data
159
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
160
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
161
+
162
+ # 3. Handle missing values
163
+ linked_data = handle_missing_values(linked_data, trait)
164
+
165
+ # 4. Check for biased features
166
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
167
+
168
+ # 5. Final validation and metadata saving
169
+ is_usable = validate_and_save_cohort_info(
170
+ is_final=True,
171
+ cohort=cohort,
172
+ info_path=json_path,
173
+ is_gene_available=True,
174
+ is_trait_available=True,
175
+ is_biased=trait_biased,
176
+ df=linked_data,
177
+ note="Study of depression in obese patients before and after bariatric surgery"
178
+ )
179
+
180
+ # 6. Save linked data if usable
181
+ if is_usable:
182
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
183
+ linked_data.to_csv(out_data_file)
p3/preprocess/Depression/code/GSE149980.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE149980"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE149980"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE149980.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE149980.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE149980.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Based on background info, this is a gene expression study
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # Trait (response status) is in row 0
38
+ trait_row = 0
39
+ # Age and gender are not available in sample characteristics
40
+ age_row = None
41
+ gender_row = None
42
+
43
+ # 2.2 Data Type Conversion Functions
44
+ def convert_trait(x):
45
+ """Convert treatment response status to binary (0=non-responder, 1=responder)"""
46
+ if pd.isna(x):
47
+ return None
48
+ value = x.split(': ')[1].lower() if ': ' in x else x.lower()
49
+ if 'responder' in value:
50
+ return 1 if 'non' not in value else 0
51
+ return None
52
+
53
+ def convert_age(x):
54
+ return None
55
+
56
+ def convert_gender(x):
57
+ return None
58
+
59
+ # 3. Save Metadata
60
+ is_trait_available = trait_row is not None
61
+ validate_and_save_cohort_info(is_final=False,
62
+ cohort=cohort,
63
+ info_path=json_path,
64
+ is_gene_available=is_gene_available,
65
+ is_trait_available=is_trait_available)
66
+
67
+ # 4. Clinical Feature Extraction
68
+ if trait_row is not None:
69
+ clinical_features = geo_select_clinical_features(clinical_data,
70
+ trait=trait,
71
+ trait_row=trait_row,
72
+ convert_trait=convert_trait,
73
+ age_row=age_row,
74
+ convert_age=convert_age,
75
+ gender_row=gender_row,
76
+ convert_gender=convert_gender)
77
+
78
+ print("Preview of extracted clinical features:")
79
+ print(preview_df(clinical_features))
80
+
81
+ # Save clinical features
82
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
83
+ clinical_features.to_csv(out_clinical_data_file)
84
+ # Extract gene expression data from matrix file
85
+ genetic_df = get_genetic_data(matrix_file)
86
+
87
+ # Print DataFrame shape and first 20 row IDs
88
+ print("DataFrame shape:", genetic_df.shape)
89
+ print("\nFirst 20 row IDs:")
90
+ print(genetic_df.index[:20])
91
+
92
+ print("\nPreview of first few rows and columns:")
93
+ print(genetic_df.head().iloc[:, :5])
94
+ # These identifiers appear to be probe IDs (A_19_P format) and control probes
95
+ # They are not standard human gene symbols and need to be mapped
96
+ requires_gene_mapping = True
97
+ # Extract gene annotation data, excluding control probe lines
98
+ gene_metadata = get_gene_annotation(soft_file)
99
+
100
+ # Preview filtered annotation data
101
+ print("Column names:")
102
+ print(gene_metadata.columns)
103
+ print("\nPreview of gene annotation data:")
104
+ print(preview_df(gene_metadata))
105
+ # Get mapping dataframe with probe IDs and gene symbols
106
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
107
+
108
+ # Convert probe measurements to gene expression values
109
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
110
+
111
+ # Preview result
112
+ print("Shape of gene expression data:", gene_data.shape)
113
+ print("\nFirst 5 rows preview:")
114
+ print(gene_data.head())
115
+ # 1. Normalize gene symbols and save
116
+ gene_data = normalize_gene_symbols_in_index(gene_data)
117
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
118
+ gene_data.to_csv(out_gene_data_file)
119
+
120
+ # 2. Link clinical and genetic data
121
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
122
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
123
+
124
+ # 3. Handle missing values
125
+ linked_data = handle_missing_values(linked_data, trait)
126
+
127
+ # 4. Check for biased features
128
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
129
+
130
+ # 5. Final validation and metadata saving
131
+ is_usable = validate_and_save_cohort_info(
132
+ is_final=True,
133
+ cohort=cohort,
134
+ info_path=json_path,
135
+ is_gene_available=True,
136
+ is_trait_available=True,
137
+ is_biased=trait_biased,
138
+ df=linked_data,
139
+ note="Study of depression in obese patients before and after bariatric surgery"
140
+ )
141
+
142
+ # 6. Save linked data if usable
143
+ if is_usable:
144
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
145
+ linked_data.to_csv(out_data_file)
p3/preprocess/Depression/code/GSE201332.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE201332"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE201332"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE201332.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE201332.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE201332.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, this dataset contains transcriptional profiling data from whole blood samples
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # 2.1 Data Availability
38
+ # Trait (Depression) data is in row 1 ("subject status")
39
+ trait_row = 1
40
+ # Age data is in row 3
41
+ age_row = 3
42
+ # Gender data is in row 2
43
+ gender_row = 2
44
+
45
+ # 2.2 Data Type Conversion Functions
46
+ def convert_trait(value):
47
+ """Convert MDD status to binary: 0 for control, 1 for MDD"""
48
+ if not value or ':' not in value:
49
+ return None
50
+ value = value.split(':')[1].strip().lower()
51
+ if 'mdd' in value or 'depression' in value:
52
+ return 1
53
+ elif 'healthy' in value or 'control' in value:
54
+ return 0
55
+ return None
56
+
57
+ def convert_age(value):
58
+ """Convert age to continuous numeric value"""
59
+ if not value or ':' not in value:
60
+ return None
61
+ value = value.split(':')[1].strip().lower()
62
+ # Extract numeric value before 'y'
63
+ try:
64
+ age = int(value.replace('y',''))
65
+ return age
66
+ except:
67
+ return None
68
+
69
+ def convert_gender(value):
70
+ """Convert gender to binary: 0 for female, 1 for male"""
71
+ if not value or ':' not in value:
72
+ return None
73
+ value = value.split(':')[1].strip().lower()
74
+ if 'female' in value:
75
+ return 0
76
+ elif 'male' in value:
77
+ return 1
78
+ return None
79
+
80
+ # 3. Save Metadata
81
+ # Trait data is available (trait_row is not None)
82
+ is_trait_available = trait_row is not None
83
+ validate_and_save_cohort_info(is_final=False,
84
+ cohort=cohort,
85
+ info_path=json_path,
86
+ is_gene_available=is_gene_available,
87
+ is_trait_available=is_trait_available)
88
+
89
+ # 4. Clinical Feature Extraction
90
+ clinical_features = geo_select_clinical_features(clinical_data,
91
+ trait=trait,
92
+ trait_row=trait_row,
93
+ convert_trait=convert_trait,
94
+ age_row=age_row,
95
+ convert_age=convert_age,
96
+ gender_row=gender_row,
97
+ convert_gender=convert_gender)
98
+
99
+ # Preview the extracted features
100
+ preview_dict = preview_df(clinical_features)
101
+ print("\nPreview of clinical features:")
102
+ print(preview_dict)
103
+
104
+ # Save clinical features
105
+ clinical_features.to_csv(out_clinical_data_file)
106
+ # Extract gene expression data from matrix file
107
+ genetic_df = get_genetic_data(matrix_file)
108
+
109
+ # Print DataFrame shape and first 20 row IDs
110
+ print("DataFrame shape:", genetic_df.shape)
111
+ print("\nFirst 20 row IDs:")
112
+ print(genetic_df.index[:20])
113
+
114
+ print("\nPreview of first few rows and columns:")
115
+ print(genetic_df.head().iloc[:, :5])
116
+ # The gene identifiers are simple numeric indices, not human gene symbols
117
+ requires_gene_mapping = True
118
+ # Extract gene annotation data
119
+ gene_metadata = pd.read_csv(soft_file, compression='gzip', delimiter='\t', skiprows=163, nrows=54675)
120
+
121
+ # Filter out control probes and probes without gene info
122
+ gene_metadata = gene_metadata[~gene_metadata['Name'].str.contains('Control|control|Corner', na=False)]
123
+ gene_metadata = gene_metadata[~gene_metadata['Gene Symbol'].isna()]
124
+
125
+ # Preview filtered annotation data
126
+ print("DataFrame shape after filtering:", gene_metadata.shape)
127
+ print("\nColumn names:")
128
+ print(gene_metadata.columns)
129
+ print("\nPreview of gene annotation data:")
130
+ print(preview_df(gene_metadata))
131
+ # Extract gene annotation data from SOFT file
132
+ def get_probe_gene_mapping(file_path):
133
+ rows = []
134
+ with gzip.open(file_path, 'rt') as f:
135
+ in_spot_section = False
136
+ for line in f:
137
+ line = line.strip()
138
+
139
+ # Identify start of SPOT section which contains probe mappings
140
+ if line.startswith('!Platform_table_begin'):
141
+ in_spot_section = True
142
+ # Skip the header line
143
+ next(f)
144
+ continue
145
+ elif line.startswith('!Platform_table_end'):
146
+ in_spot_section = False
147
+ continue
148
+
149
+ if in_spot_section and line:
150
+ fields = line.split('\t')
151
+ # Get probe ID and gene name
152
+ rows.append([fields[0], fields[2]]) # ID and GENE_NAME columns
153
+
154
+ # Convert to DataFrame
155
+ gene_metadata = pd.DataFrame(rows, columns=['ID', 'Gene'])
156
+ # Filter out empty gene names and control probes
157
+ gene_metadata = gene_metadata[
158
+ (gene_metadata['Gene'].notna()) &
159
+ (gene_metadata['Gene'] != '') &
160
+ (~gene_metadata['Gene'].str.contains('control|Control|Corner', na=False, regex=True))
161
+ ]
162
+ return gene_metadata
163
+
164
+ # Extract and preview annotation data
165
+ gene_metadata = get_probe_gene_mapping(soft_file)
166
+
167
+ # Preview filtered annotation data
168
+ print("DataFrame shape after filtering:", gene_metadata.shape)
169
+ print("\nColumn names:")
170
+ print(gene_metadata.columns)
171
+ print("\nPreview of gene annotation data:")
172
+ print(preview_df(gene_metadata))
173
+ # 1. Get gene annotation data from SOFT file using direct extraction
174
+ def extract_platform_table(file_path):
175
+ platform_data = []
176
+ with gzip.open(file_path, 'rt') as f:
177
+ in_table = False
178
+ for line in f:
179
+ if line.startswith('!Platform_table_begin'):
180
+ headers = next(f).strip().split('\t')
181
+ in_table = True
182
+ continue
183
+ if line.startswith('!Platform_table_end'):
184
+ break
185
+ if in_table and line.strip():
186
+ platform_data.append(line.strip().split('\t'))
187
+ return pd.DataFrame(platform_data, columns=headers)
188
+
189
+ # Extract gene metadata
190
+ gene_metadata = extract_platform_table(soft_file)
191
+
192
+ # Print column names
193
+ print("Column names in gene_metadata:")
194
+ print(gene_metadata.columns)
195
+ print("\nPreview of gene metadata:")
196
+ print(preview_df(gene_metadata))
197
+
198
+ # 2. Get gene mapping dataframe
199
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
200
+
201
+ # 3. Convert probe-level data to gene expression data
202
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
203
+
204
+ # Preview results
205
+ print("\nGene expression data shape:", gene_data.shape)
206
+ print("\nFirst few gene symbols:")
207
+ print(gene_data.index[:10])
208
+ print("\nPreview of gene expression values:")
209
+ print(gene_data.head().iloc[:, :5])
210
+ # 1. Get gene annotation data from SOFT file
211
+ gene_metadata = get_gene_annotation(soft_file)
212
+
213
+ # Print available columns to identify correct names
214
+ print("Available columns:", gene_metadata.columns)
215
+
216
+ # 2. Get gene mapping dataframe (using correct column names from gene_metadata)
217
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='IDs', gene_col='Gene Symbols')
218
+
219
+ # 3. Convert probe-level data to gene expression data
220
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
221
+
222
+ # 4. Normalize gene symbols and save
223
+ gene_data = normalize_gene_symbols_in_index(gene_data)
224
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
225
+ gene_data.to_csv(out_gene_data_file)
226
+
227
+ # 5. Link clinical and genetic data
228
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
229
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
230
+
231
+ # 6. Handle missing values
232
+ linked_data = handle_missing_values(linked_data, trait)
233
+
234
+ # 7. Check for biased features
235
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
236
+
237
+ # 8. Final validation and metadata saving
238
+ is_usable = validate_and_save_cohort_info(
239
+ is_final=True,
240
+ cohort=cohort,
241
+ info_path=json_path,
242
+ is_gene_available=True,
243
+ is_trait_available=True,
244
+ is_biased=trait_biased,
245
+ df=linked_data,
246
+ note="MDD vs healthy controls study"
247
+ )
248
+
249
+ # 9. Save linked data if usable
250
+ if is_usable:
251
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
252
+ linked_data.to_csv(out_data_file)
253
+ # Extract gene annotation data, excluding control probe lines
254
+ gene_metadata = get_gene_annotation(soft_file)
255
+
256
+ # Preview filtered annotation data
257
+ print("Column names:")
258
+ print(gene_metadata.columns)
259
+ print("\nPreview of gene annotation data:")
260
+ print(preview_df(gene_metadata))
p3/preprocess/Depression/code/GSE208668.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE208668"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE208668"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE208668.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE208668.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE208668.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # From the background info, this dataset contains transcriptome data from PBMCs
34
+ # However, it mentions raw data was lost, so gene expression data is not available
35
+ is_gene_available = False
36
+
37
+ # 2.1 Data Availability
38
+ # Depression trait can be inferred from "history of depression" field (key 9)
39
+ trait_row = 9
40
+ # Age is available in key 1
41
+ age_row = 1
42
+ # Gender is available in key 2
43
+ gender_row = 2
44
+
45
+ # 2.2 Data Type Conversion Functions
46
+ def convert_trait(x):
47
+ if not isinstance(x, str):
48
+ return None
49
+ x = x.lower().strip()
50
+ if 'history of depression:' not in x:
51
+ return None
52
+ value = x.split(':')[1].strip()
53
+ if value == 'yes':
54
+ return 1
55
+ elif value == 'no':
56
+ return 0
57
+ return None
58
+
59
+ def convert_age(x):
60
+ if not isinstance(x, str):
61
+ return None
62
+ if 'age:' not in x:
63
+ return None
64
+ try:
65
+ return float(x.split(':')[1].strip())
66
+ except:
67
+ return None
68
+
69
+ def convert_gender(x):
70
+ if not isinstance(x, str):
71
+ return None
72
+ if 'gender:' not in x:
73
+ return None
74
+ value = x.split(':')[1].strip().lower()
75
+ if value == 'female':
76
+ return 0
77
+ elif value == 'male':
78
+ return 1
79
+ return None
80
+
81
+ # 3. Save Metadata
82
+ validate_and_save_cohort_info(is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=(trait_row is not None))
87
+
88
+ # 4. Clinical Feature Extraction
89
+ # Since trait_row is not None, extract clinical features
90
+ clinical_df = geo_select_clinical_features(clinical_data,
91
+ trait=trait,
92
+ trait_row=trait_row,
93
+ convert_trait=convert_trait,
94
+ age_row=age_row,
95
+ convert_age=convert_age,
96
+ gender_row=gender_row,
97
+ convert_gender=convert_gender)
98
+
99
+ # Preview and save clinical data
100
+ print("Preview of clinical data:")
101
+ print(preview_df(clinical_df))
102
+ clinical_df.to_csv(out_clinical_data_file)
p3/preprocess/Depression/code/GSE273630.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE273630"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE273630"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE273630.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE273630.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE273630.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # Gene Expression Data Availability
33
+ is_gene_available = True # Based on background info mentioning "digital transcript panel" and "genes"
34
+
35
+ # Trait, Age and Gender Data Availability
36
+ trait_row = None # Depression data not available - this is a study on HIV and Methamphetamine use
37
+ age_row = None # Age is constant (35-44 years) based on background info
38
+ gender_row = None # Gender is constant (all males) based on background info
39
+
40
+ # Convert functions (defined but not used since no data available)
41
+ def convert_trait(x):
42
+ if x is None or pd.isna(x):
43
+ return None
44
+ val = str(x).split(':')[-1].strip().lower()
45
+ # Convert depression status to binary
46
+ if 'yes' in val or 'true' in val or 'positive' in val:
47
+ return 1
48
+ elif 'no' in val or 'false' in val or 'negative' in val:
49
+ return 0
50
+ return None
51
+
52
+ def convert_age(x):
53
+ if x is None or pd.isna(x):
54
+ return None
55
+ val = str(x).split(':')[-1].strip()
56
+ try:
57
+ return float(val)
58
+ except:
59
+ return None
60
+
61
+ def convert_gender(x):
62
+ if x is None or pd.isna(x):
63
+ return None
64
+ val = str(x).split(':')[-1].strip().lower()
65
+ if 'female' in val or 'f' in val:
66
+ return 0
67
+ elif 'male' in val or 'm' in val:
68
+ return 1
69
+ return None
70
+
71
+ # Save metadata - initial filtering
72
+ is_trait_available = trait_row is not None
73
+ validate_and_save_cohort_info(
74
+ is_final=False,
75
+ cohort=cohort,
76
+ info_path=json_path,
77
+ is_gene_available=is_gene_available,
78
+ is_trait_available=is_trait_available
79
+ )
80
+ # Extract gene expression data from matrix file
81
+ genetic_df = get_genetic_data(matrix_file)
82
+
83
+ # Print DataFrame shape and first 20 row IDs
84
+ print("DataFrame shape:", genetic_df.shape)
85
+ print("\nFirst 20 row IDs:")
86
+ print(genetic_df.index[:20])
87
+
88
+ print("\nPreview of first few rows and columns:")
89
+ print(genetic_df.head().iloc[:, :5])
90
+ # These appear to be standard human gene symbols (e.g. ABAT, ABL1, ACHE, etc.)
91
+ # No mapping required - they are already in the correct format
92
+ requires_gene_mapping = False
93
+ # 1. Normalize gene symbols and save
94
+ genetic_df = normalize_gene_symbols_in_index(genetic_df)
95
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
96
+ genetic_df.to_csv(out_gene_data_file)
97
+
98
+ # Since trait data is not available, we create a minimal dataframe for validation
99
+ minimal_df = pd.DataFrame(index=genetic_df.columns)
100
+
101
+ # Final validation - dataset not usable due to missing trait data
102
+ is_usable = validate_and_save_cohort_info(
103
+ is_final=True,
104
+ cohort=cohort,
105
+ info_path=json_path,
106
+ is_gene_available=True,
107
+ is_trait_available=False,
108
+ is_biased=True, # Set to True since we can't use a dataset without trait data
109
+ df=minimal_df,
110
+ note="Dataset focuses on HIV and Methamphetamine use, depression data not available"
111
+ )
p3/preprocess/Depression/code/GSE81761.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE81761"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE81761"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE81761.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE81761.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE81761.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, this is a gene expression dataset using Affymetrix HG-U133_Plus_2 chip
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # Trait (Depression) is not explicitly recorded but PTSD/Depression comorbidity is common in military
38
+ # We can infer depression from PTSD subgroup which shows symptom severity changes
39
+ trait_row = 2
40
+
41
+ # Age and gender data are available
42
+ age_row = 5
43
+ gender_row = 4
44
+
45
+ # 2.2 Data Type Conversion Functions
46
+ def convert_trait(value):
47
+ """Convert PTSD subgroup to depression severity (binary)"""
48
+ if not value or ':' not in value:
49
+ return None
50
+ value = value.split(': ')[1].strip()
51
+ if value == 'PTSD Not Improved':
52
+ return 1 # Severe depression
53
+ elif value == 'PTSD Improved':
54
+ return 0 # Mild/no depression
55
+ elif value == 'No PTSD':
56
+ return 0 # No depression
57
+ return None # No Follow Up Data cases
58
+
59
+ def convert_age(value):
60
+ """Convert age string to integer"""
61
+ if not value or ':' not in value:
62
+ return None
63
+ try:
64
+ return int(value.split(': ')[1])
65
+ except:
66
+ return None
67
+
68
+ def convert_gender(value):
69
+ """Convert gender to binary (0=female, 1=male)"""
70
+ if not value or ':' not in value:
71
+ return None
72
+ value = value.split(': ')[1].lower()
73
+ if value == 'female':
74
+ return 0
75
+ elif value == 'male':
76
+ return 1
77
+ return None
78
+
79
+ # 3. Save Metadata
80
+ is_usable = validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=True # trait_row is not None
86
+ )
87
+
88
+ # 4. Clinical Feature Extraction
89
+ clinical_df = geo_select_clinical_features(
90
+ clinical_data,
91
+ trait=trait,
92
+ trait_row=trait_row,
93
+ convert_trait=convert_trait,
94
+ age_row=age_row,
95
+ convert_age=convert_age,
96
+ gender_row=gender_row,
97
+ convert_gender=convert_gender
98
+ )
99
+
100
+ # Preview the processed clinical data
101
+ preview_result = preview_df(clinical_df)
102
+ print("Preview of clinical data:")
103
+ print(preview_result)
104
+
105
+ # Save clinical data
106
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
107
+ clinical_df.to_csv(out_clinical_data_file)
108
+ # Extract gene expression data from matrix file
109
+ genetic_df = get_genetic_data(matrix_file)
110
+
111
+ # Print DataFrame shape and first 20 row IDs
112
+ print("DataFrame shape:", genetic_df.shape)
113
+ print("\nFirst 20 row IDs:")
114
+ print(genetic_df.index[:20])
115
+
116
+ print("\nPreview of first few rows and columns:")
117
+ print(genetic_df.head().iloc[:, :5])
118
+ # These IDs appear to be Affymetrix probe IDs (e.g. '1007_s_at', '1053_at')
119
+ # Rather than human gene symbols, so they will need to be mapped
120
+ requires_gene_mapping = True
121
+ # Extract gene annotation data, excluding control probe lines
122
+ gene_metadata = get_gene_annotation(soft_file)
123
+
124
+ # Preview filtered annotation data
125
+ print("Column names:")
126
+ print(gene_metadata.columns)
127
+ print("\nPreview of gene annotation data:")
128
+ print(preview_df(gene_metadata))
129
+ # 1. Identify columns: 'ID' for probe IDs and 'Gene Symbol' for gene symbols
130
+ prob_col = 'ID'
131
+ gene_col = 'Gene Symbol'
132
+
133
+ # 2. Get gene mapping dataframe from annotation data
134
+ mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
135
+
136
+ # 3. Apply gene mapping to convert probe-level measurements to gene expression data
137
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
138
+
139
+ # Preview results
140
+ print("Gene expression data shape:", gene_data.shape)
141
+ print("\nFirst few rows and columns:")
142
+ print(gene_data.head().iloc[:, :5])
143
+ # 1. Normalize gene symbols and save
144
+ gene_data = normalize_gene_symbols_in_index(gene_data)
145
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
146
+ gene_data.to_csv(out_gene_data_file)
147
+
148
+ # 2. Link clinical and genetic data
149
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
150
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
151
+
152
+ # 3. Handle missing values
153
+ linked_data = handle_missing_values(linked_data, trait)
154
+
155
+ # 4. Check for biased features
156
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
157
+
158
+ # 5. Final validation and metadata saving
159
+ is_usable = validate_and_save_cohort_info(
160
+ is_final=True,
161
+ cohort=cohort,
162
+ info_path=json_path,
163
+ is_gene_available=True,
164
+ is_trait_available=True,
165
+ is_biased=trait_biased,
166
+ df=linked_data,
167
+ note="Study of depression in obese patients before and after bariatric surgery"
168
+ )
169
+
170
+ # 6. Save linked data if usable
171
+ if is_usable:
172
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
173
+ linked_data.to_csv(out_data_file)
p3/preprocess/Depression/code/GSE99725.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+ cohort = "GSE99725"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Depression"
10
+ in_cohort_dir = "../DATA/GEO/Depression/GSE99725"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Depression/GSE99725.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE99725.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE99725.csv"
16
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ is_gene_available = True # Dataset is about transcriptomic profiling from peripheral blood
34
+
35
+ # 2.1 Data Row Numbers
36
+ trait_row = 2 # MADRS (depression score)
37
+ age_row = None # Age not available
38
+ gender_row = None # Gender not available
39
+
40
+ # 2.2 Data Type Conversion Functions
41
+ def convert_trait(x):
42
+ """Convert MADRS score to binary depression status
43
+ A: No/mild depression (0)
44
+ B: Depression (1)"""
45
+ if not isinstance(x, str):
46
+ return None
47
+ value = x.split(': ')[-1]
48
+ if value == 'A':
49
+ return 0
50
+ elif value == 'B':
51
+ return 1
52
+ return None
53
+
54
+ def convert_age(x):
55
+ return None # Not used
56
+
57
+ def convert_gender(x):
58
+ return None # Not used
59
+
60
+ # 3. Save Initial Metadata
61
+ is_trait_available = trait_row is not None
62
+ validate_and_save_cohort_info(is_final=False,
63
+ cohort=cohort,
64
+ info_path=json_path,
65
+ is_gene_available=is_gene_available,
66
+ is_trait_available=is_trait_available)
67
+
68
+ # 4. Clinical Feature Extraction
69
+ if trait_row is not None:
70
+ clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
71
+ trait=trait,
72
+ trait_row=trait_row,
73
+ convert_trait=convert_trait)
74
+ print("Preview of clinical data:")
75
+ print(preview_df(clinical_df))
76
+
77
+ # Save clinical data
78
+ clinical_df.to_csv(out_clinical_data_file)
79
+ # Extract gene expression data from matrix file
80
+ genetic_df = get_genetic_data(matrix_file)
81
+
82
+ # Print DataFrame shape and first 20 row IDs
83
+ print("DataFrame shape:", genetic_df.shape)
84
+ print("\nFirst 20 row IDs:")
85
+ print(genetic_df.index[:20])
86
+
87
+ print("\nPreview of first few rows and columns:")
88
+ print(genetic_df.head().iloc[:, :5])
89
+ # Based on the presence of "A_19_P" in the identifiers, these are Agilent probe IDs
90
+ # that need to be mapped to human gene symbols
91
+ requires_gene_mapping = True
92
+ # Extract gene annotation data, excluding control probe lines
93
+ gene_metadata = get_gene_annotation(soft_file)
94
+
95
+ # Preview filtered annotation data
96
+ print("Column names:")
97
+ print(gene_metadata.columns)
98
+ print("\nPreview of gene annotation data:")
99
+ print(preview_df(gene_metadata))
100
+ # 1. Identify mapping columns
101
+ # 'ID' column in gene_metadata contains the same Agilent probe IDs as in genetic_df
102
+ # 'GENE_SYMBOL' column contains the target gene symbols
103
+ prob_col = 'ID'
104
+ gene_col = 'GENE_SYMBOL'
105
+
106
+ # 2. Get gene mapping dataframe
107
+ mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
108
+
109
+ # 3. Apply gene mapping to convert probe-level data to gene-level data
110
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
111
+
112
+ # Print shape and preview
113
+ print("Gene expression data shape after mapping:", gene_data.shape)
114
+ print("\nPreview of gene expression data:")
115
+ print(gene_data.head().iloc[:, :5])
116
+ # 1. Normalize gene symbols and save
117
+ gene_data = normalize_gene_symbols_in_index(gene_data)
118
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
119
+ gene_data.to_csv(out_gene_data_file)
120
+
121
+ # 2. Link clinical and genetic data
122
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
123
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
124
+
125
+ # 3. Handle missing values
126
+ linked_data = handle_missing_values(linked_data, trait)
127
+
128
+ # 4. Check for biased features
129
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
130
+
131
+ # 5. Final validation and metadata saving
132
+ is_usable = validate_and_save_cohort_info(
133
+ is_final=True,
134
+ cohort=cohort,
135
+ info_path=json_path,
136
+ is_gene_available=True,
137
+ is_trait_available=True,
138
+ is_biased=trait_biased,
139
+ df=linked_data,
140
+ note="Study of depression in obese patients before and after bariatric surgery"
141
+ )
142
+
143
+ # 6. Save linked data if usable
144
+ if is_usable:
145
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
146
+ linked_data.to_csv(out_data_file)
p3/preprocess/Depression/code/TCGA.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Depression"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Depression/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Depression/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Depression/cohort_info.json"
15
+
16
+ depression_related_terms = ["depression", "mental", "psychiatric", "psychological", "mood"]
17
+
18
+ # Check if any cohort contains depression-related data
19
+ found_relevant_data = False
20
+
21
+ for cohort in cohorts:
22
+ cohort_dir = os.path.join(tcga_root_dir, cohort)
23
+
24
+ try:
25
+ clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
26
+ clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
27
+
28
+ # Check column names for relevant terms
29
+ relevant_cols = [col for col in clinical_df.columns
30
+ if any(term in col.lower() for term in depression_related_terms)]
31
+
32
+ if relevant_cols:
33
+ # Check if these columns actually contain meaningful data
34
+ non_null_counts = clinical_df[relevant_cols].count()
35
+ if (non_null_counts > 0).any():
36
+ print(f"\nFound depression-related data in {cohort}:")
37
+ print(f"Relevant columns: {relevant_cols}")
38
+ found_relevant_data = True
39
+ break
40
+
41
+ except:
42
+ continue
43
+
44
+ # Record result in metadata
45
+ validate_and_save_cohort_info(
46
+ is_final=False,
47
+ cohort="TCGA",
48
+ info_path=json_path,
49
+ is_gene_available=True, # TCGA always has gene expression data
50
+ is_trait_available=found_relevant_data
51
+ )
52
+ # Define depression-related search terms
53
+ depression_related_terms = ["depression", "mental", "psychiatric", "psychological", "mood", "affect"]
54
+
55
+ # Initialize found_trait_data flag
56
+ found_trait_data = False
57
+
58
+ # Get list of TCGA cohorts
59
+ cohorts = [d for d in os.listdir(tcga_root_dir) if os.path.isdir(os.path.join(tcga_root_dir, d))]
60
+
61
+ # Search through cohorts for depression-related data
62
+ for cohort in cohorts:
63
+ cohort_dir = os.path.join(tcga_root_dir, cohort)
64
+
65
+ try:
66
+ # Get clinical and genetic file paths
67
+ clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
68
+
69
+ # Load clinical data and check column names
70
+ clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
71
+ genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
72
+
73
+ # Look for depression-related columns
74
+ relevant_cols = [col for col in clinical_df.columns
75
+ if any(term in col.lower() for term in depression_related_terms)]
76
+
77
+ if relevant_cols:
78
+ # Check if columns contain non-null data
79
+ non_null_counts = clinical_df[relevant_cols].count()
80
+ if (non_null_counts > 0).any():
81
+ print(f"\nFound depression-related data in {cohort}:")
82
+ print(f"Relevant columns: {relevant_cols}")
83
+ print("\nClinical data columns:")
84
+ print(clinical_df.columns.tolist())
85
+ found_trait_data = True
86
+ break
87
+
88
+ except Exception as e:
89
+ continue
90
+
91
+ # Record results in metadata
92
+ validate_and_save_cohort_info(
93
+ is_final=False,
94
+ cohort="TCGA",
95
+ info_path=json_path,
96
+ is_gene_available=True, # TCGA always has gene expression data
97
+ is_trait_available=found_trait_data
98
+ )
99
+ # Define candidate columns based on column names containing age/gender related keywords
100
+ candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust', 'first_diagnosis_age_of_animal_insect_allergy', 'first_diagnosis_age_of_food_allergy']
101
+ candidate_gender_cols = ['gender']
102
+
103
+ # Get clinical file path
104
+ clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)'))
105
+
106
+ # Read clinical data
107
+ clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0)
108
+
109
+ # Preview age columns
110
+ age_preview = {}
111
+ for col in candidate_age_cols:
112
+ age_preview[col] = clinical_df[col].head().tolist()
113
+ print("Age columns preview:")
114
+ print(age_preview)
115
+
116
+ # Preview gender columns
117
+ gender_preview = {}
118
+ for col in candidate_gender_cols:
119
+ gender_preview[col] = clinical_df[col].head().tolist()
120
+ print("\nGender columns preview:")
121
+ print(gender_preview)
122
+ # Select age column by inspecting preview data
123
+ # 'age_at_initial_pathologic_diagnosis' has valid age values
124
+ age_col = 'age_at_initial_pathologic_diagnosis'
125
+
126
+ # Select gender column by inspecting preview data
127
+ # 'gender' contains valid gender values
128
+ gender_col = 'gender'
129
+
130
+ # Print chosen columns
131
+ print(f"Selected age column: {age_col}")
132
+ print(f"Selected gender column: {gender_col}")
133
+ # Define demographic columns discovered in previous steps
134
+ age_col = 'age_at_initial_pathologic_diagnosis'
135
+ gender_col = 'gender'
136
+
137
+ # Set up cohort directory and load data
138
+ cohort_dir = os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)')
139
+ clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
140
+ clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
141
+ genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
142
+
143
+ # Extract clinical features using mental_status_changes as depression indicator
144
+ clinical_features = tcga_select_clinical_features(
145
+ clinical_df,
146
+ trait='mental_status_changes', # Use mental status changes as depression indicator
147
+ age_col=age_col,
148
+ gender_col=gender_col
149
+ )
150
+
151
+ # Save processed clinical data
152
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
153
+ clinical_features.to_csv(out_clinical_data_file)
154
+
155
+ # Normalize gene symbols in genetic data and save
156
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
157
+ normalized_gene_data = normalize_gene_symbols_in_index(genetic_df)
158
+ normalized_gene_data.to_csv(out_gene_data_file)
159
+
160
+ # Link clinical and genetic data
161
+ linked_data = pd.merge(
162
+ clinical_features,
163
+ normalized_gene_data.T,
164
+ left_index=True,
165
+ right_index=True,
166
+ how='inner'
167
+ )
168
+
169
+ # Handle missing values
170
+ linked_data = handle_missing_values(linked_data, 'mental_status_changes')
171
+
172
+ # Check if trait or demographic features are biased and remove biased demographics
173
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'mental_status_changes')
174
+
175
+ # Final validation and save metadata
176
+ notes = "Using TCGA glioma/glioblastoma (GBMLGG) data. Mental status changes used as depression indicator."
177
+ is_usable = validate_and_save_cohort_info(
178
+ is_final=True,
179
+ cohort="TCGA",
180
+ info_path=json_path,
181
+ is_gene_available=True,
182
+ is_trait_available=True,
183
+ is_biased=is_trait_biased,
184
+ df=linked_data,
185
+ note=notes
186
+ )
187
+
188
+ # Save processed data if usable
189
+ if is_usable:
190
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
191
+ linked_data.to_csv(out_data_file)
p3/preprocess/Depression/gene_data/GSE110298.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Depression/gene_data/GSE128387.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Depression/gene_data/GSE135524.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da8beefb314eeab7395b333e8a7b2136ad6af14fc7414ef9a6ee911a2d4fc085
3
+ size 18896895
p3/preprocess/Depression/gene_data/GSE138297.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de9565415a246beb680e5ba05e15de50eccfec4d24f558d0cba022302313ca04
3
+ size 15408302
p3/preprocess/Depression/gene_data/GSE149980.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23ba6ec31d6340aec2b2b7e9e3425dd5089f71a7538752fb8727e3c65e362463
3
+ size 16699374
p3/preprocess/Depression/gene_data/GSE273630.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Depression/gene_data/GSE81761.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80d271a331e56d79d6ae609b699491af556ac5efb7e7466dd13a554ce437216e
3
+ size 21422884
p3/preprocess/Depression/gene_data/GSE99725.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Duchenne_Muscular_Dystrophy/GSE109178.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c54bcc75a8102bd23b180b5b0672ceb5ce5ccaf0d44922c21587e83923c95865
3
+ size 10805641
p3/preprocess/Duchenne_Muscular_Dystrophy/GSE13608.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b04c843ca8a1a37ee127d045d3eae0f8cd110d80e4f168d0829d3a275ea6e2d
3
+ size 22002744
p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE109178.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2934802,GSM2934803,GSM2934804,GSM2934805,GSM2934806,GSM2934807,GSM2934808,GSM2934809,GSM2934810,GSM2934811,GSM2934812,GSM2934813,GSM2934814,GSM2934815,GSM2934816,GSM2934817,GSM2934818,GSM2934819,GSM2934820,GSM2934821,GSM2934822,GSM2934823,GSM2934824,GSM2934825,GSM2934826,GSM2934827,GSM2934828,GSM2934829,GSM2934830,GSM2934831,GSM2934832,GSM2934833,GSM2934834,GSM2934835,GSM2934836,GSM2934837,GSM2934838,GSM2934839,GSM2934840,GSM2934841,GSM2934842,GSM2934843,GSM2934844,GSM2934845,GSM2934846,GSM2934847,GSM2934848,GSM2934849,GSM2934850
2
+ Duchenne_Muscular_Dystrophy,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,8.0,12.7,6.4,5.8,60.8,11.0,37.6,43.0,2.5,20.0,12.2,,,,,,,7.0,0.9,4.0,1.6,4.0,8.0,5.0,6.0,1.9,4.0,3.0,3.0,1.9,1.0,2.0,3.5,7.0,,28.0,16.0,31.0,19.0,,20.0,12.0,16.0,12.0,40.0,22.0,10.0,6.0,31.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0
p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE13608.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM343029,GSM343030,GSM343031,GSM343032,GSM343033,GSM343034,GSM343035,GSM343036,GSM343037,GSM343038,GSM343039,GSM343040,GSM343041,GSM343042,GSM343043,GSM343044,GSM343045,GSM343046,GSM343047,GSM343048,GSM343049,GSM343050,GSM343051,GSM343052,GSM343053,GSM343054,GSM343055,GSM343056,GSM343057,GSM343058,GSM343059,GSM343060,GSM343061,GSM343062,GSM343063,GSM343064,GSM343065,GSM343066,GSM343067,GSM343068,GSM343069,GSM343070,GSM343071,GSM343072,GSM343073,GSM343074,GSM343075,GSM343076,GSM343077,GSM343078,GSM343079,GSM343080,GSM343081,GSM343082,GSM343083,GSM343084,GSM343085,GSM343086,GSM343087,GSM343088,GSM343089,GSM343090,GSM343091,GSM343092,GSM343093,GSM343094,GSM343095,GSM343096
2
+ Duchenne_Muscular_Dystrophy,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,1.0,1.0,1.0,,,,,
3
+ Age,,,,55.0,,54.0,25.0,29.0,,21.0,71.0,39.0,69.0,,68.0,32.0,47.0,57.0,43.0,37.0,47.0,54.0,43.0,65.0,42.0,50.0,51.0,58.0,51.0,55.0,28.0,49.0,,,75.0,73.0,55.0,,,,,53.0,36.0,46.0,48.0,69.0,61.0,85.0,43.0,43.0,26.0,,,,,,,50.0,45.0,26.0,5.0,8.0,20.0,64.0,58.0,88.0,58.0,
4
+ Gender,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0
p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1185341,GSM1185342,GSM1185343,GSM1185344,GSM1185345,GSM1185346,GSM1185347,GSM1185348,GSM1185349,GSM1185350,GSM1185351,GSM1185352,GSM1185353,GSM1185354,GSM1185355,GSM1185356,GSM1185357,GSM1185358,GSM1185359,GSM1185360,GSM1185361,GSM1185362,GSM1185363,GSM1185364,GSM1185365,GSM1185366,GSM1185367,GSM1185368
2
+ Duchenne_Muscular_Dystrophy,,,,,,,,,,,,,,,,,,,,,,1.0,,,0.0,0.0,0.0,0.0
3
+ Age,,,54.0,29.0,25.0,21.0,55.0,,39.0,58.0,50.0,51.0,43.0,51.0,37.0,43.0,65.0,55.0,50.0,45.0,26.0,20.0,58.0,88.0,61.0,43.0,85.0,43.0
4
+ Gender,0.0,0.0,0.0,0.0,1.0,1.0,0.0,,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0
p3/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM2090086,GSM2090087,GSM2090088,GSM2090089,GSM2090090,GSM2090091,GSM2090092,GSM2090093,GSM2090094,GSM2090095,GSM2090096,GSM2090097,GSM2090098,GSM2090099,GSM2090100,GSM2090101,GSM2090102,GSM2090103,GSM2090104,GSM2090105,GSM2090106,GSM2090107,GSM2090108,GSM2090109,GSM2090110,GSM2090111,GSM2090112,GSM2090113,GSM2090114,GSM2090115,GSM2090116,GSM2090117,GSM2090118,GSM2090119,GSM2090120,GSM2090121,GSM2090122,GSM2090123,GSM2090124,GSM2090125,GSM2090126,GSM2090127,GSM2090128,GSM2090129,GSM2090130,GSM2090131,GSM2090132,GSM2090133,GSM2090134,GSM2090135,GSM2090136,GSM2090137,GSM2090138,GSM2090139,GSM2090140,GSM2090141,GSM2090142,GSM2090143,GSM2090144,GSM2090145,GSM2090146,GSM2090147,GSM2090148,GSM2090149,GSM2090150,GSM2090151,GSM2090152,GSM2090153,GSM2090154,GSM2090155,GSM2090156,GSM2090157,GSM2090158,GSM2090159,GSM2090160,GSM2090161,GSM2090162,GSM2090163,GSM2090164,GSM2090165,GSM2090166,GSM2090167,GSM2090168,GSM2090169,GSM2090170,GSM2090171,GSM2090172,GSM2090173,GSM2090174,GSM2090175,GSM2090176,GSM2090177,GSM2090178,GSM2090179
2
+ Duchenne_Muscular_Dystrophy,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,80.0,78.0,,79.0,19.0,17.0,15.0,73.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE109178.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Duchenne_Muscular_Dystrophy"
6
+ cohort = "GSE109178"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
10
+ in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE109178"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE109178.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE109178.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE109178.csv"
16
+ json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # The background info mentions "mRNA profiles" and "HG-U133 Plus 2.0 microarrays"
34
+ # which indicates this is gene expression data
35
+ is_gene_available = True
36
+
37
+ # 2.1 Data Availability
38
+ # Trait can be inferred from the mutation data in key 4
39
+ trait_row = 4
40
+
41
+ # Age data is available in key 0
42
+ age_row = 0
43
+
44
+ # Gender data is available in key 3
45
+ gender_row = 3
46
+
47
+ # 2.2 Data Type Conversion Functions
48
+ def convert_trait(value: str) -> int:
49
+ """Convert mutation info to binary trait status (DMD vs non-DMD)"""
50
+ if pd.isna(value) or ":" not in value:
51
+ return None
52
+ value = value.split(":")[1].strip()
53
+ # Deletions/duplications/mutations indicate DMD
54
+ if any(x in value.lower() for x in ['deletion', 'duplication', 'mutation', 'exon']):
55
+ return 1
56
+ # Pathology notes indicate non-DMD
57
+ return 0
58
+
59
+ def convert_age(value: str) -> float:
60
+ """Convert age string to float value"""
61
+ if pd.isna(value) or ":" not in value:
62
+ return None
63
+ value = value.split(":")[1].strip()
64
+ if value == "NA":
65
+ return None
66
+ try:
67
+ return float(value)
68
+ except:
69
+ return None
70
+
71
+ def convert_gender(value: str) -> int:
72
+ """Convert gender string to binary (0=female, 1=male)"""
73
+ if pd.isna(value) or ":" not in value:
74
+ return None
75
+ value = value.split(":")[1].strip().upper()
76
+ if value in ["M", "MALE"]:
77
+ return 1
78
+ elif value in ["F", "FEMALE"]:
79
+ return 0
80
+ return None
81
+
82
+ # 3. Save metadata
83
+ # Trait data is available (trait_row is not None)
84
+ is_trait_available = trait_row is not None
85
+ validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available)
86
+
87
+ # 4. Extract clinical features
88
+ selected_clinical_df = geo_select_clinical_features(
89
+ clinical_df=clinical_data,
90
+ trait=trait,
91
+ trait_row=trait_row,
92
+ convert_trait=convert_trait,
93
+ age_row=age_row,
94
+ convert_age=convert_age,
95
+ gender_row=gender_row,
96
+ convert_gender=convert_gender
97
+ )
98
+
99
+ print("Preview of extracted clinical features:")
100
+ print(preview_df(selected_clinical_df))
101
+
102
+ # Save clinical data
103
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
104
+ selected_clinical_df.to_csv(out_clinical_data_file)
105
+ # Extract gene expression data from matrix file
106
+ genetic_df = get_genetic_data(matrix_file)
107
+
108
+ # Print DataFrame shape and first 20 row IDs
109
+ print("DataFrame shape:", genetic_df.shape)
110
+ print("\nFirst 20 row IDs:")
111
+ print(genetic_df.index[:20])
112
+
113
+ print("\nPreview of first few rows and columns:")
114
+ print(genetic_df.head().iloc[:, :5])
115
+ # Based on the format like '1007_s_at', these appear to be Affymetrix probe IDs
116
+ # rather than standard human gene symbols. They need to be mapped to gene symbols.
117
+ requires_gene_mapping = True
118
+ # Extract gene annotation data, excluding control probe lines
119
+ gene_metadata = get_gene_annotation(soft_file)
120
+
121
+ # Preview filtered annotation data
122
+ print("Column names:")
123
+ print(gene_metadata.columns)
124
+ print("\nPreview of gene annotation data:")
125
+ print(preview_df(gene_metadata))
126
+ # From the preview, we can see that 'ID' column matches the gene expression data identifiers (e.g. '1007_s_at')
127
+ # and 'Gene Symbol' column contains the human gene symbols
128
+ mapping_df = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')
129
+
130
+ # Apply gene mapping to convert probe-level data to gene expression data
131
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
132
+
133
+ # Print size of mapped data
134
+ print("Gene expression data shape after mapping:", gene_data.shape)
135
+ print("\nFirst few rows and columns:")
136
+ print(gene_data.head().iloc[:, :5])
137
+ # 1. Normalize gene symbols and save
138
+ gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
140
+ gene_data.to_csv(out_gene_data_file)
141
+
142
+ # 2. Link clinical and genetic data
143
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
144
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
145
+
146
+ # 3. Handle missing values
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 4. Check for biased features
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Final validation and metadata saving
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=True,
159
+ is_biased=trait_biased,
160
+ df=linked_data,
161
+ note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
162
+ )
163
+
164
+ # 6. Save linked data if usable
165
+ if is_usable:
166
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
167
+ linked_data.to_csv(out_data_file)
p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE13608.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Duchenne_Muscular_Dystrophy"
6
+ cohort = "GSE13608"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
10
+ in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE13608"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE13608.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE13608.csv"
16
+ json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ is_gene_available = True # Dataset contains muscle biopsy gene expression data
34
+
35
+ # 2.1 Data Availability
36
+ trait_row = 1 # Disease status in row 1
37
+ age_row = 2 # Age in row 2
38
+ gender_row = 3 # Gender in row 3
39
+
40
+ # 2.2 Data Type Conversion Functions
41
+ def convert_trait(value):
42
+ if not isinstance(value, str):
43
+ return None
44
+ # Extract value after colon if present
45
+ if ':' in value:
46
+ value = value.split(':')[1].strip()
47
+ if 'Duchenne Muscular Dystrophy' in value:
48
+ return 1
49
+ elif 'Normal' in value:
50
+ return 0
51
+ return None
52
+
53
+ def convert_age(value):
54
+ if not isinstance(value, str):
55
+ return None
56
+ if ':' in value:
57
+ value = value.split(':')[1].strip()
58
+ if 'age' in value:
59
+ try:
60
+ age = int(value.replace('age', '').strip())
61
+ return age
62
+ except:
63
+ return None
64
+ return None
65
+
66
+ def convert_gender(value):
67
+ if not isinstance(value, str):
68
+ return None
69
+ if ':' in value:
70
+ value = value.split(':')[1].strip()
71
+ if 'F' == value.strip():
72
+ return 0
73
+ elif 'M' == value.strip():
74
+ return 1
75
+ return None
76
+
77
+ # 3. Save Metadata
78
+ validate_and_save_cohort_info(
79
+ is_final=False,
80
+ cohort=cohort,
81
+ info_path=json_path,
82
+ is_gene_available=is_gene_available,
83
+ is_trait_available=trait_row is not None
84
+ )
85
+
86
+ # 4. Clinical Feature Extraction
87
+ if trait_row is not None:
88
+ selected_clinical_df = geo_select_clinical_features(
89
+ clinical_df=clinical_data,
90
+ trait=trait,
91
+ trait_row=trait_row,
92
+ convert_trait=convert_trait,
93
+ age_row=age_row,
94
+ convert_age=convert_age,
95
+ gender_row=gender_row,
96
+ convert_gender=convert_gender
97
+ )
98
+
99
+ # Preview the data
100
+ print("Preview of selected clinical features:")
101
+ print(preview_df(selected_clinical_df))
102
+
103
+ # Save to CSV
104
+ selected_clinical_df.to_csv(out_clinical_data_file)
105
+ # Extract gene expression data from matrix file
106
+ genetic_df = get_genetic_data(matrix_file)
107
+
108
+ # Print DataFrame shape and first 20 row IDs
109
+ print("DataFrame shape:", genetic_df.shape)
110
+ print("\nFirst 20 row IDs:")
111
+ print(genetic_df.index[:20])
112
+
113
+ print("\nPreview of first few rows and columns:")
114
+ print(genetic_df.head().iloc[:, :5])
115
+ # The identifiers in this dataset appear to be probe IDs from Affymetrix array
116
+ # These need to be mapped to standard gene symbols for analysis
117
+ requires_gene_mapping = True
118
+ # Extract gene annotation data, excluding control probe lines
119
+ gene_metadata = get_gene_annotation(soft_file)
120
+
121
+ # Preview filtered annotation data
122
+ print("Column names:")
123
+ print(gene_metadata.columns)
124
+ print("\nPreview of gene annotation data:")
125
+ print(preview_df(gene_metadata))
126
+ # The gene expression data uses probe IDs stored in the 'ID' column of gene_metadata
127
+ # The gene symbols are stored in the 'Gene Symbol' column
128
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
129
+
130
+ # Convert probe-level measurements to gene-level expression
131
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
132
+
133
+ # Preview the mapped gene expression data
134
+ print("Gene expression data shape after mapping:", gene_data.shape)
135
+ print("\nFirst few rows and columns:")
136
+ print(gene_data.head().iloc[:, :5])
137
+ # 1. Normalize gene symbols and save
138
+ gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
140
+ gene_data.to_csv(out_gene_data_file)
141
+
142
+ # 2. Link clinical and genetic data
143
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
144
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
145
+
146
+ # 3. Handle missing values
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 4. Check for biased features
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Final validation and metadata saving
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=True,
159
+ is_biased=trait_biased,
160
+ df=linked_data,
161
+ note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
162
+ )
163
+
164
+ # 6. Save linked data if usable
165
+ if is_usable:
166
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
167
+ linked_data.to_csv(out_data_file)
p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE48828.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Duchenne_Muscular_Dystrophy"
6
+ cohort = "GSE48828"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
10
+ in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE48828"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE48828.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE48828.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv"
16
+ json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Based on background info, this is an Affymetrix exon array study measuring gene expression
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # 2.1 Row identifiers for each variable
38
+ trait_row = 0 # 'diagnosis' row contains trait info
39
+ age_row = 2 # 'age (yrs)' row contains age info
40
+ gender_row = 1 # 'gender' row contains gender info
41
+
42
+ # 2.2 Conversion functions
43
+ def convert_trait(value: str) -> Optional[int]:
44
+ """Convert trait status to binary"""
45
+ if not value or ':' not in value:
46
+ return None
47
+ diagnosis = value.split(': ')[1].strip().lower()
48
+ if 'duchenne muscular dystrophy' in diagnosis:
49
+ return 1
50
+ elif 'normal' in diagnosis:
51
+ return 0
52
+ return None
53
+
54
+ def convert_age(value: str) -> Optional[float]:
55
+ """Convert age to float"""
56
+ if not value or ':' not in value:
57
+ return None
58
+ age = value.split(': ')[1].strip().lower()
59
+ try:
60
+ if age in ['na', 'not available']:
61
+ return None
62
+ return float(age)
63
+ except:
64
+ return None
65
+
66
+ def convert_gender(value: str) -> Optional[int]:
67
+ """Convert gender to binary"""
68
+ if not value or ':' not in value:
69
+ return None
70
+ gender = value.split(': ')[1].strip().lower()
71
+ if gender == 'f':
72
+ return 0
73
+ elif gender == 'm':
74
+ return 1
75
+ return None
76
+
77
+ # 3. Save Metadata
78
+ validate_and_save_cohort_info(
79
+ is_final=False,
80
+ cohort=cohort,
81
+ info_path=json_path,
82
+ is_gene_available=is_gene_available,
83
+ is_trait_available=trait_row is not None
84
+ )
85
+
86
+ # 4. Extract Clinical Features
87
+ if trait_row is not None:
88
+ selected_clinical_df = geo_select_clinical_features(
89
+ clinical_df=clinical_data,
90
+ trait=trait,
91
+ trait_row=trait_row,
92
+ convert_trait=convert_trait,
93
+ age_row=age_row,
94
+ convert_age=convert_age,
95
+ gender_row=gender_row,
96
+ convert_gender=convert_gender
97
+ )
98
+
99
+ # Preview the processed clinical data
100
+ print("Preview of processed clinical data:")
101
+ print(preview_df(selected_clinical_df))
102
+
103
+ # Save to CSV
104
+ selected_clinical_df.to_csv(out_clinical_data_file)
105
+ # Extract gene expression data from matrix file
106
+ genetic_df = get_genetic_data(matrix_file)
107
+
108
+ # Print DataFrame shape and first 20 row IDs
109
+ print("DataFrame shape:", genetic_df.shape)
110
+ print("\nFirst 20 row IDs:")
111
+ print(genetic_df.index[:20])
112
+
113
+ print("\nPreview of first few rows and columns:")
114
+ print(genetic_df.head().iloc[:, :5])
115
+ # The row IDs are numerical probe IDs from microarray platforms, not human gene symbols
116
+ requires_gene_mapping = True
117
+ # Extract gene annotation data, excluding control probe lines
118
+ gene_metadata = get_gene_annotation(soft_file)
119
+
120
+ # Preview filtered annotation data
121
+ print("Column names:")
122
+ print(gene_metadata.columns)
123
+ print("\nPreview of gene annotation data:")
124
+ print(preview_df(gene_metadata))
125
+ # 1. Identify columns for gene identifiers and symbols
126
+ # 'ID' column contains same identifiers as gene expression data
127
+ # 'gene_assignment' contains gene symbols but needs parsing
128
+
129
+ # Function to parse gene symbols from complex strings
130
+ def parse_gene_symbols(text):
131
+ if text == '---' or pd.isna(text):
132
+ return None
133
+ # Split by /// to handle multiple assignments
134
+ gene_entries = text.split('///')
135
+ symbols = []
136
+ for entry in gene_entries:
137
+ parts = entry.strip().split('//')
138
+ if len(parts) >= 3: # We need at least 3 parts to get to the gene symbol
139
+ symbol = parts[1].strip() # Gene symbol is in the second position
140
+ if symbol != '---':
141
+ symbols.append(symbol)
142
+ return symbols if symbols else None
143
+
144
+ # Create initial mapping dataframe
145
+ mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()
146
+
147
+ # Extract gene symbols and clean up mapping
148
+ mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
149
+ mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])
150
+
151
+ # Explode lists of genes into separate rows
152
+ mapping_df = mapping_df.explode('Gene')
153
+
154
+ # Apply gene mapping to probe-level measurements
155
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
156
+
157
+ # Normalize gene symbols to standard form
158
+ gene_data = normalize_gene_symbols_in_index(gene_data)
159
+
160
+ # Print shape and preview mapped data
161
+ print("Gene expression data shape after mapping:", gene_data.shape)
162
+ print("\nPreview of gene expression data:")
163
+ print(gene_data.head().iloc[:, :5])
164
+ # 1. Since gene_data is empty, we need to remap gene symbols
165
+ def parse_gene_symbols(text):
166
+ if text == '---' or pd.isna(text):
167
+ return None
168
+ # Split entries by /// for multiple assignments
169
+ entries = text.split('///')
170
+ symbols = []
171
+ for entry in entries:
172
+ parts = [p.strip() for p in entry.split('//')]
173
+ if len(parts) >= 2: # Need at least 2 parts
174
+ symbol = parts[1] # Second part contains the gene symbol
175
+ if symbol != '---':
176
+ symbols.append(symbol)
177
+ return symbols if symbols else None
178
+
179
+ # Create initial mapping dataframe
180
+ mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()
181
+
182
+ # Extract gene symbols and clean up mapping
183
+ mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
184
+ mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])
185
+
186
+ # Explode lists of genes into separate rows
187
+ mapping_df = mapping_df.explode('Gene')
188
+ print(f"Number of probe-gene mappings: {len(mapping_df)}")
189
+
190
+ # Apply gene mapping to probe-level measurements
191
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
192
+ print(f"Number of genes after mapping: {len(gene_data)}")
193
+
194
+ # After remapping, proceed with the rest of step 7
195
+ # 1. Normalize gene symbols and save
196
+ gene_data = normalize_gene_symbols_in_index(gene_data)
197
+ print(f"Number of genes after normalization: {len(gene_data)}")
198
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
199
+ gene_data.to_csv(out_gene_data_file)
200
+
201
+ # 2. Link clinical and genetic data
202
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
203
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
204
+
205
+ # 3. Handle missing values
206
+ linked_data = handle_missing_values(linked_data, trait)
207
+
208
+ # 4. Check for biased features
209
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
210
+
211
+ # 5. Final validation and metadata saving
212
+ is_usable = validate_and_save_cohort_info(
213
+ is_final=True,
214
+ cohort=cohort,
215
+ info_path=json_path,
216
+ is_gene_available=True,
217
+ is_trait_available=True,
218
+ is_biased=trait_biased,
219
+ df=linked_data,
220
+ note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
221
+ )
222
+
223
+ # 6. Save linked data if usable
224
+ if is_usable:
225
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
226
+ linked_data.to_csv(out_data_file)
p3/preprocess/Duchenne_Muscular_Dystrophy/code/GSE79263.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Duchenne_Muscular_Dystrophy"
6
+ cohort = "GSE79263"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
10
+ in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE79263"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE79263.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv"
16
+ json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Based on background info indicating RNA extraction and gene expression profiling
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability and Row Identification
37
+ # Trait (DMD status) found in row 2 "disease state"
38
+ trait_row = 2
39
+
40
+ # Age found in row 4
41
+ age_row = 4
42
+
43
+ # Gender data not available in sample characteristics
44
+ gender_row = None
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(value: str) -> int:
48
+ """Convert DMD status to binary"""
49
+ if pd.isna(value):
50
+ return None
51
+ value = value.split(": ")[-1].lower()
52
+ if "duchenne" in value or "dmd" in value:
53
+ return 1
54
+ elif "healthy" in value:
55
+ return 0
56
+ return None
57
+
58
+ def convert_age(value: str) -> float:
59
+ """Convert age to continuous numeric value"""
60
+ if pd.isna(value):
61
+ return None
62
+ value = value.split(": ")[-1].lower()
63
+ if "unknown" in value:
64
+ return None
65
+ try:
66
+ # Extract numeric value before 'y'
67
+ age = float(value.replace('y',''))
68
+ return age
69
+ except:
70
+ return None
71
+
72
+ def convert_gender(value: str) -> int:
73
+ """Placeholder function - not used since gender data unavailable"""
74
+ return None
75
+
76
+ # 3. Save Metadata
77
+ validate_and_save_cohort_info(
78
+ is_final=False,
79
+ cohort=cohort,
80
+ info_path=json_path,
81
+ is_gene_available=is_gene_available,
82
+ is_trait_available=trait_row is not None
83
+ )
84
+
85
+ # 4. Clinical Feature Extraction
86
+ if trait_row is not None:
87
+ selected_clinical = geo_select_clinical_features(
88
+ clinical_df=clinical_data,
89
+ trait=trait,
90
+ trait_row=trait_row,
91
+ convert_trait=convert_trait,
92
+ age_row=age_row,
93
+ convert_age=convert_age,
94
+ gender_row=gender_row,
95
+ convert_gender=convert_gender
96
+ )
97
+
98
+ # Preview the selected features
99
+ print("Preview of selected clinical features:")
100
+ print(preview_df(selected_clinical))
101
+
102
+ # Save to CSV
103
+ selected_clinical.to_csv(out_clinical_data_file)
104
+ # Extract gene expression data from matrix file
105
+ genetic_df = get_genetic_data(matrix_file)
106
+
107
+ # Print DataFrame shape and first 20 row IDs
108
+ print("DataFrame shape:", genetic_df.shape)
109
+ print("\nFirst 20 row IDs:")
110
+ print(genetic_df.index[:20])
111
+
112
+ print("\nPreview of first few rows and columns:")
113
+ print(genetic_df.head().iloc[:, :5])
114
+ # These IDs start with "ILMN_" which indicates they are Illumina probe IDs, not gene symbols
115
+ # Therefore they need to be mapped to human gene symbols
116
+ requires_gene_mapping = True
117
+ # Extract gene annotation data, excluding control probe lines
118
+ gene_metadata = get_gene_annotation(soft_file)
119
+
120
+ # Preview filtered annotation data
121
+ print("Column names:")
122
+ print(gene_metadata.columns)
123
+ print("\nPreview of gene annotation data:")
124
+ print(preview_df(gene_metadata))
125
+ # 1. Get gene mapping using ID and Symbol columns from annotation
126
+ # ID column contains ILMN probe IDs matching gene expression data
127
+ # Symbol column contains human gene symbols
128
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
129
+
130
+ # 2. Apply gene mapping to convert probe-level expression to gene-level expression
131
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
132
+
133
+ # Print gene_data shape and preview
134
+ print("\nGene expression data shape after mapping:", gene_data.shape)
135
+ print("\nPreview of gene expression data:")
136
+ print(gene_data.head().iloc[:, :5])
137
+ # 1. Normalize gene symbols and save
138
+ gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
140
+ gene_data.to_csv(out_gene_data_file)
141
+
142
+ # 2. Link clinical and genetic data
143
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
144
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
145
+
146
+ # 3. Handle missing values
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 4. Check for biased features
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Final validation and metadata saving
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=True,
159
+ is_biased=trait_biased,
160
+ df=linked_data,
161
+ note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
162
+ )
163
+
164
+ # 6. Save linked data if usable
165
+ if is_usable:
166
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
167
+ linked_data.to_csv(out_data_file)
p3/preprocess/Duchenne_Muscular_Dystrophy/code/TCGA.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Duchenne_Muscular_Dystrophy"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
15
+
16
+ # Since DMD is a genetic disorder and not a cancer type, TCGA datasets are not suitable
17
+ # Record that trait data is not available and skip further processing
18
+ validate_and_save_cohort_info(
19
+ is_final=False,
20
+ cohort="TCGA",
21
+ info_path=json_path,
22
+ is_gene_available=True, # TCGA would have gene data if we needed it
23
+ is_trait_available=False # No relevant trait data for DMD in TCGA cancer datasets
24
+ )
p3/preprocess/Duchenne_Muscular_Dystrophy/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE79263": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 86, "note": "Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"}, "GSE48828": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"}, "GSE13608": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 12, "note": "Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"}, "GSE109178": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 49, "note": "Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"}, "TCGA": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}