Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +29 -0
- p1/preprocess/Esophageal_Cancer/TCGA.csv +3 -0
- p1/preprocess/Esophageal_Cancer/gene_data/TCGA.csv +3 -0
- p1/preprocess/Essential_Thrombocythemia/gene_data/GSE159514.csv +3 -0
- p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/TCGA.csv +3 -0
- p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE43580.csv +3 -0
- p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE77563.csv +3 -0
- p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/TCGA.csv +3 -0
- p1/preprocess/Gaucher_Disease/GSE124283.csv +3 -0
- p1/preprocess/Gaucher_Disease/gene_data/GSE124283.csv +3 -0
- p1/preprocess/Generalized_Anxiety_Disorder/gene_data/GSE61672.csv +3 -0
- p1/preprocess/Glioblastoma/code/GSE279426.py +147 -0
- p1/preprocess/Glioblastoma/code/GSE39144.py +135 -0
- p1/preprocess/Glioblastoma/code/TCGA.py +119 -0
- p1/preprocess/Glioblastoma/gene_data/GSE134470.csv +3 -0
- p1/preprocess/Glioblastoma/gene_data/GSE148949.csv +3 -0
- p1/preprocess/Glioblastoma/gene_data/GSE159000.csv +0 -0
- p1/preprocess/Glioblastoma/gene_data/GSE175700.csv +3 -0
- p1/preprocess/Glioblastoma/gene_data/GSE178236.csv +3 -0
- p1/preprocess/Glioblastoma/gene_data/GSE226976.csv +0 -0
- p1/preprocess/Glioblastoma/gene_data/GSE249289.csv +0 -0
- p1/preprocess/Glioblastoma/gene_data/GSE279426.csv +0 -0
- p1/preprocess/Glioblastoma/gene_data/GSE39144.csv +3 -0
- p1/preprocess/Glucocorticoid_Sensitivity/GSE32962.csv +3 -0
- p1/preprocess/Glucocorticoid_Sensitivity/GSE33649.csv +3 -0
- p1/preprocess/Glucocorticoid_Sensitivity/GSE50012.csv +3 -0
- p1/preprocess/Glucocorticoid_Sensitivity/GSE57795.csv +3 -0
- p1/preprocess/Glucocorticoid_Sensitivity/GSE66705.csv +3 -0
- p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE32962.csv +2 -0
- p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE33649.csv +4 -0
- p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE48801.csv +2 -0
- p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE50012.csv +4 -0
- p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE57795.csv +2 -0
- p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE66705.csv +2 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE15820.py +221 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE32962.py +227 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE33649.py +252 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE42002.py +75 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE48801.py +229 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE50012.py +266 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE57795.py +226 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE58715.py +208 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE65645.py +217 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/GSE66705.py +228 -0
- p1/preprocess/Glucocorticoid_Sensitivity/code/TCGA.py +56 -0
- p1/preprocess/Glucocorticoid_Sensitivity/cohort_info.json +1 -0
- p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE15820.csv +3 -0
- p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE32962.csv +3 -0
- p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE33649.csv +3 -0
- p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE50012.csv +3 -0
.gitattributes
CHANGED
@@ -1104,3 +1104,32 @@ p1/preprocess/Essential_Thrombocythemia/gene_data/GSE174060.csv filter=lfs diff=
|
|
1104 |
p1/preprocess/Essential_Thrombocythemia/gene_data/GSE61629.csv filter=lfs diff=lfs merge=lfs -text
|
1105 |
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/GSE77563.csv filter=lfs diff=lfs merge=lfs -text
|
1106 |
p1/preprocess/Essential_Thrombocythemia/gene_data/GSE57793.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1104 |
p1/preprocess/Essential_Thrombocythemia/gene_data/GSE61629.csv filter=lfs diff=lfs merge=lfs -text
|
1105 |
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/GSE77563.csv filter=lfs diff=lfs merge=lfs -text
|
1106 |
p1/preprocess/Essential_Thrombocythemia/gene_data/GSE57793.csv filter=lfs diff=lfs merge=lfs -text
|
1107 |
+
p1/preprocess/Essential_Thrombocythemia/gene_data/GSE159514.csv filter=lfs diff=lfs merge=lfs -text
|
1108 |
+
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE77563.csv filter=lfs diff=lfs merge=lfs -text
|
1109 |
+
p1/preprocess/Esophageal_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1110 |
+
p1/preprocess/Gaucher_Disease/GSE124283.csv filter=lfs diff=lfs merge=lfs -text
|
1111 |
+
p1/preprocess/Esophageal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1112 |
+
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE43580.csv filter=lfs diff=lfs merge=lfs -text
|
1113 |
+
p1/preprocess/Glioblastoma/gene_data/GSE148949.csv filter=lfs diff=lfs merge=lfs -text
|
1114 |
+
p1/preprocess/Glioblastoma/gene_data/GSE175700.csv filter=lfs diff=lfs merge=lfs -text
|
1115 |
+
p1/preprocess/Gaucher_Disease/gene_data/GSE124283.csv filter=lfs diff=lfs merge=lfs -text
|
1116 |
+
p1/preprocess/Glioblastoma/gene_data/GSE178236.csv filter=lfs diff=lfs merge=lfs -text
|
1117 |
+
p1/preprocess/Glioblastoma/gene_data/GSE134470.csv filter=lfs diff=lfs merge=lfs -text
|
1118 |
+
p1/preprocess/Generalized_Anxiety_Disorder/gene_data/GSE61672.csv filter=lfs diff=lfs merge=lfs -text
|
1119 |
+
p1/preprocess/Glioblastoma/gene_data/GSE39144.csv filter=lfs diff=lfs merge=lfs -text
|
1120 |
+
p1/preprocess/Glucocorticoid_Sensitivity/GSE32962.csv filter=lfs diff=lfs merge=lfs -text
|
1121 |
+
p1/preprocess/Glucocorticoid_Sensitivity/GSE33649.csv filter=lfs diff=lfs merge=lfs -text
|
1122 |
+
p1/preprocess/Glucocorticoid_Sensitivity/GSE50012.csv filter=lfs diff=lfs merge=lfs -text
|
1123 |
+
p1/preprocess/Glucocorticoid_Sensitivity/GSE57795.csv filter=lfs diff=lfs merge=lfs -text
|
1124 |
+
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1125 |
+
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE32962.csv filter=lfs diff=lfs merge=lfs -text
|
1126 |
+
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE15820.csv filter=lfs diff=lfs merge=lfs -text
|
1127 |
+
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE65645.csv filter=lfs diff=lfs merge=lfs -text
|
1128 |
+
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1129 |
+
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE33649.csv filter=lfs diff=lfs merge=lfs -text
|
1130 |
+
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE57795.csv filter=lfs diff=lfs merge=lfs -text
|
1131 |
+
p1/preprocess/Glucocorticoid_Sensitivity/GSE66705.csv filter=lfs diff=lfs merge=lfs -text
|
1132 |
+
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE50012.csv filter=lfs diff=lfs merge=lfs -text
|
1133 |
+
p1/preprocess/Head_and_Neck_Cancer/GSE151179.csv filter=lfs diff=lfs merge=lfs -text
|
1134 |
+
p1/preprocess/Head_and_Neck_Cancer/gene_data/GSE148320.csv filter=lfs diff=lfs merge=lfs -text
|
1135 |
+
p1/preprocess/Head_and_Neck_Cancer/gene_data/GSE151179.csv filter=lfs diff=lfs merge=lfs -text
|
p1/preprocess/Esophageal_Cancer/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cdc90f2d48d68aef2f8d5317f528520a7cf3ba69702f0c8904edd95cb3702de
|
3 |
+
size 58742434
|
p1/preprocess/Esophageal_Cancer/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be8b1dd125bb45c3b527f42bfa3ddd3ac8a86d1f3a92868da89995845df4ef72
|
3 |
+
size 58741039
|
p1/preprocess/Essential_Thrombocythemia/gene_data/GSE159514.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a530c1ba1aa68ff3bc2a0f2a3b81ac7058dc724a31670961c8782ec73111f48
|
3 |
+
size 21786410
|
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:184342abd4b11025497e5c986c9e6a382af24f6e4468c7821519e15673ec26c8
|
3 |
+
size 58742455
|
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE43580.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5af619a5350088586843a2ad5dd0ce92c077ec4cdd74fc0297b02f37b76f097
|
3 |
+
size 32761120
|
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE77563.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc197e3d0c62761d28270b799124288713b71400f6e7859a9185fea4d4a6f4b1
|
3 |
+
size 13183964
|
p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be8b1dd125bb45c3b527f42bfa3ddd3ac8a86d1f3a92868da89995845df4ef72
|
3 |
+
size 58741039
|
p1/preprocess/Gaucher_Disease/GSE124283.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8d80b259923477046ecccd1b6c66bb681838f1be324b34eef01db62516d1586
|
3 |
+
size 24553953
|
p1/preprocess/Gaucher_Disease/gene_data/GSE124283.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f11218efac786969f10d262ee11631a3da24a6cd20c2bf5bc82254a073f926c
|
3 |
+
size 24724228
|
p1/preprocess/Generalized_Anxiety_Disorder/gene_data/GSE61672.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc3ec7db3721c2df4aee7f88f4d34dde6e8caea3f63df7c671a696f04352165c
|
3 |
+
size 33639737
|
p1/preprocess/Glioblastoma/code/GSE279426.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE279426"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE279426"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glioblastoma/GSE279426.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glioblastoma/gene_data/GSE279426.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glioblastoma/clinical_data/GSE279426.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# Step 1: Gene Expression Data Availability
|
42 |
+
# Based on the title ("Expression data... glioblastoma") and the descriptions, it is gene expression data.
|
43 |
+
is_gene_available = True
|
44 |
+
|
45 |
+
# Step 2: Variable Availability and Data Type Conversion
|
46 |
+
|
47 |
+
# Observing the sample characteristics dictionary:
|
48 |
+
# 0 => name_in_pmid_21471286: ... (IDs)
|
49 |
+
# 1 => alternative_name: ... (IDs)
|
50 |
+
# 2 => treatment_gefitinib: T0/T1/T2
|
51 |
+
# 3 => type: human/xenograft
|
52 |
+
# 4 => egfr_amplification: A0/A1
|
53 |
+
# 5 => disease: GBM
|
54 |
+
#
|
55 |
+
# There is no row explicitly or implicitly indicating age or gender.
|
56 |
+
# For the trait "Glioblastoma", all samples appear to be GBM (no variation), thus it's not useful for association analysis.
|
57 |
+
# Hence, we conclude that trait_row = None, age_row = None, gender_row = None.
|
58 |
+
|
59 |
+
trait_row = None
|
60 |
+
age_row = None
|
61 |
+
gender_row = None
|
62 |
+
|
63 |
+
# Even though we have no actual data rows for these variables, we'll define conversion functions as placeholders:
|
64 |
+
|
65 |
+
def convert_trait(raw_value: str) -> int:
|
66 |
+
# Placeholder for trait data (not used since trait_row is None)
|
67 |
+
return None
|
68 |
+
|
69 |
+
def convert_age(raw_value: str) -> float:
|
70 |
+
# Placeholder for age data (not used since age_row is None)
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_gender(raw_value: str) -> int:
|
74 |
+
# Placeholder for gender data (not used since gender_row is None)
|
75 |
+
return None
|
76 |
+
|
77 |
+
# Step 3: Save Metadata
|
78 |
+
# Check trait data availability: if trait_row is None => is_trait_available = False
|
79 |
+
is_trait_available = (trait_row is not None)
|
80 |
+
|
81 |
+
is_usable = validate_and_save_cohort_info(
|
82 |
+
is_final=False,
|
83 |
+
cohort=cohort,
|
84 |
+
info_path=json_path,
|
85 |
+
is_gene_available=is_gene_available,
|
86 |
+
is_trait_available=is_trait_available
|
87 |
+
)
|
88 |
+
|
89 |
+
# Step 4: Clinical Feature Extraction
|
90 |
+
# Since trait_row is None, we skip clinical feature extraction.
|
91 |
+
# STEP3
|
92 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
93 |
+
gene_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
96 |
+
print(gene_data.index[:20])
|
97 |
+
# From the given index values, such as "1007_s_at" and "1053_at", these look like Affymetrix probe set IDs
|
98 |
+
# rather than standard human gene symbols. Hence they require mapping.
|
99 |
+
print("requires_gene_mapping = True")
|
100 |
+
# STEP5
|
101 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
102 |
+
gene_annotation = get_gene_annotation(soft_file)
|
103 |
+
|
104 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
105 |
+
print("Gene annotation preview:")
|
106 |
+
print(preview_df(gene_annotation))
|
107 |
+
# STEP: Gene Identifier Mapping
|
108 |
+
|
109 |
+
# 1. Based on the preview, the column "ID" in the gene annotation matches the Affymetrix probe IDs
|
110 |
+
# used in the gene_data. The "Gene Symbol" column stores the gene symbols we want.
|
111 |
+
probe_col = "ID"
|
112 |
+
symbol_col = "Gene Symbol"
|
113 |
+
|
114 |
+
# 2. Get a dataframe mapping probe IDs to their corresponding gene symbols.
|
115 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
|
116 |
+
|
117 |
+
# 3. Convert probe-level measurements to gene-level expression values.
|
118 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
119 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
120 |
+
print("Mapped gene_data index preview:", gene_data.index[:10])
|
121 |
+
# STEP 5
|
122 |
+
# 1) Normalize the gene expression data
|
123 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
124 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
125 |
+
|
126 |
+
# Since there is no trait data (trait_row was None), we cannot link clinical features or perform bias checks.
|
127 |
+
# We still must do final validation to record that trait data is unavailable.
|
128 |
+
|
129 |
+
# Provide a placeholder for is_biased; it won't matter because is_trait_available is False.
|
130 |
+
is_biased_placeholder = False
|
131 |
+
|
132 |
+
# 5) Perform final validation and save metadata
|
133 |
+
is_usable = validate_and_save_cohort_info(
|
134 |
+
is_final=True,
|
135 |
+
cohort=cohort,
|
136 |
+
info_path=json_path,
|
137 |
+
is_gene_available=True, # We do have gene expression data
|
138 |
+
is_trait_available=False, # Trait data is unavailable
|
139 |
+
is_biased=is_biased_placeholder,
|
140 |
+
df=normalized_gene_data, # We pass the gene data but there's no trait column
|
141 |
+
note="No trait data; cannot complete linking or bias checks."
|
142 |
+
)
|
143 |
+
|
144 |
+
# 6) If the dataset is deemed usable, save the final linked data
|
145 |
+
# In this scenario, is_usable will be False because the trait is not available.
|
146 |
+
if is_usable:
|
147 |
+
normalized_gene_data.to_csv(out_data_file)
|
p1/preprocess/Glioblastoma/code/GSE39144.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE39144"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE39144"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glioblastoma/GSE39144.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glioblastoma/gene_data/GSE39144.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glioblastoma/clinical_data/GSE39144.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
|
42 |
+
# 1. Gene Expression Data Availability
|
43 |
+
# Assuming this is a gene expression dataset
|
44 |
+
is_gene_available = True
|
45 |
+
|
46 |
+
# 2. Variable Availability and Data Type Conversion
|
47 |
+
# No variation or data was found for trait, age, or gender in this dataset,
|
48 |
+
# so we set their row identifiers to None
|
49 |
+
trait_row = None
|
50 |
+
age_row = None
|
51 |
+
gender_row = None
|
52 |
+
|
53 |
+
# Define conversion functions, though we won't actually use them given our row selections
|
54 |
+
def convert_trait(x: str):
|
55 |
+
# Example stub: parse after colon
|
56 |
+
val = x.split(':', 1)[-1].strip() if ':' in x else x.strip()
|
57 |
+
# If it were available and binary, we'd convert to 0/1 or continuous accordingly
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(x: str):
|
61 |
+
val = x.split(':', 1)[-1].strip() if ':' in x else x.strip()
|
62 |
+
# If it were available, parse as integer or float
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_gender(x: str):
|
66 |
+
val = x.split(':', 1)[-1].strip() if ':' in x else x.strip()
|
67 |
+
# If it were available, convert female -> 0, male -> 1
|
68 |
+
return None
|
69 |
+
|
70 |
+
# 3. Save Metadata (initial filtering)
|
71 |
+
is_trait_available = (trait_row is not None)
|
72 |
+
_ = validate_and_save_cohort_info(
|
73 |
+
is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=is_trait_available
|
78 |
+
)
|
79 |
+
|
80 |
+
# 4. Clinical Feature Extraction
|
81 |
+
# Since trait_row is None, we skip this step
|
82 |
+
# STEP3
|
83 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
84 |
+
gene_data = get_genetic_data(matrix_file)
|
85 |
+
|
86 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
87 |
+
print(gene_data.index[:20])
|
88 |
+
# These identifiers look like Affymetrix probe set IDs rather than human gene symbols.
|
89 |
+
# Therefore, they need to be mapped to gene symbols.
|
90 |
+
|
91 |
+
print("requires_gene_mapping = True")
|
92 |
+
# STEP5
|
93 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
94 |
+
gene_annotation = get_gene_annotation(soft_file)
|
95 |
+
|
96 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
97 |
+
print("Gene annotation preview:")
|
98 |
+
print(preview_df(gene_annotation))
|
99 |
+
# STEP7: Gene Identifier Mapping
|
100 |
+
|
101 |
+
# 1) Identify the annotation columns that match the probe IDs in the gene expression data ("ID")
|
102 |
+
# and the gene symbol column in the annotation data ("Gene Symbol").
|
103 |
+
|
104 |
+
# 2) Create a gene mapping dataframe by extracting these two columns from the annotation dataframe.
|
105 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
|
106 |
+
|
107 |
+
# 3) Apply probe-to-gene mapping on the expression data to get gene-level expression.
|
108 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
109 |
+
# STEP 5
|
110 |
+
# 1) Normalize the gene expression data
|
111 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
112 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
113 |
+
|
114 |
+
# Since there is no trait data (trait_row was None), we cannot link clinical features or perform bias checks.
|
115 |
+
# We still must do final validation to record that trait data is unavailable.
|
116 |
+
|
117 |
+
# Provide a placeholder for is_biased; it won't matter because is_trait_available is False.
|
118 |
+
is_biased_placeholder = False
|
119 |
+
|
120 |
+
# 5) Perform final validation and save metadata
|
121 |
+
is_usable = validate_and_save_cohort_info(
|
122 |
+
is_final=True,
|
123 |
+
cohort=cohort,
|
124 |
+
info_path=json_path,
|
125 |
+
is_gene_available=True, # We do have gene expression data
|
126 |
+
is_trait_available=False, # Trait data is unavailable
|
127 |
+
is_biased=is_biased_placeholder,
|
128 |
+
df=normalized_gene_data, # We pass the gene data but there's no trait column
|
129 |
+
note="No trait data; cannot complete linking or bias checks."
|
130 |
+
)
|
131 |
+
|
132 |
+
# 6) If the dataset is deemed usable, save the final linked data
|
133 |
+
# In this scenario, is_usable will be False because the trait is not available.
|
134 |
+
if is_usable:
|
135 |
+
normalized_gene_data.to_csv(out_data_file)
|
p1/preprocess/Glioblastoma/code/TCGA.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Glioblastoma/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Glioblastoma/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Glioblastoma/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Glioblastoma/cohort_info.json"
|
15 |
+
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
# 1. Identify the relevant subdirectory for "Glioblastoma" (GBM)
|
20 |
+
subdirectories = [
|
21 |
+
'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
|
22 |
+
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
|
23 |
+
'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
|
24 |
+
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
|
25 |
+
'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
|
26 |
+
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
|
27 |
+
'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
|
28 |
+
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
|
29 |
+
'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
|
30 |
+
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
|
31 |
+
'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
|
32 |
+
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
|
33 |
+
'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
34 |
+
]
|
35 |
+
|
36 |
+
trait_keyword = "Glioblastoma"
|
37 |
+
trait_abbreviation = "GBM"
|
38 |
+
|
39 |
+
target_subdir = None
|
40 |
+
for sd in subdirectories:
|
41 |
+
if trait_keyword.lower() in sd.lower() or trait_abbreviation.lower() in sd.lower():
|
42 |
+
# Pick the first matching directory, presumably the most specific one we find
|
43 |
+
target_subdir = sd
|
44 |
+
break
|
45 |
+
|
46 |
+
if target_subdir is None:
|
47 |
+
# No suitable data found for this trait; mark as completed
|
48 |
+
print("No TCGA subdirectory found for the trait. Skipping.")
|
49 |
+
else:
|
50 |
+
cohort_dir = os.path.join(tcga_root_dir, target_subdir)
|
51 |
+
# 2. Locate clinical and genetic data files
|
52 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
53 |
+
|
54 |
+
# 3. Load the data
|
55 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
56 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
57 |
+
|
58 |
+
# 4. Print column names of clinical data
|
59 |
+
print(clinical_df.columns)
|
60 |
+
# Step 1: Identify candidate columns for age and gender
|
61 |
+
candidate_age_cols = []
|
62 |
+
candidate_gender_cols = []
|
63 |
+
|
64 |
+
# Print the results
|
65 |
+
print("candidate_age_cols =", candidate_age_cols)
|
66 |
+
print("candidate_gender_cols =", candidate_gender_cols)
|
67 |
+
|
68 |
+
# Step 2: If there were any candidate columns, preview the data
|
69 |
+
if candidate_age_cols or candidate_gender_cols:
|
70 |
+
# Assuming 'clinical_df' holds the clinical data
|
71 |
+
preview_columns = candidate_age_cols + candidate_gender_cols
|
72 |
+
preview_data = clinical_df[preview_columns].head(5).to_dict(orient='list')
|
73 |
+
print("Preview of candidate columns:", preview_data)
|
74 |
+
age_col = None
|
75 |
+
gender_col = None
|
76 |
+
|
77 |
+
print("Chosen age column:", age_col)
|
78 |
+
print("Chosen gender column:", gender_col)
|
79 |
+
# 1. Extract and standardize the clinical features
|
80 |
+
selected_clinical_df = tcga_select_clinical_features(
|
81 |
+
clinical_df=clinical_df,
|
82 |
+
trait=trait,
|
83 |
+
age_col=age_col,
|
84 |
+
gender_col=gender_col
|
85 |
+
)
|
86 |
+
|
87 |
+
# (Optional) Save the selected clinical data
|
88 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
89 |
+
|
90 |
+
# 2. Normalize gene symbols in the genetic data
|
91 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
92 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
93 |
+
|
94 |
+
# 3. Link the clinical and genetic data on sample IDs
|
95 |
+
linked_data = selected_clinical_df.join(normalized_gene_df.T, how="inner")
|
96 |
+
|
97 |
+
# 4. Handle missing values
|
98 |
+
cleaned_df = handle_missing_values(linked_data, trait)
|
99 |
+
|
100 |
+
# 5. Determine if the trait or demographic features are biased
|
101 |
+
is_biased, final_df = judge_and_remove_biased_features(cleaned_df, trait)
|
102 |
+
|
103 |
+
# 6. Final quality validation
|
104 |
+
is_gene_available = not normalized_gene_df.empty
|
105 |
+
is_trait_available = trait in final_df.columns
|
106 |
+
is_usable = validate_and_save_cohort_info(
|
107 |
+
is_final=True,
|
108 |
+
cohort="TCGA",
|
109 |
+
info_path=json_path,
|
110 |
+
is_gene_available=is_gene_available,
|
111 |
+
is_trait_available=is_trait_available,
|
112 |
+
is_biased=is_biased,
|
113 |
+
df=final_df,
|
114 |
+
note=""
|
115 |
+
)
|
116 |
+
|
117 |
+
# 7. If the dataset is usable, save the final dataframe
|
118 |
+
if is_usable:
|
119 |
+
final_df.to_csv(out_data_file)
|
p1/preprocess/Glioblastoma/gene_data/GSE134470.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba24674f901fdcc483785dd18b8239b22bc3a75e85a2fec50cc5b0e1b6fbd16d
|
3 |
+
size 21960028
|
p1/preprocess/Glioblastoma/gene_data/GSE148949.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b3b053d323f55d881c67cded230cd46ecbed8115f2109c1f264fd33992ccfe8
|
3 |
+
size 12311824
|
p1/preprocess/Glioblastoma/gene_data/GSE159000.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Glioblastoma/gene_data/GSE175700.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f2dfe914271f10264fd743ea3f6f4c4e442f6a119d03c7a1f15a4b24456c84d
|
3 |
+
size 14207713
|
p1/preprocess/Glioblastoma/gene_data/GSE178236.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cb9c85cce7814f435afbf3c3183ab56c3b9c9558796a01af7a341b9b4d74b60
|
3 |
+
size 16314430
|
p1/preprocess/Glioblastoma/gene_data/GSE226976.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Glioblastoma/gene_data/GSE249289.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Glioblastoma/gene_data/GSE279426.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Glioblastoma/gene_data/GSE39144.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca8e547fab39366c1235367f25cf9a1dcc790d5f45a33b7ddf2e206991dc7b75
|
3 |
+
size 11323495
|
p1/preprocess/Glucocorticoid_Sensitivity/GSE32962.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c39f2e7b86d5d4bcbff093218c2cd89b39592eb354acbcf2a8dd7e55ae38e53
|
3 |
+
size 11282644
|
p1/preprocess/Glucocorticoid_Sensitivity/GSE33649.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ec24c22f36b155d3d763de2a907f48f4cc579f67d061faf09e9dd620245a932
|
3 |
+
size 12458722
|
p1/preprocess/Glucocorticoid_Sensitivity/GSE50012.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9811f8861a2232d49b53cdcd31457707be9a0332fc2358c0c87c45a1065419c9
|
3 |
+
size 12458350
|
p1/preprocess/Glucocorticoid_Sensitivity/GSE57795.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d131f713cb4ba47ea1d90397a46ad5d0ee96fdfa8bb1c641f3735690c1c6426e
|
3 |
+
size 12922651
|
p1/preprocess/Glucocorticoid_Sensitivity/GSE66705.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f244baedf43be9c9c286cc600df1f4ce5df3f0727083c3e8c2c671dabb870e5
|
3 |
+
size 27520522
|
p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE32962.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM816393,GSM816394,GSM816395,GSM816396,GSM816397,GSM816398,GSM816399,GSM816400,GSM816401,GSM816402,GSM816403,GSM816404,GSM816405,GSM816406,GSM816407,GSM816408,GSM816409,GSM816410,GSM816411,GSM816412,GSM816413,GSM816414,GSM816415,GSM816416,GSM816417,GSM816418,GSM816419,GSM816420,GSM816421,GSM816422,GSM816423,GSM816424,GSM816425,GSM816426,GSM816427,GSM816428,GSM816429,GSM816430,GSM816431,GSM816432,GSM816433,GSM816434,GSM816435
|
2 |
+
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE33649.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GSM832137,GSM832138,GSM832139,GSM832140,GSM832141,GSM832142,GSM832143,GSM832144,GSM832145,GSM832146,GSM832147,GSM832148,GSM832149,GSM832150,GSM832151,GSM832152,GSM832153,GSM832154,GSM832155,GSM832156,GSM832157,GSM832158,GSM832159,GSM832160,GSM832161,GSM832162,GSM832163,GSM832164,GSM832165,GSM832166,GSM832167,GSM832168,GSM832169,GSM832170,GSM832171,GSM832172,GSM832173,GSM832174,GSM832175,GSM832176,GSM832177,GSM832178,GSM832179,GSM832180,GSM832181,GSM832182,GSM832183,GSM832184
|
2 |
+
89.43486,89.43486,89.43486,89.43486,95.88507,95.88507,95.88507,95.88507,95.22036,95.22036,95.22036,95.22036,92.86704,92.86704,92.86704,92.86704,93.71633,93.71633,93.71633,93.71633,96.76962,96.76962,96.76962,96.76962,88.55031,88.55031,88.55031,88.55031,90.09957,90.09957,90.09957,90.09957,94.17097,94.17097,94.17097,94.17097,86.97089,86.97089,86.97089,86.97089,98.34904,98.34904,98.34904,98.34904,91.14896,91.14896,91.14896,91.14896
|
3 |
+
44.15342,44.15342,44.15342,44.15342,24.72329,24.72329,24.72329,24.72329,32.37808,32.37808,32.37808,32.37808,20.38082,20.38082,20.38082,20.38082,21.2411,21.2411,21.2411,21.2411,22.54247,22.54247,22.54247,22.54247,26.13973,26.13973,26.13973,26.13973,21.5616,21.5616,21.5616,21.5616,21.9863,21.9863,21.9863,21.9863,26.76712,26.76712,26.76712,26.76712,23.59452,23.59452,23.59452,23.59452,23.47945,23.47945,23.47945,23.47945
|
4 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE48801.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1184717,GSM1184718,GSM1184719,GSM1184720,GSM1184721,GSM1184722,GSM1184723,GSM1184724,GSM1184725,GSM1184726,GSM1184727,GSM1184728,GSM1184729,GSM1184730,GSM1184731,GSM1184732,GSM1184733,GSM1184734,GSM1184735,GSM1184736,GSM1184737,GSM1184738,GSM1184739,GSM1184740,GSM1184741,GSM1184742,GSM1184743,GSM1184744,GSM1184745,GSM1184746,GSM1184747,GSM1184748,GSM1184749,GSM1184750,GSM1184751,GSM1184752,GSM1184753,GSM1184754,GSM1184755,GSM1184756,GSM1184757,GSM1184758,GSM1184759,GSM1184760,GSM1184761,GSM1184762,GSM1184763,GSM1184764,GSM1184765,GSM1184766,GSM1184767,GSM1184768,GSM1184769,GSM1184770,GSM1184771,GSM1184772,GSM1184773,GSM1184774,GSM1184775,GSM1184776,GSM1184777,GSM1184778,GSM1184779,GSM1184780,GSM1184781,GSM1184782,GSM1184783,GSM1184784,GSM1184785,GSM1184786,GSM1184787,GSM1184788,GSM1184789,GSM1184790,GSM1184791,GSM1184792,GSM1184793,GSM1184794,GSM1184795,GSM1184796,GSM1184797,GSM1184798,GSM1184799,GSM1184800,GSM1184801,GSM1184802,GSM1184803,GSM1184804,GSM1184805,GSM1184806,GSM1184807,GSM1184808,GSM1184809,GSM1184810,GSM1184811,GSM1184812,GSM1184813,GSM1184814,GSM1184815,GSM1184816,GSM1184817,GSM1184818,GSM1184819,GSM1184820,GSM1184821,GSM1184822,GSM1184823,GSM1184824,GSM1184825,GSM1184826,GSM1184827,GSM1184828,GSM1184829,GSM1184830,GSM1184831,GSM1184832,GSM1184833,GSM1184834,GSM1184835,GSM1184836,GSM1184837,GSM1184838,GSM1184839,GSM1184840,GSM1184841,GSM1184842,GSM1184843,GSM1184844,GSM1184845,GSM1184846,GSM1184847,GSM1184848,GSM1184849,GSM1184850,GSM1184851,GSM1184852,GSM1184853,GSM1184854,GSM1184855,GSM1184856,GSM1184857,GSM1184858,GSM1184859,GSM1184860,GSM1184861,GSM1184862,GSM1184863,GSM1184864,GSM1184865,GSM1184866,GSM1184867,GSM1184868,GSM1184869,GSM1184870,GSM1184871,GSM1184872,GSM1184873,GSM1184874,GSM1184875,GSM1184876,GSM1184877,GSM1184878,GSM1184879,GSM1184880,GSM1184881,GSM1184882,GSM1184883,GSM1184884,GSM1184885,GSM1184886,GSM1184887,GSM1184888,GSM1184889,GSM1184890,GSM1184891,GSM1184892,GSM1184893,GSM1184894,GSM1184895
|
2 |
+
90.2096916857165,90.2096916857165,92.0660852718675,92.0660852718675,85.8770390662799,85.8770390662799,87.4945143923344,87.4945143923344,85.1993812425936,85.1993812425936,84.9616236229156,84.9616236229156,83.9341340611542,83.9341340611542,88.7663927292959,88.7663927292959,88.4126127755346,88.4126127755346,90.1302355511097,90.1302355511097,86.3038207243861,86.3038207243861,97.9389927348314,97.9389927348314,85.6565800452145,85.6565800452145,72.080026977723,72.080026977723,95.7902581814721,95.7902581814721,84.7169700775247,84.7169700775247,97.2440363125325,97.2440363125325,98.6965291984436,98.6965291984436,96.3897437049292,96.3897437049292,93.7864779279733,93.7864779279733,88.9409584548941,88.9409584548941,95.2180128029044,95.2180128029044,80.3262384967705,80.3262384967705,98.9664822965928,98.9664822965928,86.7141270837215,86.7141270837215,94.1342236284511,94.1342236284511,76.5646360533747,76.5646360533747,94.4880035822124,94.4880035822124,84.2040871593034,84.2040871593034,81.2524330708547,81.2524330708547,75.0377332194718,75.0377332194718,103.111196853422,103.111196853422,93.7264007046898,93.7264007046898,98.4358920138007,98.4358920138007,91.1219245341963,91.1219245341963,89.7952307882158,89.7952307882158,100.164196369324,100.164196369324,92.2726878044167,92.2726878044167,83.653786832453,83.653786832453,85.4308536742686,85.4308536742686,95.9867474842918,95.9867474842918,97.4697626834784,97.4697626834784,87.1103581762748,87.1103581762748,106.335980304372,106.335980304372,95.0323274416373,95.0323274416373,93.2741255092367,93.2741255092367,88.0517452462257,88.0517452462257,92.7703808066373,92.7703808066373,90.2966860598886,90.2966860598886,90.2966860598886,87.6826035548426,87.6826035548426,87.6826035548426,110.820589380024,110.820589380024,110.820589380024,91.2861567746556,91.2861567746556,90.9575303422268,90.9575303422268,99.844023580098,99.844023580098,92.4380615886291,92.4380615886291,90.6279285533303,90.6279285533303,90.6279285533303,95.4061019654126,95.4061019654126,95.4061019654126,102.574377860977,102.574377860977,102.574377860977,83.3617762565561,83.3617762565561,92.9375020882722,92.9375020882722,83.056592777649,83.056592777649,101.239617979237,101.239617979237,86.5108726528178,86.5108726528178,87.8682889161097,87.8682889161097,89.9631142694748,89.9631142694748,95.5967828443558,95.5967828443558,94.3102962675651,94.3102962675651,97.0235772914671,97.0235772914671,94.6674807225407,94.6674807225407,86.0926581231368,86.0926581231368,107.862883138275,107.862883138275,82.7364199884225,82.7364199884225,88.2331356352063,88.2331356352063,93.614568433444,93.614568433444,103.717527073529,103.717527073529,103.717527073529,91.4503081788735,91.4503081788735,91.4503081788735,89.4567969526773,89.4567969526773,89.4567969526773,91.9430860155202,91.9430860155202,92.1077238348243,92.1077238348243,100.50157318001,100.50157318001,77.6379974012028,77.6379974012028,99.246829525294,99.246829525294,93.4438194050697,93.4438194050697,80.8101665274758,80.8101665274758,93.1053855695312,93.1053855695312
|
p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE50012.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM832137,GSM832138,GSM832139,GSM832140,GSM832141,GSM832142,GSM832143,GSM832144,GSM832145,GSM832146,GSM832147,GSM832148,GSM832149,GSM832150,GSM832151,GSM832152,GSM832153,GSM832154,GSM832155,GSM832156,GSM832157,GSM832158,GSM832159,GSM832160,GSM832161,GSM832162,GSM832163,GSM832164,GSM832165,GSM832166,GSM832167,GSM832168,GSM832169,GSM832170,GSM832171,GSM832172,GSM832173,GSM832174,GSM832175,GSM832176,GSM832177,GSM832178,GSM832179,GSM832180,GSM832181,GSM832182,GSM832183,GSM832184,GSM1212354,GSM1212355,GSM1212356,GSM1212357,GSM1212358,GSM1212359,GSM1212360,GSM1212361,GSM1212362,GSM1212363,GSM1212364,GSM1212365,GSM1212366,GSM1212367,GSM1212368,GSM1212369,GSM1212370,GSM1212371,GSM1212372,GSM1212373,GSM1212374,GSM1212375,GSM1212376,GSM1212377
|
2 |
+
Glucocorticoid_Sensitivity,89.43486,89.43486,89.43486,89.43486,95.88507,95.88507,95.88507,95.88507,95.22036,95.22036,95.22036,95.22036,92.86704,92.86704,92.86704,92.86704,93.71633,93.71633,93.71633,93.71633,96.76962,96.76962,96.76962,96.76962,88.55031,88.55031,88.55031,88.55031,90.09957,90.09957,90.09957,90.09957,94.17097,94.17097,94.17097,94.17097,86.97089,86.97089,86.97089,86.97089,98.34904,98.34904,98.34904,98.34904,91.14896,91.14896,91.14896,91.14896,,,,,,,,,,,,,,,,,,,,,,,,
|
3 |
+
Age,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,44.15,44.15,24.72,24.72,32.38,32.38,20.38,20.38,21.24,21.24,22.54,22.54,26.14,26.14,21.56,21.56,21.99,21.99,26.77,26.77,23.59,23.59,23.48,23.48
|
4 |
+
Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,
|
p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE57795.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1388640,GSM1388641,GSM1388642,GSM1388643,GSM1388644,GSM1388645,GSM1388646,GSM1388647,GSM1388648,GSM1388649,GSM1388650,GSM1388651,GSM1388652,GSM1388653,GSM1388654,GSM1388655,GSM1388656,GSM1388657,GSM1388658,GSM1388659,GSM1388660,GSM1388661,GSM1388662,GSM1388663,GSM1388664,GSM1388665,GSM1388666,GSM1388667,GSM1388668,GSM1388669,GSM1388670,GSM1388671,GSM1388672,GSM1388673,GSM1388674,GSM1388675,GSM1388676,GSM1388677,GSM1388678,GSM1388679,GSM1388680,GSM1388681,GSM1388682,GSM1388683,GSM1388684,GSM1388685,GSM1388686,GSM1388687,GSM1388688,GSM1388689,GSM1388690,GSM1388691,GSM1388692,GSM1388693,GSM1388694,GSM1388695,GSM1388696,GSM1388697
|
2 |
+
1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE66705.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1629982,GSM1629983,GSM1629984,GSM1629985,GSM1629986,GSM1629987,GSM1629988,GSM1629989,GSM1629990,GSM1629991,GSM1629992,GSM1629993,GSM1629994,GSM1629995,GSM1629996,GSM1629997,GSM1629998,GSM1629999,GSM1630000,GSM1630001,GSM1630002,GSM1630003,GSM1630004,GSM1630005,GSM1630006,GSM1630007,GSM1630008,GSM1630009,GSM1630010,GSM1630011,GSM1630012,GSM1630013,GSM1630014,GSM1630015,GSM1630016,GSM1630017,GSM1630018,GSM1630019,GSM1630020,GSM1630021,GSM1630022,GSM1630023,GSM1630024,GSM1630025,GSM1630026,GSM1630027,GSM1630028,GSM1630029,GSM1630030,GSM1630031,GSM1630032,GSM1630033,GSM1630034,GSM1630035,GSM1630036,GSM1630037,GSM1630038,GSM1630039,GSM1630040,GSM1630041,GSM1630042,GSM1630043,GSM1630044,GSM1630045,GSM1630046,GSM1630047,GSM1630048,GSM1630049,GSM1630050,GSM1630051,GSM1630052,GSM1630053,GSM1630054,GSM1630055,GSM1630056,GSM1630057,GSM1630058,GSM1630059,GSM1630060,GSM1630061,GSM1630062,GSM1630063,GSM1630064,GSM1630065,GSM1630066,GSM1630067,GSM1630068,GSM1630069,GSM1630070,GSM1630071,GSM1630072,GSM1630073,GSM1630074,GSM1630075,GSM1630076,GSM1630077,GSM1630078,GSM1630079,GSM1630080,GSM1630081,GSM1630082,GSM1630083,GSM1630084,GSM1630085,GSM1630086,GSM1630087,GSM1630088,GSM1630089,GSM1630090,GSM1630091,GSM1630092,GSM1630093,GSM1630094,GSM1630095,GSM1630096,GSM1630097,GSM1630098,GSM1630099,GSM1630100,GSM1630101,GSM1630102,GSM1630103,GSM1630104,GSM1630105,GSM1630106,GSM1630107,GSM1630108,GSM1630109,GSM1630110,GSM1630111,GSM1630112,GSM1630113,GSM1630114,GSM1630115,GSM1630116,GSM1630117,GSM1630118,GSM1630119,GSM1630120,GSM1630121,GSM1630122,GSM1630123,GSM1630124,GSM1630125,GSM1630126,GSM1630127,GSM1630128,GSM1630129,GSM1630130,GSM1630131,GSM1630132,GSM1630133,GSM1630135,GSM1630137,GSM1630139,GSM1630142,GSM1630144,GSM1630146,GSM1630149,GSM1630151,GSM1630154,GSM1630156,GSM1630158,GSM1630160,GSM1630162,GSM1630163,GSM1630164,GSM1630165,GSM1630166,GSM1630167,GSM1630168
|
2 |
+
,,,,0.0,,0.0,0.0,,,,,,1.0,,0.0,,,0.0,1.0,0.0,,,,,,,,1.0,1.0,,,0.0,,1.0,,,0.0,,1.0,,,0.0,1.0,0.0,1.0,,1.0,1.0,,,0.0,,,,,1.0,0.0,,,,,,0.0,,1.0,0.0,1.0,,,,0.0,0.0,0.0,,,1.0,,0.0,,1.0,1.0,0.0,,0.0,,1.0,1.0,1.0,0.0,,1.0,0.0,,,1.0,,,,0.0,,1.0,,0.0,0.0,,,,,1.0,,,1.0,1.0,0.0,0.0,0.0,0.0,,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,,1.0,1.0,0.0,0.0,1.0,1.0,1.0,,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE15820.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE15820"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE15820"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE15820.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE15820.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE15820.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# From the background info ("expression profiling on Exon 1.0 microarrays"), we see it's gene expression data.
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# Examining the sample characteristics dictionary:
|
42 |
+
# {0: [...], 1: [...], 2: [...], 3: [...], 4: [...]}
|
43 |
+
# None of the keys provide a measure of "Glucocorticoid_Sensitivity", age, or gender in a way
|
44 |
+
# that varies across samples. Therefore, all three are considered unavailable.
|
45 |
+
|
46 |
+
trait_row = None
|
47 |
+
age_row = None
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# The data type conversion functions must still be defined, though they won't be used if their rows are None.
|
51 |
+
def convert_trait(value: str):
|
52 |
+
# No trait data is available, so return None for all values.
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(value: str):
|
56 |
+
# No age data is available, so return None for all values.
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_gender(value: str):
|
60 |
+
# No gender data is available, so return None for all values.
|
61 |
+
return None
|
62 |
+
|
63 |
+
# 3. Save Metadata (initial filtering)
|
64 |
+
# If trait_row is None, then trait data is not available.
|
65 |
+
is_trait_available = (trait_row is not None)
|
66 |
+
|
67 |
+
validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=is_trait_available,
|
73 |
+
note="No trait data found; in vitro cell-line study."
|
74 |
+
)
|
75 |
+
|
76 |
+
# 4. Clinical Feature Extraction
|
77 |
+
# Since trait_row is None, we skip this step (no clinical data to extract).
|
78 |
+
# STEP3
|
79 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
80 |
+
gene_data = get_genetic_data(matrix_file)
|
81 |
+
|
82 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
83 |
+
print(gene_data.index[:20])
|
84 |
+
# Based on the observed identifiers ('52_36nbg_gcXX'), they do not match standard human gene symbols.
|
85 |
+
# They appear to be custom microarray probe IDs and therefore likely require mapping.
|
86 |
+
print("These identifiers appear to be probe-level IDs rather than standardized gene symbols.")
|
87 |
+
print("requires_gene_mapping = True")
|
88 |
+
# STEP5
|
89 |
+
import pandas as pd
|
90 |
+
import io
|
91 |
+
|
92 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
93 |
+
annotation_text, _ = filter_content_by_prefix(
|
94 |
+
source=soft_file,
|
95 |
+
prefixes_a=['^', '!', '#'],
|
96 |
+
unselect=True,
|
97 |
+
source_type='file',
|
98 |
+
return_df_a=False,
|
99 |
+
return_df_b=False
|
100 |
+
)
|
101 |
+
|
102 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
103 |
+
gene_annotation = pd.read_csv(
|
104 |
+
io.StringIO(annotation_text),
|
105 |
+
delimiter='\t',
|
106 |
+
on_bad_lines='skip',
|
107 |
+
engine='python'
|
108 |
+
)
|
109 |
+
|
110 |
+
print("Gene annotation preview:")
|
111 |
+
print(preview_df(gene_annotation))
|
112 |
+
# STEP: Gene Identifier Mapping
|
113 |
+
|
114 |
+
# The reviewer suggests that the annotation column used for probe identifiers should match
|
115 |
+
# the row labels in the expression data (e.g., "52_36nbg_gc10"). However, from the annotation
|
116 |
+
# preview, none of the columns directly contain the "52_36nbg_gcXX" pattern. The "ID" column
|
117 |
+
# has entries like "52_36nENST...", while "probes" and "indices" have numeric references that
|
118 |
+
# do not match the expression data index. Therefore, there is no direct column to match
|
119 |
+
# "52_36nbg_gcXX". Proceeding with "ID" vs. "symbol" will likely yield an empty or very small
|
120 |
+
# mapping, since the annotation file does not appear to align with the expression data.
|
121 |
+
|
122 |
+
# 1. Decide which columns in the annotation correspond to the expression data "ID" and the gene symbol.
|
123 |
+
# We'll use "ID" for the probe/row identifiers and "symbol" for the gene symbols, aware that
|
124 |
+
# these do not actually match the expression data index.
|
125 |
+
|
126 |
+
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col="ID", gene_col="symbol")
|
127 |
+
|
128 |
+
# 2. Convert probe-level data to gene-level data by applying the gene mapping.
|
129 |
+
# This will likely produce empty or near-empty results due to the mismatch.
|
130 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
131 |
+
import os
|
132 |
+
import pandas as pd
|
133 |
+
|
134 |
+
# STEP7
|
135 |
+
|
136 |
+
# 1) Normalize gene symbols and save
|
137 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
138 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
139 |
+
|
140 |
+
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
|
141 |
+
if os.path.exists(out_clinical_data_file):
|
142 |
+
try:
|
143 |
+
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
|
144 |
+
row_count = tmp_df.shape[0]
|
145 |
+
# Adjust index names based on the row count
|
146 |
+
if row_count == 1:
|
147 |
+
tmp_df.index = [trait]
|
148 |
+
note_msg = "Only trait row found; no age or gender."
|
149 |
+
elif row_count == 2:
|
150 |
+
tmp_df.index = [trait, "Gender"]
|
151 |
+
note_msg = "Trait and gender rows found; no age row."
|
152 |
+
elif row_count == 3:
|
153 |
+
tmp_df.index = [trait, "Age", "Gender"]
|
154 |
+
note_msg = "Trait, age, and gender rows found."
|
155 |
+
else:
|
156 |
+
# If row_count is unexpected, abort further steps
|
157 |
+
validate_and_save_cohort_info(
|
158 |
+
is_final=True,
|
159 |
+
cohort=cohort,
|
160 |
+
info_path=json_path,
|
161 |
+
is_gene_available=True,
|
162 |
+
is_trait_available=False,
|
163 |
+
is_biased=True,
|
164 |
+
df=pd.DataFrame(),
|
165 |
+
note=f"Unexpected row_count={row_count} in clinical data."
|
166 |
+
)
|
167 |
+
raise SystemExit("Unexpected row_count in clinical data file. Stopping.")
|
168 |
+
|
169 |
+
selected_clinical_df = tmp_df
|
170 |
+
|
171 |
+
# Link the clinical and gene expression data
|
172 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
173 |
+
|
174 |
+
# 3) Handle missing values
|
175 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
176 |
+
|
177 |
+
# 4) Evaluate bias in the trait (and remove biased demographics if any)
|
178 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
179 |
+
|
180 |
+
# 5) Final validation
|
181 |
+
is_usable = validate_and_save_cohort_info(
|
182 |
+
is_final=True,
|
183 |
+
cohort=cohort,
|
184 |
+
info_path=json_path,
|
185 |
+
is_gene_available=True,
|
186 |
+
is_trait_available=True,
|
187 |
+
is_biased=trait_biased,
|
188 |
+
df=final_data,
|
189 |
+
note=note_msg
|
190 |
+
)
|
191 |
+
|
192 |
+
# 6) If the dataset is usable, save
|
193 |
+
if is_usable:
|
194 |
+
final_data.to_csv(out_data_file)
|
195 |
+
|
196 |
+
except (pd.errors.EmptyDataError, ValueError):
|
197 |
+
# If file is present but empty or invalid, treat trait data as unavailable
|
198 |
+
empty_df = pd.DataFrame()
|
199 |
+
validate_and_save_cohort_info(
|
200 |
+
is_final=True,
|
201 |
+
cohort=cohort,
|
202 |
+
info_path=json_path,
|
203 |
+
is_gene_available=True,
|
204 |
+
is_trait_available=False,
|
205 |
+
is_biased=True,
|
206 |
+
df=empty_df,
|
207 |
+
note="Trait file is empty or invalid; final dataset output skipped."
|
208 |
+
)
|
209 |
+
else:
|
210 |
+
# If the clinical file does not exist at all, the trait is unavailable
|
211 |
+
empty_df = pd.DataFrame()
|
212 |
+
validate_and_save_cohort_info(
|
213 |
+
is_final=True,
|
214 |
+
cohort=cohort,
|
215 |
+
info_path=json_path,
|
216 |
+
is_gene_available=True,
|
217 |
+
is_trait_available=False,
|
218 |
+
is_biased=True,
|
219 |
+
df=empty_df,
|
220 |
+
note="No trait data file found; final dataset output skipped."
|
221 |
+
)
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE32962.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE32962"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE32962"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE32962.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE32962.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE32962.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # The dataset contains gene expression profiles.
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
# Based on the sample characteristics, the 'prednisolone sensitivity' matches our trait ("Glucocorticoid_Sensitivity").
|
41 |
+
# Hence, trait_row is 4. Age has constant value (<1 year), so we set age_row=None. Gender data is not provided, so gender_row=None.
|
42 |
+
trait_row = 4
|
43 |
+
age_row = None
|
44 |
+
gender_row = None
|
45 |
+
|
46 |
+
# Define conversion functions
|
47 |
+
def convert_trait(value: str):
|
48 |
+
# Typically "prednisolone sensitivity: resistant" or "prednisolone sensitivity: sensitive"
|
49 |
+
# We extract the part after the colon and convert to binary (resistant=1, sensitive=0).
|
50 |
+
part = value.split(":", 1)[-1].strip().lower()
|
51 |
+
if part == "resistant":
|
52 |
+
return 1
|
53 |
+
elif part == "sensitive":
|
54 |
+
return 0
|
55 |
+
else:
|
56 |
+
return None
|
57 |
+
|
58 |
+
# Age and Gender are unavailable
|
59 |
+
convert_age = None
|
60 |
+
convert_gender = None
|
61 |
+
|
62 |
+
# 3. Save Metadata (initial filtering)
|
63 |
+
is_trait_available = (trait_row is not None)
|
64 |
+
is_usable = validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=is_trait_available
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Clinical Feature Extraction (only if we have trait data)
|
73 |
+
if trait_row is not None:
|
74 |
+
clinical_features_df = geo_select_clinical_features(
|
75 |
+
clinical_data,
|
76 |
+
trait=trait,
|
77 |
+
trait_row=trait_row,
|
78 |
+
convert_trait=convert_trait,
|
79 |
+
age_row=age_row,
|
80 |
+
convert_age=convert_age,
|
81 |
+
gender_row=gender_row,
|
82 |
+
convert_gender=convert_gender
|
83 |
+
)
|
84 |
+
previewed_clinical = preview_df(clinical_features_df, n=5)
|
85 |
+
print("Preview of clinical features:", previewed_clinical)
|
86 |
+
clinical_features_df.to_csv(out_clinical_data_file, index=False)
|
87 |
+
# STEP3
|
88 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
89 |
+
gene_data = get_genetic_data(matrix_file)
|
90 |
+
|
91 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
92 |
+
print(gene_data.index[:20])
|
93 |
+
# These identifiers (e.g., "1007_s_at") are Affymetrix microarray probe IDs,
|
94 |
+
# which are not standard human gene symbols and typically need to be mapped.
|
95 |
+
|
96 |
+
# Concluding our review:
|
97 |
+
print("requires_gene_mapping = True")
|
98 |
+
# STEP5
|
99 |
+
import pandas as pd
|
100 |
+
import io
|
101 |
+
|
102 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
103 |
+
annotation_text, _ = filter_content_by_prefix(
|
104 |
+
source=soft_file,
|
105 |
+
prefixes_a=['^', '!', '#'],
|
106 |
+
unselect=True,
|
107 |
+
source_type='file',
|
108 |
+
return_df_a=False,
|
109 |
+
return_df_b=False
|
110 |
+
)
|
111 |
+
|
112 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
113 |
+
gene_annotation = pd.read_csv(
|
114 |
+
io.StringIO(annotation_text),
|
115 |
+
delimiter='\t',
|
116 |
+
on_bad_lines='skip',
|
117 |
+
engine='python'
|
118 |
+
)
|
119 |
+
|
120 |
+
print("Gene annotation preview:")
|
121 |
+
print(preview_df(gene_annotation))
|
122 |
+
# STEP: Gene Identifier Mapping
|
123 |
+
|
124 |
+
# 1) We identify that the "ID" column in the annotation DataFrame
|
125 |
+
# matches the probe identifiers (e.g. "1007_s_at") in gene_data.
|
126 |
+
# We also identify "Gene Symbol" as the column storing the gene symbols.
|
127 |
+
|
128 |
+
# 2) Get the mapping between probe IDs and gene symbols.
|
129 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
130 |
+
|
131 |
+
# 3) Convert probe-level measurements to gene-level data.
|
132 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
133 |
+
|
134 |
+
# Print shape and a quick look at the index to confirm changes.
|
135 |
+
print("Gene-level expression data shape:", gene_data.shape)
|
136 |
+
print("First 20 genes in the mapped data:", gene_data.index[:20])
|
137 |
+
import os
|
138 |
+
import pandas as pd
|
139 |
+
|
140 |
+
# STEP7
|
141 |
+
|
142 |
+
# 1) Normalize gene symbols and save
|
143 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
144 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
145 |
+
|
146 |
+
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
|
147 |
+
if os.path.exists(out_clinical_data_file):
|
148 |
+
try:
|
149 |
+
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
|
150 |
+
row_count = tmp_df.shape[0]
|
151 |
+
# Adjust index names based on the row count
|
152 |
+
if row_count == 1:
|
153 |
+
tmp_df.index = [trait]
|
154 |
+
note_msg = "Only trait row found; no age or gender."
|
155 |
+
elif row_count == 2:
|
156 |
+
tmp_df.index = [trait, "Gender"]
|
157 |
+
note_msg = "Trait and gender rows found; no age row."
|
158 |
+
elif row_count == 3:
|
159 |
+
tmp_df.index = [trait, "Age", "Gender"]
|
160 |
+
note_msg = "Trait, age, and gender rows found."
|
161 |
+
else:
|
162 |
+
# If row_count is unexpected, abort further steps
|
163 |
+
validate_and_save_cohort_info(
|
164 |
+
is_final=True,
|
165 |
+
cohort=cohort,
|
166 |
+
info_path=json_path,
|
167 |
+
is_gene_available=True,
|
168 |
+
is_trait_available=False,
|
169 |
+
is_biased=True,
|
170 |
+
df=pd.DataFrame(),
|
171 |
+
note=f"Unexpected row_count={row_count} in clinical data."
|
172 |
+
)
|
173 |
+
raise SystemExit("Unexpected row_count in clinical data file. Stopping.")
|
174 |
+
|
175 |
+
selected_clinical_df = tmp_df
|
176 |
+
|
177 |
+
# Link the clinical and gene expression data
|
178 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
179 |
+
|
180 |
+
# 3) Handle missing values
|
181 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
182 |
+
|
183 |
+
# 4) Evaluate bias in the trait (and remove biased demographics if any)
|
184 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
185 |
+
|
186 |
+
# 5) Final validation
|
187 |
+
is_usable = validate_and_save_cohort_info(
|
188 |
+
is_final=True,
|
189 |
+
cohort=cohort,
|
190 |
+
info_path=json_path,
|
191 |
+
is_gene_available=True,
|
192 |
+
is_trait_available=True,
|
193 |
+
is_biased=trait_biased,
|
194 |
+
df=final_data,
|
195 |
+
note=note_msg
|
196 |
+
)
|
197 |
+
|
198 |
+
# 6) If the dataset is usable, save
|
199 |
+
if is_usable:
|
200 |
+
final_data.to_csv(out_data_file)
|
201 |
+
|
202 |
+
except (pd.errors.EmptyDataError, ValueError):
|
203 |
+
# If file is present but empty or invalid, treat trait data as unavailable
|
204 |
+
empty_df = pd.DataFrame()
|
205 |
+
validate_and_save_cohort_info(
|
206 |
+
is_final=True,
|
207 |
+
cohort=cohort,
|
208 |
+
info_path=json_path,
|
209 |
+
is_gene_available=True,
|
210 |
+
is_trait_available=False,
|
211 |
+
is_biased=True,
|
212 |
+
df=empty_df,
|
213 |
+
note="Trait file is empty or invalid; final dataset output skipped."
|
214 |
+
)
|
215 |
+
else:
|
216 |
+
# If the clinical file does not exist at all, the trait is unavailable
|
217 |
+
empty_df = pd.DataFrame()
|
218 |
+
validate_and_save_cohort_info(
|
219 |
+
is_final=True,
|
220 |
+
cohort=cohort,
|
221 |
+
info_path=json_path,
|
222 |
+
is_gene_available=True,
|
223 |
+
is_trait_available=False,
|
224 |
+
is_biased=True,
|
225 |
+
df=empty_df,
|
226 |
+
note="No trait data file found; final dataset output skipped."
|
227 |
+
)
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE33649.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE33649"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE33649"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE33649.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE33649.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE33649.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Determine whether gene expression data is available
|
37 |
+
is_gene_available = True # Based on the series description, it measures transcriptome-wide response
|
38 |
+
|
39 |
+
# 2) Identify the rows in the sample characteristics dictionary for each variable
|
40 |
+
trait_row = 3
|
41 |
+
age_row = 6
|
42 |
+
gender_row = 5
|
43 |
+
|
44 |
+
# 2) Define data conversion functions
|
45 |
+
def _get_value_after_colon(value: str):
|
46 |
+
"""Extract the portion of the string after the first colon, stripping extra whitespace."""
|
47 |
+
parts = value.split(":", 1)
|
48 |
+
if len(parts) < 2:
|
49 |
+
return None
|
50 |
+
return parts[1].strip()
|
51 |
+
|
52 |
+
def convert_trait(value: str):
|
53 |
+
"""Convert the trait (Glucocorticoid_Sensitivity) to a float."""
|
54 |
+
val = _get_value_after_colon(value)
|
55 |
+
if val is None:
|
56 |
+
return None
|
57 |
+
try:
|
58 |
+
return float(val)
|
59 |
+
except ValueError:
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(value: str):
|
63 |
+
"""Convert the age to a float."""
|
64 |
+
val = _get_value_after_colon(value)
|
65 |
+
if val is None:
|
66 |
+
return None
|
67 |
+
try:
|
68 |
+
return float(val)
|
69 |
+
except ValueError:
|
70 |
+
return None
|
71 |
+
|
72 |
+
def convert_gender(value: str):
|
73 |
+
"""
|
74 |
+
Convert gender strings to binary values:
|
75 |
+
- female -> 0
|
76 |
+
- male -> 1
|
77 |
+
"""
|
78 |
+
val = _get_value_after_colon(value)
|
79 |
+
if val is None:
|
80 |
+
return None
|
81 |
+
val_lower = val.lower()
|
82 |
+
if 'female' in val_lower:
|
83 |
+
return 0
|
84 |
+
elif 'male' in val_lower:
|
85 |
+
return 1
|
86 |
+
return None
|
87 |
+
|
88 |
+
# 3) Conduct initial filtering and save metadata
|
89 |
+
is_trait_available = (trait_row is not None)
|
90 |
+
is_usable = validate_and_save_cohort_info(
|
91 |
+
is_final=False,
|
92 |
+
cohort=cohort,
|
93 |
+
info_path=json_path,
|
94 |
+
is_gene_available=is_gene_available,
|
95 |
+
is_trait_available=is_trait_available
|
96 |
+
)
|
97 |
+
|
98 |
+
# 4) If trait data is available, extract clinical features and save
|
99 |
+
if trait_row is not None:
|
100 |
+
clinical_selected_df = geo_select_clinical_features(
|
101 |
+
clinical_data, # DataFrame from previous steps
|
102 |
+
trait=trait,
|
103 |
+
trait_row=trait_row,
|
104 |
+
convert_trait=convert_trait,
|
105 |
+
age_row=age_row,
|
106 |
+
convert_age=convert_age,
|
107 |
+
gender_row=gender_row,
|
108 |
+
convert_gender=convert_gender
|
109 |
+
)
|
110 |
+
|
111 |
+
# Preview the selected clinical features
|
112 |
+
preview_info = preview_df(clinical_selected_df)
|
113 |
+
print("Preview of extracted clinical features:", preview_info)
|
114 |
+
|
115 |
+
# Save the clinical data as CSV
|
116 |
+
clinical_selected_df.to_csv(out_clinical_data_file, index=False)
|
117 |
+
# STEP3
|
118 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
119 |
+
gene_data = get_genetic_data(matrix_file)
|
120 |
+
|
121 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
122 |
+
print(gene_data.index[:20])
|
123 |
+
# These identifiers are Illumina probe IDs, not human gene symbols
|
124 |
+
print("These gene identifiers are Illumina probe IDs and require mapping to human gene symbols.")
|
125 |
+
print("requires_gene_mapping = True")
|
126 |
+
# STEP5
|
127 |
+
import pandas as pd
|
128 |
+
import io
|
129 |
+
|
130 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
131 |
+
annotation_text, _ = filter_content_by_prefix(
|
132 |
+
source=soft_file,
|
133 |
+
prefixes_a=['^', '!', '#'],
|
134 |
+
unselect=True,
|
135 |
+
source_type='file',
|
136 |
+
return_df_a=False,
|
137 |
+
return_df_b=False
|
138 |
+
)
|
139 |
+
|
140 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
141 |
+
gene_annotation = pd.read_csv(
|
142 |
+
io.StringIO(annotation_text),
|
143 |
+
delimiter='\t',
|
144 |
+
on_bad_lines='skip',
|
145 |
+
engine='python'
|
146 |
+
)
|
147 |
+
|
148 |
+
print("Gene annotation preview:")
|
149 |
+
print(preview_df(gene_annotation))
|
150 |
+
# 1. Decide which columns correspond to the gene expression ID and the gene symbol
|
151 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
|
152 |
+
|
153 |
+
# 2. Get a mapping between probe IDs and gene symbols
|
154 |
+
# (This is already done by the get_gene_mapping function above.)
|
155 |
+
|
156 |
+
# 3. Convert probe-level expression data to gene-level data
|
157 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
158 |
+
|
159 |
+
# For verification, preview the mapped gene_data
|
160 |
+
print("Preview of gene expression data after mapping:")
|
161 |
+
print(preview_df(gene_data))
|
162 |
+
import os
|
163 |
+
import pandas as pd
|
164 |
+
|
165 |
+
# STEP7
|
166 |
+
|
167 |
+
# 1) Normalize gene symbols and save
|
168 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
169 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
170 |
+
|
171 |
+
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
|
172 |
+
if os.path.exists(out_clinical_data_file):
|
173 |
+
try:
|
174 |
+
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
|
175 |
+
row_count = tmp_df.shape[0]
|
176 |
+
# Adjust index names based on the row count
|
177 |
+
if row_count == 1:
|
178 |
+
tmp_df.index = [trait]
|
179 |
+
note_msg = "Only trait row found; no age or gender."
|
180 |
+
elif row_count == 2:
|
181 |
+
tmp_df.index = [trait, "Gender"]
|
182 |
+
note_msg = "Trait and gender rows found; no age row."
|
183 |
+
elif row_count == 3:
|
184 |
+
tmp_df.index = [trait, "Age", "Gender"]
|
185 |
+
note_msg = "Trait, age, and gender rows found."
|
186 |
+
else:
|
187 |
+
# If row_count is unexpected, abort further steps
|
188 |
+
validate_and_save_cohort_info(
|
189 |
+
is_final=True,
|
190 |
+
cohort=cohort,
|
191 |
+
info_path=json_path,
|
192 |
+
is_gene_available=True,
|
193 |
+
is_trait_available=False,
|
194 |
+
is_biased=True,
|
195 |
+
df=pd.DataFrame(),
|
196 |
+
note=f"Unexpected row_count={row_count} in clinical data."
|
197 |
+
)
|
198 |
+
raise SystemExit("Unexpected row_count in clinical data file. Stopping.")
|
199 |
+
|
200 |
+
selected_clinical_df = tmp_df
|
201 |
+
|
202 |
+
# Link the clinical and gene expression data
|
203 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
204 |
+
|
205 |
+
# 3) Handle missing values
|
206 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
207 |
+
|
208 |
+
# 4) Evaluate bias in the trait (and remove biased demographics if any)
|
209 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
210 |
+
|
211 |
+
# 5) Final validation
|
212 |
+
is_usable = validate_and_save_cohort_info(
|
213 |
+
is_final=True,
|
214 |
+
cohort=cohort,
|
215 |
+
info_path=json_path,
|
216 |
+
is_gene_available=True,
|
217 |
+
is_trait_available=True,
|
218 |
+
is_biased=trait_biased,
|
219 |
+
df=final_data,
|
220 |
+
note=note_msg
|
221 |
+
)
|
222 |
+
|
223 |
+
# 6) If the dataset is usable, save
|
224 |
+
if is_usable:
|
225 |
+
final_data.to_csv(out_data_file)
|
226 |
+
|
227 |
+
except (pd.errors.EmptyDataError, ValueError):
|
228 |
+
# If file is present but empty or invalid, treat trait data as unavailable
|
229 |
+
empty_df = pd.DataFrame()
|
230 |
+
validate_and_save_cohort_info(
|
231 |
+
is_final=True,
|
232 |
+
cohort=cohort,
|
233 |
+
info_path=json_path,
|
234 |
+
is_gene_available=True,
|
235 |
+
is_trait_available=False,
|
236 |
+
is_biased=True,
|
237 |
+
df=empty_df,
|
238 |
+
note="Trait file is empty or invalid; final dataset output skipped."
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
# If the clinical file does not exist at all, the trait is unavailable
|
242 |
+
empty_df = pd.DataFrame()
|
243 |
+
validate_and_save_cohort_info(
|
244 |
+
is_final=True,
|
245 |
+
cohort=cohort,
|
246 |
+
info_path=json_path,
|
247 |
+
is_gene_available=True,
|
248 |
+
is_trait_available=False,
|
249 |
+
is_biased=True,
|
250 |
+
df=empty_df,
|
251 |
+
note="No trait data file found; final dataset output skipped."
|
252 |
+
)
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE42002.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE42002"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE42002"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE42002.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE42002.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE42002.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# From the background info, we see mRNA expression arrays were used, indicating gene expression data is available.
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# - Checking the sample characteristics dictionary, we only see genotype, condition (trauma/control), and tissue.
|
42 |
+
# - None of these directly map to the trait "Glucocorticoid_Sensitivity", nor do we have age or gender info.
|
43 |
+
trait_row = None # No row corresponds to "Glucocorticoid_Sensitivity"
|
44 |
+
age_row = None # No age information
|
45 |
+
gender_row = None # No gender information
|
46 |
+
|
47 |
+
# - Although data is not available for trait, age, and gender, we still define the conversion functions as requested.
|
48 |
+
# Here they will simply return None because there's no real data to process.
|
49 |
+
|
50 |
+
def convert_trait(val: str) -> Optional[float]:
|
51 |
+
# No actual trait data; for demonstration, parse after the colon if it existed, return None.
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(val: str) -> Optional[float]:
|
55 |
+
# No actual age data in this dataset; return None.
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_gender(val: str) -> Optional[int]:
|
59 |
+
# No actual gender data in this dataset; return None.
|
60 |
+
return None
|
61 |
+
|
62 |
+
# 3. Save Metadata (initial filtering)
|
63 |
+
# Trait data availability is determined by whether trait_row is None. Here it is None, so is_trait_available=False.
|
64 |
+
is_trait_available = (trait_row is not None)
|
65 |
+
|
66 |
+
is_usable = validate_and_save_cohort_info(
|
67 |
+
is_final=False,
|
68 |
+
cohort=cohort,
|
69 |
+
info_path=json_path,
|
70 |
+
is_gene_available=is_gene_available,
|
71 |
+
is_trait_available=is_trait_available
|
72 |
+
)
|
73 |
+
|
74 |
+
# 4. Clinical Feature Extraction
|
75 |
+
# Since trait_row is None, we skip extracting clinical features.
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE48801.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE48801"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE48801"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE48801.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE48801.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE48801.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # From the background info, this dataset measures transcriptome-wide response.
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
#
|
41 |
+
# Observing the sample characteristics dictionary:
|
42 |
+
# Key=0: treatment
|
43 |
+
# Key=1: in vitro lymphocyte gc sensitivity (measured as %inhibition by dex)
|
44 |
+
#
|
45 |
+
# There's no mention of age or gender, so those are not available.
|
46 |
+
# The "in vitro lymphocyte gc sensitivity" corresponds to our trait "Glucocorticoid_Sensitivity".
|
47 |
+
trait_row = 1
|
48 |
+
age_row = None
|
49 |
+
gender_row = None
|
50 |
+
|
51 |
+
# Trait is continuous. We'll parse the numeric value after the colon, convert to float, and return None on failure.
|
52 |
+
def convert_trait(value: str):
|
53 |
+
try:
|
54 |
+
val_str = value.split(":")[-1].strip()
|
55 |
+
return float(val_str)
|
56 |
+
except:
|
57 |
+
return None
|
58 |
+
|
59 |
+
# Age and gender are not available, so we set these converters to None.
|
60 |
+
convert_age = None
|
61 |
+
convert_gender = None
|
62 |
+
|
63 |
+
# Determine if trait data is available
|
64 |
+
is_trait_available = (trait_row is not None)
|
65 |
+
|
66 |
+
# 3. Save Metadata (initial filtering)
|
67 |
+
validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=is_trait_available
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4. Clinical Feature Extraction (only if trait_row is not None)
|
76 |
+
if trait_row is not None:
|
77 |
+
selected_clinical_df = geo_select_clinical_features(
|
78 |
+
clinical_data,
|
79 |
+
trait=trait,
|
80 |
+
trait_row=trait_row,
|
81 |
+
convert_trait=convert_trait,
|
82 |
+
age_row=age_row,
|
83 |
+
convert_age=convert_age,
|
84 |
+
gender_row=gender_row,
|
85 |
+
convert_gender=convert_gender
|
86 |
+
)
|
87 |
+
# Preview the extracted features
|
88 |
+
preview = preview_df(selected_clinical_df)
|
89 |
+
print("Preview of clinical features:\n", preview)
|
90 |
+
# Save the extracted clinical data
|
91 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
92 |
+
# STEP3
|
93 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
94 |
+
gene_data = get_genetic_data(matrix_file)
|
95 |
+
|
96 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
97 |
+
print(gene_data.index[:20])
|
98 |
+
# The given identifiers (e.g., ILMN_1343291) appear to be Illumina probe IDs, which are not human gene symbols.
|
99 |
+
# Therefore, they require mapping to gene symbols.
|
100 |
+
print("requires_gene_mapping = True")
|
101 |
+
# STEP5
|
102 |
+
import pandas as pd
|
103 |
+
import io
|
104 |
+
|
105 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
106 |
+
annotation_text, _ = filter_content_by_prefix(
|
107 |
+
source=soft_file,
|
108 |
+
prefixes_a=['^', '!', '#'],
|
109 |
+
unselect=True,
|
110 |
+
source_type='file',
|
111 |
+
return_df_a=False,
|
112 |
+
return_df_b=False
|
113 |
+
)
|
114 |
+
|
115 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
116 |
+
gene_annotation = pd.read_csv(
|
117 |
+
io.StringIO(annotation_text),
|
118 |
+
delimiter='\t',
|
119 |
+
on_bad_lines='skip',
|
120 |
+
engine='python'
|
121 |
+
)
|
122 |
+
|
123 |
+
print("Gene annotation preview:")
|
124 |
+
print(preview_df(gene_annotation))
|
125 |
+
# STEP6: Gene Identifier Mapping
|
126 |
+
|
127 |
+
# 1. We see from the gene annotation preview that the column "ID" matches the probe IDs in our gene_data,
|
128 |
+
# and "Symbol" corresponds to human gene symbols.
|
129 |
+
|
130 |
+
# 2. Create the gene mapping dataframe by selecting the identifier column ("ID") and the symbol column ("Symbol").
|
131 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
|
132 |
+
|
133 |
+
# 3. Convert probe-level data into gene-level data by applying the mapping.
|
134 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
135 |
+
|
136 |
+
# Let's preview the resulting gene expression data (first few gene symbols)
|
137 |
+
print("Gene expression data after mapping, first few rows:")
|
138 |
+
print(gene_data.head())
|
139 |
+
import os
|
140 |
+
import pandas as pd
|
141 |
+
|
142 |
+
# STEP7
|
143 |
+
|
144 |
+
# 1) Normalize gene symbols and save
|
145 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
146 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
147 |
+
|
148 |
+
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
|
149 |
+
if os.path.exists(out_clinical_data_file):
|
150 |
+
try:
|
151 |
+
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
|
152 |
+
row_count = tmp_df.shape[0]
|
153 |
+
# Adjust index names based on the row count
|
154 |
+
if row_count == 1:
|
155 |
+
tmp_df.index = [trait]
|
156 |
+
note_msg = "Only trait row found; no age or gender."
|
157 |
+
elif row_count == 2:
|
158 |
+
tmp_df.index = [trait, "Gender"]
|
159 |
+
note_msg = "Trait and gender rows found; no age row."
|
160 |
+
elif row_count == 3:
|
161 |
+
tmp_df.index = [trait, "Age", "Gender"]
|
162 |
+
note_msg = "Trait, age, and gender rows found."
|
163 |
+
else:
|
164 |
+
# If row_count is unexpected, abort further steps
|
165 |
+
validate_and_save_cohort_info(
|
166 |
+
is_final=True,
|
167 |
+
cohort=cohort,
|
168 |
+
info_path=json_path,
|
169 |
+
is_gene_available=True,
|
170 |
+
is_trait_available=False,
|
171 |
+
is_biased=True,
|
172 |
+
df=pd.DataFrame(),
|
173 |
+
note=f"Unexpected row_count={row_count} in clinical data."
|
174 |
+
)
|
175 |
+
raise SystemExit("Unexpected row_count in clinical data file. Stopping.")
|
176 |
+
|
177 |
+
selected_clinical_df = tmp_df
|
178 |
+
|
179 |
+
# Link the clinical and gene expression data
|
180 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
181 |
+
|
182 |
+
# 3) Handle missing values
|
183 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
184 |
+
|
185 |
+
# 4) Evaluate bias in the trait (and remove biased demographics if any)
|
186 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
187 |
+
|
188 |
+
# 5) Final validation
|
189 |
+
is_usable = validate_and_save_cohort_info(
|
190 |
+
is_final=True,
|
191 |
+
cohort=cohort,
|
192 |
+
info_path=json_path,
|
193 |
+
is_gene_available=True,
|
194 |
+
is_trait_available=True,
|
195 |
+
is_biased=trait_biased,
|
196 |
+
df=final_data,
|
197 |
+
note=note_msg
|
198 |
+
)
|
199 |
+
|
200 |
+
# 6) If the dataset is usable, save
|
201 |
+
if is_usable:
|
202 |
+
final_data.to_csv(out_data_file)
|
203 |
+
|
204 |
+
except (pd.errors.EmptyDataError, ValueError):
|
205 |
+
# If file is present but empty or invalid, treat trait data as unavailable
|
206 |
+
empty_df = pd.DataFrame()
|
207 |
+
validate_and_save_cohort_info(
|
208 |
+
is_final=True,
|
209 |
+
cohort=cohort,
|
210 |
+
info_path=json_path,
|
211 |
+
is_gene_available=True,
|
212 |
+
is_trait_available=False,
|
213 |
+
is_biased=True,
|
214 |
+
df=empty_df,
|
215 |
+
note="Trait file is empty or invalid; final dataset output skipped."
|
216 |
+
)
|
217 |
+
else:
|
218 |
+
# If the clinical file does not exist at all, the trait is unavailable
|
219 |
+
empty_df = pd.DataFrame()
|
220 |
+
validate_and_save_cohort_info(
|
221 |
+
is_final=True,
|
222 |
+
cohort=cohort,
|
223 |
+
info_path=json_path,
|
224 |
+
is_gene_available=True,
|
225 |
+
is_trait_available=False,
|
226 |
+
is_biased=True,
|
227 |
+
df=empty_df,
|
228 |
+
note="No trait data file found; final dataset output skipped."
|
229 |
+
)
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE50012.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE50012"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE50012"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE50012.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE50012.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE50012.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Gene Expression Data Availability
|
37 |
+
# Based on the textual description indicating transcriptional (gene expression) study,
|
38 |
+
# we conclude gene expression data is available.
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2) Variable Availability and Data Type Conversion
|
42 |
+
# We identify the following rows in the sample characteristics dictionary:
|
43 |
+
# - trait_row = 3 ("in vitro lymphocyte gc sensitivity" => continuous)
|
44 |
+
# - age_row = 5 ("age (years): ..." => continuous, also some entries "gender: ...")
|
45 |
+
# - gender_row = 5 (the same row 5 includes gender data => binary)
|
46 |
+
|
47 |
+
trait_row = 3
|
48 |
+
age_row = 5
|
49 |
+
gender_row = 5
|
50 |
+
|
51 |
+
def convert_trait(value: str):
|
52 |
+
"""
|
53 |
+
Convert glucocorticoid sensitivity data to float.
|
54 |
+
Return None if it doesn't match GC-sensitivity pattern or can't be parsed.
|
55 |
+
"""
|
56 |
+
val_lower = value.lower()
|
57 |
+
if "in vitro lymphocyte gc sensitivity" in val_lower:
|
58 |
+
parts = value.split(":", 1)
|
59 |
+
if len(parts) == 2:
|
60 |
+
try:
|
61 |
+
return float(parts[1].strip())
|
62 |
+
except:
|
63 |
+
return None
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_age(value: str):
|
67 |
+
"""
|
68 |
+
Convert age data to float.
|
69 |
+
Return None if it doesn't match age pattern or can't be parsed.
|
70 |
+
"""
|
71 |
+
val_lower = value.lower()
|
72 |
+
if "age (years)" in val_lower:
|
73 |
+
parts = value.split(":", 1)
|
74 |
+
if len(parts) == 2:
|
75 |
+
try:
|
76 |
+
return float(parts[1].strip())
|
77 |
+
except:
|
78 |
+
return None
|
79 |
+
return None
|
80 |
+
|
81 |
+
def convert_gender(value: str):
|
82 |
+
"""
|
83 |
+
Convert gender data to binary: female -> 0, male -> 1.
|
84 |
+
Return None if it doesn't match gender pattern or can't be parsed.
|
85 |
+
"""
|
86 |
+
val_lower = value.lower()
|
87 |
+
if "gender:" in val_lower:
|
88 |
+
parts = value.split(":", 1)
|
89 |
+
if len(parts) == 2:
|
90 |
+
g = parts[1].strip().lower()
|
91 |
+
if g.startswith("female"):
|
92 |
+
return 0
|
93 |
+
elif g.startswith("male"):
|
94 |
+
return 1
|
95 |
+
return None
|
96 |
+
|
97 |
+
# 2.1) Check trait availability
|
98 |
+
if trait_row is not None:
|
99 |
+
is_trait_available = True
|
100 |
+
else:
|
101 |
+
is_trait_available = False
|
102 |
+
|
103 |
+
# 3) Save Metadata (initial filtering)
|
104 |
+
is_usable = validate_and_save_cohort_info(
|
105 |
+
is_final=False,
|
106 |
+
cohort=cohort,
|
107 |
+
info_path=json_path,
|
108 |
+
is_gene_available=is_gene_available,
|
109 |
+
is_trait_available=is_trait_available
|
110 |
+
)
|
111 |
+
|
112 |
+
# 4) Clinical Feature Extraction (only if trait is available)
|
113 |
+
if trait_row is not None:
|
114 |
+
clinical_features_df = geo_select_clinical_features(
|
115 |
+
clinical_df=clinical_data, # assume clinical_data was loaded in a previous step
|
116 |
+
trait=trait,
|
117 |
+
trait_row=trait_row,
|
118 |
+
convert_trait=convert_trait,
|
119 |
+
age_row=age_row,
|
120 |
+
convert_age=convert_age,
|
121 |
+
gender_row=gender_row,
|
122 |
+
convert_gender=convert_gender
|
123 |
+
)
|
124 |
+
# Preview output
|
125 |
+
preview_result = preview_df(clinical_features_df)
|
126 |
+
print("Preview of selected clinical features:\n", preview_result)
|
127 |
+
|
128 |
+
# Save extracted clinical data
|
129 |
+
clinical_features_df.to_csv(out_clinical_data_file, index=True)
|
130 |
+
# STEP3
|
131 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
132 |
+
gene_data = get_genetic_data(matrix_file)
|
133 |
+
|
134 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
135 |
+
print(gene_data.index[:20])
|
136 |
+
# Based on the index, these appear to be Illumina probe IDs rather than human gene symbols.
|
137 |
+
# Therefore, mapping to gene symbols is required.
|
138 |
+
requires_gene_mapping = True
|
139 |
+
# STEP5
|
140 |
+
import pandas as pd
|
141 |
+
import io
|
142 |
+
|
143 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
144 |
+
annotation_text, _ = filter_content_by_prefix(
|
145 |
+
source=soft_file,
|
146 |
+
prefixes_a=['^', '!', '#'],
|
147 |
+
unselect=True,
|
148 |
+
source_type='file',
|
149 |
+
return_df_a=False,
|
150 |
+
return_df_b=False
|
151 |
+
)
|
152 |
+
|
153 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
154 |
+
gene_annotation = pd.read_csv(
|
155 |
+
io.StringIO(annotation_text),
|
156 |
+
delimiter='\t',
|
157 |
+
on_bad_lines='skip',
|
158 |
+
engine='python'
|
159 |
+
)
|
160 |
+
|
161 |
+
print("Gene annotation preview:")
|
162 |
+
print(preview_df(gene_annotation))
|
163 |
+
# STEP6: Gene Identifier Mapping
|
164 |
+
|
165 |
+
# 1) Identify the columns in the gene_annotation DataFrame that match the probe IDs and gene symbols.
|
166 |
+
# From the preview, "ID" matches the ILMN_xxx probes and "Symbol" stores the gene symbols.
|
167 |
+
|
168 |
+
# 2) Obtain the gene mapping dataframe with the two relevant columns: "ID" and "Symbol".
|
169 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
|
170 |
+
|
171 |
+
# 3) Convert the probe-level data in 'gene_data' to gene-level expression using the mapping dataframe.
|
172 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
173 |
+
|
174 |
+
# For inspection, let's print the shape of the resulting gene-level DataFrame
|
175 |
+
print("Gene-level data shape:", gene_data.shape)
|
176 |
+
import os
|
177 |
+
import pandas as pd
|
178 |
+
|
179 |
+
# STEP7
|
180 |
+
|
181 |
+
# 1) Normalize gene symbols and save
|
182 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
183 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
184 |
+
|
185 |
+
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
|
186 |
+
if os.path.exists(out_clinical_data_file):
|
187 |
+
try:
|
188 |
+
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
|
189 |
+
row_count = tmp_df.shape[0]
|
190 |
+
# Adjust index names based on the row count
|
191 |
+
if row_count == 1:
|
192 |
+
tmp_df.index = [trait]
|
193 |
+
note_msg = "Only trait row found; no age or gender."
|
194 |
+
elif row_count == 2:
|
195 |
+
tmp_df.index = [trait, "Gender"]
|
196 |
+
note_msg = "Trait and gender rows found; no age row."
|
197 |
+
elif row_count == 3:
|
198 |
+
tmp_df.index = [trait, "Age", "Gender"]
|
199 |
+
note_msg = "Trait, age, and gender rows found."
|
200 |
+
else:
|
201 |
+
# If row_count is unexpected, abort further steps
|
202 |
+
validate_and_save_cohort_info(
|
203 |
+
is_final=True,
|
204 |
+
cohort=cohort,
|
205 |
+
info_path=json_path,
|
206 |
+
is_gene_available=True,
|
207 |
+
is_trait_available=False,
|
208 |
+
is_biased=True,
|
209 |
+
df=pd.DataFrame(),
|
210 |
+
note=f"Unexpected row_count={row_count} in clinical data."
|
211 |
+
)
|
212 |
+
raise SystemExit("Unexpected row_count in clinical data file. Stopping.")
|
213 |
+
|
214 |
+
selected_clinical_df = tmp_df
|
215 |
+
|
216 |
+
# Link the clinical and gene expression data
|
217 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
218 |
+
|
219 |
+
# 3) Handle missing values
|
220 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
221 |
+
|
222 |
+
# 4) Evaluate bias in the trait (and remove biased demographics if any)
|
223 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
224 |
+
|
225 |
+
# 5) Final validation
|
226 |
+
is_usable = validate_and_save_cohort_info(
|
227 |
+
is_final=True,
|
228 |
+
cohort=cohort,
|
229 |
+
info_path=json_path,
|
230 |
+
is_gene_available=True,
|
231 |
+
is_trait_available=True,
|
232 |
+
is_biased=trait_biased,
|
233 |
+
df=final_data,
|
234 |
+
note=note_msg
|
235 |
+
)
|
236 |
+
|
237 |
+
# 6) If the dataset is usable, save
|
238 |
+
if is_usable:
|
239 |
+
final_data.to_csv(out_data_file)
|
240 |
+
|
241 |
+
except (pd.errors.EmptyDataError, ValueError):
|
242 |
+
# If file is present but empty or invalid, treat trait data as unavailable
|
243 |
+
empty_df = pd.DataFrame()
|
244 |
+
validate_and_save_cohort_info(
|
245 |
+
is_final=True,
|
246 |
+
cohort=cohort,
|
247 |
+
info_path=json_path,
|
248 |
+
is_gene_available=True,
|
249 |
+
is_trait_available=False,
|
250 |
+
is_biased=True,
|
251 |
+
df=empty_df,
|
252 |
+
note="Trait file is empty or invalid; final dataset output skipped."
|
253 |
+
)
|
254 |
+
else:
|
255 |
+
# If the clinical file does not exist at all, the trait is unavailable
|
256 |
+
empty_df = pd.DataFrame()
|
257 |
+
validate_and_save_cohort_info(
|
258 |
+
is_final=True,
|
259 |
+
cohort=cohort,
|
260 |
+
info_path=json_path,
|
261 |
+
is_gene_available=True,
|
262 |
+
is_trait_available=False,
|
263 |
+
is_biased=True,
|
264 |
+
df=empty_df,
|
265 |
+
note="No trait data file found; final dataset output skipped."
|
266 |
+
)
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE57795.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE57795"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE57795"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE57795.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE57795.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE57795.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# Step 1: Determine gene expression availability
|
37 |
+
is_gene_available = True # From the background info, microarray gene expression is performed
|
38 |
+
|
39 |
+
# Step 2.1: Identify rows for trait, age, and gender
|
40 |
+
# Observing the sample characteristics dictionary under key=5 for "dexamethasone response"
|
41 |
+
trait_row = 5
|
42 |
+
# No human age or gender fields in the dictionary
|
43 |
+
age_row = None
|
44 |
+
gender_row = None
|
45 |
+
|
46 |
+
# Step 2.2: Define conversion functions
|
47 |
+
|
48 |
+
def convert_trait(value: str):
|
49 |
+
val = value.split(':')[-1].strip().lower()
|
50 |
+
if 'sensitive' in val:
|
51 |
+
return 1
|
52 |
+
elif 'resistant' in val:
|
53 |
+
return 0
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(value: str):
|
57 |
+
# Not used in this dataset
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(value: str):
|
61 |
+
# Not used in this dataset
|
62 |
+
return None
|
63 |
+
|
64 |
+
# Step 3: Save metadata (initial filtering)
|
65 |
+
is_trait_available = (trait_row is not None)
|
66 |
+
validate_and_save_cohort_info(
|
67 |
+
is_final=False,
|
68 |
+
cohort=cohort,
|
69 |
+
info_path=json_path,
|
70 |
+
is_gene_available=is_gene_available,
|
71 |
+
is_trait_available=is_trait_available
|
72 |
+
)
|
73 |
+
|
74 |
+
# Step 4: Extract and save clinical features if trait information is available
|
75 |
+
if is_trait_available:
|
76 |
+
df_clinical = geo_select_clinical_features(
|
77 |
+
clinical_df=clinical_data,
|
78 |
+
trait=trait,
|
79 |
+
trait_row=trait_row,
|
80 |
+
convert_trait=convert_trait,
|
81 |
+
age_row=age_row,
|
82 |
+
convert_age=convert_age,
|
83 |
+
gender_row=gender_row,
|
84 |
+
convert_gender=convert_gender
|
85 |
+
)
|
86 |
+
print(preview_df(df_clinical))
|
87 |
+
df_clinical.to_csv(out_clinical_data_file, index=False)
|
88 |
+
# STEP3
|
89 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
90 |
+
gene_data = get_genetic_data(matrix_file)
|
91 |
+
|
92 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
93 |
+
print(gene_data.index[:20])
|
94 |
+
# Based on the observed gene identifiers (e.g., ILMN_1343291), these appear to be Illumina probe IDs,
|
95 |
+
# not standard human gene symbols, thus mapping is required.
|
96 |
+
print("requires_gene_mapping = True")
|
97 |
+
# STEP5
|
98 |
+
import pandas as pd
|
99 |
+
import io
|
100 |
+
|
101 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
102 |
+
annotation_text, _ = filter_content_by_prefix(
|
103 |
+
source=soft_file,
|
104 |
+
prefixes_a=['^', '!', '#'],
|
105 |
+
unselect=True,
|
106 |
+
source_type='file',
|
107 |
+
return_df_a=False,
|
108 |
+
return_df_b=False
|
109 |
+
)
|
110 |
+
|
111 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
112 |
+
gene_annotation = pd.read_csv(
|
113 |
+
io.StringIO(annotation_text),
|
114 |
+
delimiter='\t',
|
115 |
+
on_bad_lines='skip',
|
116 |
+
engine='python'
|
117 |
+
)
|
118 |
+
|
119 |
+
print("Gene annotation preview:")
|
120 |
+
print(preview_df(gene_annotation))
|
121 |
+
# STEP: Gene Identifier Mapping
|
122 |
+
|
123 |
+
# 1. Decide which columns in the annotation match the gene expression data index ("ID")
|
124 |
+
# and the gene symbols ("Symbol"). From the preview, "ID" corresponds to ILMN_xxx
|
125 |
+
# probe IDs, and "Symbol" stores the gene symbols.
|
126 |
+
|
127 |
+
# 2. Get the gene mapping dataframe
|
128 |
+
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col="ID", gene_col="Symbol")
|
129 |
+
|
130 |
+
# 3. Convert probe-level measurements to gene expression data
|
131 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
132 |
+
|
133 |
+
# Let's print some info to verify
|
134 |
+
print("Mapped gene expression data shape:", gene_data.shape)
|
135 |
+
print("First 10 gene symbols in mapped data:", gene_data.index[:10].tolist())
|
136 |
+
import os
|
137 |
+
import pandas as pd
|
138 |
+
|
139 |
+
# STEP7
|
140 |
+
|
141 |
+
# 1) Normalize gene symbols and save
|
142 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
143 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
144 |
+
|
145 |
+
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
|
146 |
+
if os.path.exists(out_clinical_data_file):
|
147 |
+
try:
|
148 |
+
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
|
149 |
+
row_count = tmp_df.shape[0]
|
150 |
+
# Adjust index names based on the row count
|
151 |
+
if row_count == 1:
|
152 |
+
tmp_df.index = [trait]
|
153 |
+
note_msg = "Only trait row found; no age or gender."
|
154 |
+
elif row_count == 2:
|
155 |
+
tmp_df.index = [trait, "Gender"]
|
156 |
+
note_msg = "Trait and gender rows found; no age row."
|
157 |
+
elif row_count == 3:
|
158 |
+
tmp_df.index = [trait, "Age", "Gender"]
|
159 |
+
note_msg = "Trait, age, and gender rows found."
|
160 |
+
else:
|
161 |
+
# If row_count is unexpected, abort further steps
|
162 |
+
validate_and_save_cohort_info(
|
163 |
+
is_final=True,
|
164 |
+
cohort=cohort,
|
165 |
+
info_path=json_path,
|
166 |
+
is_gene_available=True,
|
167 |
+
is_trait_available=False,
|
168 |
+
is_biased=True,
|
169 |
+
df=pd.DataFrame(),
|
170 |
+
note=f"Unexpected row_count={row_count} in clinical data."
|
171 |
+
)
|
172 |
+
raise SystemExit("Unexpected row_count in clinical data file. Stopping.")
|
173 |
+
|
174 |
+
selected_clinical_df = tmp_df
|
175 |
+
|
176 |
+
# Link the clinical and gene expression data
|
177 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
178 |
+
|
179 |
+
# 3) Handle missing values
|
180 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
181 |
+
|
182 |
+
# 4) Evaluate bias in the trait (and remove biased demographics if any)
|
183 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
184 |
+
|
185 |
+
# 5) Final validation
|
186 |
+
is_usable = validate_and_save_cohort_info(
|
187 |
+
is_final=True,
|
188 |
+
cohort=cohort,
|
189 |
+
info_path=json_path,
|
190 |
+
is_gene_available=True,
|
191 |
+
is_trait_available=True,
|
192 |
+
is_biased=trait_biased,
|
193 |
+
df=final_data,
|
194 |
+
note=note_msg
|
195 |
+
)
|
196 |
+
|
197 |
+
# 6) If the dataset is usable, save
|
198 |
+
if is_usable:
|
199 |
+
final_data.to_csv(out_data_file)
|
200 |
+
|
201 |
+
except (pd.errors.EmptyDataError, ValueError):
|
202 |
+
# If file is present but empty or invalid, treat trait data as unavailable
|
203 |
+
empty_df = pd.DataFrame()
|
204 |
+
validate_and_save_cohort_info(
|
205 |
+
is_final=True,
|
206 |
+
cohort=cohort,
|
207 |
+
info_path=json_path,
|
208 |
+
is_gene_available=True,
|
209 |
+
is_trait_available=False,
|
210 |
+
is_biased=True,
|
211 |
+
df=empty_df,
|
212 |
+
note="Trait file is empty or invalid; final dataset output skipped."
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
# If the clinical file does not exist at all, the trait is unavailable
|
216 |
+
empty_df = pd.DataFrame()
|
217 |
+
validate_and_save_cohort_info(
|
218 |
+
is_final=True,
|
219 |
+
cohort=cohort,
|
220 |
+
info_path=json_path,
|
221 |
+
is_gene_available=True,
|
222 |
+
is_trait_available=False,
|
223 |
+
is_biased=True,
|
224 |
+
df=empty_df,
|
225 |
+
note="No trait data file found; final dataset output skipped."
|
226 |
+
)
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE58715.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE58715"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE58715"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE58715.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE58715.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE58715.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on the study description, this is gene expression data (not miRNA or methylation).
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
# From the provided sample characteristics, there do not appear to be human-subject trait, age, or gender data.
|
41 |
+
trait_row = None
|
42 |
+
age_row = None
|
43 |
+
gender_row = None
|
44 |
+
|
45 |
+
# Define placeholder conversion functions that return None (since the data is not available).
|
46 |
+
def convert_trait(value: str):
|
47 |
+
return None
|
48 |
+
|
49 |
+
def convert_age(value: str):
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_gender(value: str):
|
53 |
+
return None
|
54 |
+
|
55 |
+
# 3. Save Metadata
|
56 |
+
# Trait data availability can be determined by whether trait_row is None.
|
57 |
+
is_trait_available = (trait_row is not None)
|
58 |
+
|
59 |
+
validate_and_save_cohort_info(
|
60 |
+
is_final=False,
|
61 |
+
cohort=cohort,
|
62 |
+
info_path=json_path,
|
63 |
+
is_gene_available=is_gene_available,
|
64 |
+
is_trait_available=is_trait_available
|
65 |
+
)
|
66 |
+
|
67 |
+
# 4. Clinical Feature Extraction
|
68 |
+
# Since trait_row is None, we skip the clinical feature extraction step.
|
69 |
+
# STEP3
|
70 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
71 |
+
gene_data = get_genetic_data(matrix_file)
|
72 |
+
|
73 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
74 |
+
print(gene_data.index[:20])
|
75 |
+
# The gene identifiers have the "ILMN_" prefix, indicating Illumina probe IDs.
|
76 |
+
# They are not standard human gene symbols and require mapping to gene symbols.
|
77 |
+
requires_gene_mapping = True
|
78 |
+
# STEP5
|
79 |
+
import pandas as pd
|
80 |
+
import io
|
81 |
+
|
82 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
83 |
+
annotation_text, _ = filter_content_by_prefix(
|
84 |
+
source=soft_file,
|
85 |
+
prefixes_a=['^', '!', '#'],
|
86 |
+
unselect=True,
|
87 |
+
source_type='file',
|
88 |
+
return_df_a=False,
|
89 |
+
return_df_b=False
|
90 |
+
)
|
91 |
+
|
92 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
93 |
+
gene_annotation = pd.read_csv(
|
94 |
+
io.StringIO(annotation_text),
|
95 |
+
delimiter='\t',
|
96 |
+
on_bad_lines='skip',
|
97 |
+
engine='python'
|
98 |
+
)
|
99 |
+
|
100 |
+
print("Gene annotation preview:")
|
101 |
+
print(preview_df(gene_annotation))
|
102 |
+
# STEP: Gene Identifier Mapping
|
103 |
+
|
104 |
+
# 1. Identify the columns in the gene annotation dataframe that correspond to the probe IDs in the gene expression data
|
105 |
+
# and the gene symbol. From the preview, "ID" matches the "ILMN_*" probe identifiers, and "Symbol" houses the gene symbols.
|
106 |
+
probe_id_col = 'ID'
|
107 |
+
gene_symbol_col = 'Symbol'
|
108 |
+
|
109 |
+
# 2. Obtain a mapping dataframe by extracting these two columns
|
110 |
+
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col=probe_id_col, gene_col=gene_symbol_col)
|
111 |
+
|
112 |
+
# 3. Convert probe-level measurements to gene-level expression data
|
113 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
114 |
+
|
115 |
+
# For confirmation/inspection, one might optionally preview a small portion of the resulting mapped dataframe:
|
116 |
+
print("Mapped gene expression data (head):")
|
117 |
+
print(gene_data.head())
|
118 |
+
import os
|
119 |
+
import pandas as pd
|
120 |
+
|
121 |
+
# STEP7
|
122 |
+
|
123 |
+
# 1) Normalize gene symbols and save
|
124 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
125 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
126 |
+
|
127 |
+
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
|
128 |
+
if os.path.exists(out_clinical_data_file):
|
129 |
+
try:
|
130 |
+
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
|
131 |
+
row_count = tmp_df.shape[0]
|
132 |
+
# Adjust index names based on the row count
|
133 |
+
if row_count == 1:
|
134 |
+
tmp_df.index = [trait]
|
135 |
+
note_msg = "Only trait row found; no age or gender."
|
136 |
+
elif row_count == 2:
|
137 |
+
tmp_df.index = [trait, "Gender"]
|
138 |
+
note_msg = "Trait and gender rows found; no age row."
|
139 |
+
elif row_count == 3:
|
140 |
+
tmp_df.index = [trait, "Age", "Gender"]
|
141 |
+
note_msg = "Trait, age, and gender rows found."
|
142 |
+
else:
|
143 |
+
# If row_count is unexpected, abort further steps
|
144 |
+
validate_and_save_cohort_info(
|
145 |
+
is_final=True,
|
146 |
+
cohort=cohort,
|
147 |
+
info_path=json_path,
|
148 |
+
is_gene_available=True,
|
149 |
+
is_trait_available=False,
|
150 |
+
is_biased=True,
|
151 |
+
df=pd.DataFrame(),
|
152 |
+
note=f"Unexpected row_count={row_count} in clinical data."
|
153 |
+
)
|
154 |
+
raise SystemExit("Unexpected row_count in clinical data file. Stopping.")
|
155 |
+
|
156 |
+
selected_clinical_df = tmp_df
|
157 |
+
|
158 |
+
# Link the clinical and gene expression data
|
159 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
160 |
+
|
161 |
+
# 3) Handle missing values
|
162 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
163 |
+
|
164 |
+
# 4) Evaluate bias in the trait (and remove biased demographics if any)
|
165 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
166 |
+
|
167 |
+
# 5) Final validation
|
168 |
+
is_usable = validate_and_save_cohort_info(
|
169 |
+
is_final=True,
|
170 |
+
cohort=cohort,
|
171 |
+
info_path=json_path,
|
172 |
+
is_gene_available=True,
|
173 |
+
is_trait_available=True,
|
174 |
+
is_biased=trait_biased,
|
175 |
+
df=final_data,
|
176 |
+
note=note_msg
|
177 |
+
)
|
178 |
+
|
179 |
+
# 6) If the dataset is usable, save
|
180 |
+
if is_usable:
|
181 |
+
final_data.to_csv(out_data_file)
|
182 |
+
|
183 |
+
except (pd.errors.EmptyDataError, ValueError):
|
184 |
+
# If file is present but empty or invalid, treat trait data as unavailable
|
185 |
+
empty_df = pd.DataFrame()
|
186 |
+
validate_and_save_cohort_info(
|
187 |
+
is_final=True,
|
188 |
+
cohort=cohort,
|
189 |
+
info_path=json_path,
|
190 |
+
is_gene_available=True,
|
191 |
+
is_trait_available=False,
|
192 |
+
is_biased=True,
|
193 |
+
df=empty_df,
|
194 |
+
note="Trait file is empty or invalid; final dataset output skipped."
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
# If the clinical file does not exist at all, the trait is unavailable
|
198 |
+
empty_df = pd.DataFrame()
|
199 |
+
validate_and_save_cohort_info(
|
200 |
+
is_final=True,
|
201 |
+
cohort=cohort,
|
202 |
+
info_path=json_path,
|
203 |
+
is_gene_available=True,
|
204 |
+
is_trait_available=False,
|
205 |
+
is_biased=True,
|
206 |
+
df=empty_df,
|
207 |
+
note="No trait data file found; final dataset output skipped."
|
208 |
+
)
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE65645.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE65645"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE65645"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE65645.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE65645.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE65645.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if gene expression data is available
|
37 |
+
# Based on the background information (lncRNA expression profiling), we set:
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Identify rows for trait, age, and gender availability
|
41 |
+
# From the sample characteristics dictionary:
|
42 |
+
# {0: ['sample_type: bone marrow'], 1: ['translocation: TEL_AML1', 'translocation: E2A_PBX1', 'translocation: MLL']}
|
43 |
+
# We see no mention of "Glucocorticoid_Sensitivity", age, or gender, so we set them all to None.
|
44 |
+
trait_row = None
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(value: str):
|
50 |
+
# No actual data for trait, return None
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_age(value: str):
|
54 |
+
# No actual data for age, return None
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_gender(value: str):
|
58 |
+
# No actual data for gender, return None
|
59 |
+
return None
|
60 |
+
|
61 |
+
# 3. Conduct initial filtering and save metadata
|
62 |
+
is_trait_available = (trait_row is not None)
|
63 |
+
is_usable = validate_and_save_cohort_info(
|
64 |
+
is_final=False,
|
65 |
+
cohort=cohort,
|
66 |
+
info_path=json_path,
|
67 |
+
is_gene_available=is_gene_available,
|
68 |
+
is_trait_available=is_trait_available
|
69 |
+
)
|
70 |
+
|
71 |
+
# 4. Since 'trait_row' is None, we skip clinical feature extraction
|
72 |
+
if is_trait_available:
|
73 |
+
# Would extract clinical features if available
|
74 |
+
pass
|
75 |
+
# STEP3
|
76 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
77 |
+
gene_data = get_genetic_data(matrix_file)
|
78 |
+
|
79 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
80 |
+
print(gene_data.index[:20])
|
81 |
+
# Based on the displayed identifiers (e.g., A_19_P00315452, (+)E1A_r60_1, etc.),
|
82 |
+
# these do not appear to be standard human gene symbols but rather probe or custom IDs.
|
83 |
+
# Thus, they likely require mapping to gene symbols.
|
84 |
+
|
85 |
+
print("requires_gene_mapping = True")
|
86 |
+
# STEP5
|
87 |
+
import pandas as pd
|
88 |
+
import io
|
89 |
+
|
90 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
91 |
+
annotation_text, _ = filter_content_by_prefix(
|
92 |
+
source=soft_file,
|
93 |
+
prefixes_a=['^', '!', '#'],
|
94 |
+
unselect=True,
|
95 |
+
source_type='file',
|
96 |
+
return_df_a=False,
|
97 |
+
return_df_b=False
|
98 |
+
)
|
99 |
+
|
100 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
101 |
+
gene_annotation = pd.read_csv(
|
102 |
+
io.StringIO(annotation_text),
|
103 |
+
delimiter='\t',
|
104 |
+
on_bad_lines='skip',
|
105 |
+
engine='python'
|
106 |
+
)
|
107 |
+
|
108 |
+
print("Gene annotation preview:")
|
109 |
+
print(preview_df(gene_annotation))
|
110 |
+
# STEP: Gene Identifier Mapping
|
111 |
+
|
112 |
+
# 1. Decide which columns in the gene_annotation correspond to the probe IDs in gene_data and the gene symbols.
|
113 |
+
# From the previous previews, the 'ID' column matches probe identifiers, and 'GENE_SYMBOL' stores gene symbols.
|
114 |
+
|
115 |
+
# 2. Get a gene mapping DataFrame with two columns: 'ID' (probe IDs) and 'Gene' (gene symbols).
|
116 |
+
mapping_df = get_gene_mapping(
|
117 |
+
annotation=gene_annotation,
|
118 |
+
prob_col="ID",
|
119 |
+
gene_col="GENE_SYMBOL"
|
120 |
+
)
|
121 |
+
|
122 |
+
# 3. Convert the probe-level measurements in 'gene_data' to gene-level measurements by applying the mapping.
|
123 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
124 |
+
|
125 |
+
# If desired, you can preview the resulting gene_data here
|
126 |
+
# print(gene_data.head())
|
127 |
+
import os
|
128 |
+
import pandas as pd
|
129 |
+
|
130 |
+
# STEP7
|
131 |
+
|
132 |
+
# 1) Normalize gene symbols and save
|
133 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
134 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
135 |
+
|
136 |
+
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
|
137 |
+
if os.path.exists(out_clinical_data_file):
|
138 |
+
try:
|
139 |
+
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
|
140 |
+
row_count = tmp_df.shape[0]
|
141 |
+
# Adjust index names based on the row count
|
142 |
+
if row_count == 1:
|
143 |
+
tmp_df.index = [trait]
|
144 |
+
note_msg = "Only trait row found; no age or gender."
|
145 |
+
elif row_count == 2:
|
146 |
+
tmp_df.index = [trait, "Gender"]
|
147 |
+
note_msg = "Trait and gender rows found; no age row."
|
148 |
+
elif row_count == 3:
|
149 |
+
tmp_df.index = [trait, "Age", "Gender"]
|
150 |
+
note_msg = "Trait, age, and gender rows found."
|
151 |
+
else:
|
152 |
+
# If row_count is unexpected, abort further steps
|
153 |
+
validate_and_save_cohort_info(
|
154 |
+
is_final=True,
|
155 |
+
cohort=cohort,
|
156 |
+
info_path=json_path,
|
157 |
+
is_gene_available=True,
|
158 |
+
is_trait_available=False,
|
159 |
+
is_biased=True,
|
160 |
+
df=pd.DataFrame(),
|
161 |
+
note=f"Unexpected row_count={row_count} in clinical data."
|
162 |
+
)
|
163 |
+
raise SystemExit("Unexpected row_count in clinical data file. Stopping.")
|
164 |
+
|
165 |
+
selected_clinical_df = tmp_df
|
166 |
+
|
167 |
+
# Link the clinical and gene expression data
|
168 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
169 |
+
|
170 |
+
# 3) Handle missing values
|
171 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
172 |
+
|
173 |
+
# 4) Evaluate bias in the trait (and remove biased demographics if any)
|
174 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
175 |
+
|
176 |
+
# 5) Final validation
|
177 |
+
is_usable = validate_and_save_cohort_info(
|
178 |
+
is_final=True,
|
179 |
+
cohort=cohort,
|
180 |
+
info_path=json_path,
|
181 |
+
is_gene_available=True,
|
182 |
+
is_trait_available=True,
|
183 |
+
is_biased=trait_biased,
|
184 |
+
df=final_data,
|
185 |
+
note=note_msg
|
186 |
+
)
|
187 |
+
|
188 |
+
# 6) If the dataset is usable, save
|
189 |
+
if is_usable:
|
190 |
+
final_data.to_csv(out_data_file)
|
191 |
+
|
192 |
+
except (pd.errors.EmptyDataError, ValueError):
|
193 |
+
# If file is present but empty or invalid, treat trait data as unavailable
|
194 |
+
empty_df = pd.DataFrame()
|
195 |
+
validate_and_save_cohort_info(
|
196 |
+
is_final=True,
|
197 |
+
cohort=cohort,
|
198 |
+
info_path=json_path,
|
199 |
+
is_gene_available=True,
|
200 |
+
is_trait_available=False,
|
201 |
+
is_biased=True,
|
202 |
+
df=empty_df,
|
203 |
+
note="Trait file is empty or invalid; final dataset output skipped."
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
# If the clinical file does not exist at all, the trait is unavailable
|
207 |
+
empty_df = pd.DataFrame()
|
208 |
+
validate_and_save_cohort_info(
|
209 |
+
is_final=True,
|
210 |
+
cohort=cohort,
|
211 |
+
info_path=json_path,
|
212 |
+
is_gene_available=True,
|
213 |
+
is_trait_available=False,
|
214 |
+
is_biased=True,
|
215 |
+
df=empty_df,
|
216 |
+
note="No trait data file found; final dataset output skipped."
|
217 |
+
)
|
p1/preprocess/Glucocorticoid_Sensitivity/code/GSE66705.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
cohort = "GSE66705"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE66705"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/GSE66705.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/GSE66705.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/GSE66705.csv"
|
16 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine gene expression data availability
|
37 |
+
is_gene_available = True # Based on "Gene expression profiling" in the series design.
|
38 |
+
|
39 |
+
# 2. Identify variable availability and define data type conversion functions
|
40 |
+
trait_row = 0 # Row 0 has multiple categories ("RES","SEN","INT"), not constant, so it's available.
|
41 |
+
age_row = None # No age-related entry found, so not available.
|
42 |
+
gender_row = None # No gender-related entry found, so not available.
|
43 |
+
|
44 |
+
def convert_trait(value: str) -> Optional[int]:
|
45 |
+
"""
|
46 |
+
Convert trait values to binary:
|
47 |
+
- SEN => 1
|
48 |
+
- INT or RES => 0
|
49 |
+
- #N/A or unknown => None
|
50 |
+
"""
|
51 |
+
val = value.split(":", 1)[1].strip()
|
52 |
+
if val in ["#N/A", "NA", "n/a", "N/A"]:
|
53 |
+
return None
|
54 |
+
elif val == "SEN":
|
55 |
+
return 1
|
56 |
+
elif val in ["RES", "INT"]:
|
57 |
+
return 0
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(value: str) -> Optional[float]:
|
61 |
+
return None # Not applicable for this dataset
|
62 |
+
|
63 |
+
def convert_gender(value: str) -> Optional[int]:
|
64 |
+
return None # Not applicable for this dataset
|
65 |
+
|
66 |
+
# 3. Save metadata with initial filtering
|
67 |
+
is_usable = validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=(trait_row is not None)
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4. Extract clinical features if trait data is available
|
76 |
+
if trait_row is not None:
|
77 |
+
df_clinical = geo_select_clinical_features(
|
78 |
+
clinical_data,
|
79 |
+
trait=trait,
|
80 |
+
trait_row=trait_row,
|
81 |
+
convert_trait=convert_trait,
|
82 |
+
age_row=age_row,
|
83 |
+
convert_age=convert_age,
|
84 |
+
gender_row=gender_row,
|
85 |
+
convert_gender=convert_gender
|
86 |
+
)
|
87 |
+
# Preview clinical data
|
88 |
+
print(preview_df(df_clinical))
|
89 |
+
# Save extracted clinical features
|
90 |
+
df_clinical.to_csv(out_clinical_data_file, index=False)
|
91 |
+
# STEP3
|
92 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
93 |
+
gene_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
96 |
+
print(gene_data.index[:20])
|
97 |
+
# Based on the probe identifiers (e.g., "1007_s_at", "1053_at"), they are not standard human gene symbols.
|
98 |
+
# They appear to be Affymetrix microarray probe IDs that require mapping to gene symbols.
|
99 |
+
print("requires_gene_mapping = True")
|
100 |
+
# STEP5
|
101 |
+
import pandas as pd
|
102 |
+
import io
|
103 |
+
|
104 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
105 |
+
annotation_text, _ = filter_content_by_prefix(
|
106 |
+
source=soft_file,
|
107 |
+
prefixes_a=['^', '!', '#'],
|
108 |
+
unselect=True,
|
109 |
+
source_type='file',
|
110 |
+
return_df_a=False,
|
111 |
+
return_df_b=False
|
112 |
+
)
|
113 |
+
|
114 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
115 |
+
gene_annotation = pd.read_csv(
|
116 |
+
io.StringIO(annotation_text),
|
117 |
+
delimiter='\t',
|
118 |
+
on_bad_lines='skip',
|
119 |
+
engine='python'
|
120 |
+
)
|
121 |
+
|
122 |
+
print("Gene annotation preview:")
|
123 |
+
print(preview_df(gene_annotation))
|
124 |
+
# Gene Identifier Mapping
|
125 |
+
|
126 |
+
# 1. Determine columns corresponding to probe IDs (matching gene_data.index) and gene symbols
|
127 |
+
probe_col = "ID"
|
128 |
+
gene_symbol_col = "Gene Symbol"
|
129 |
+
|
130 |
+
# 2. Generate mapping dataframe
|
131 |
+
mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)
|
132 |
+
|
133 |
+
# 3. Convert probe-level data to gene-level data
|
134 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
135 |
+
|
136 |
+
# Optional: Inspect the resulting gene expression data
|
137 |
+
print(gene_data.head(10))
|
138 |
+
import os
|
139 |
+
import pandas as pd
|
140 |
+
|
141 |
+
# STEP7
|
142 |
+
|
143 |
+
# 1) Normalize gene symbols and save
|
144 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
145 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
146 |
+
|
147 |
+
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
|
148 |
+
if os.path.exists(out_clinical_data_file):
|
149 |
+
try:
|
150 |
+
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
|
151 |
+
row_count = tmp_df.shape[0]
|
152 |
+
# Adjust index names based on the row count
|
153 |
+
if row_count == 1:
|
154 |
+
tmp_df.index = [trait]
|
155 |
+
note_msg = "Only trait row found; no age or gender."
|
156 |
+
elif row_count == 2:
|
157 |
+
tmp_df.index = [trait, "Gender"]
|
158 |
+
note_msg = "Trait and gender rows found; no age row."
|
159 |
+
elif row_count == 3:
|
160 |
+
tmp_df.index = [trait, "Age", "Gender"]
|
161 |
+
note_msg = "Trait, age, and gender rows found."
|
162 |
+
else:
|
163 |
+
# If row_count is unexpected, abort further steps
|
164 |
+
validate_and_save_cohort_info(
|
165 |
+
is_final=True,
|
166 |
+
cohort=cohort,
|
167 |
+
info_path=json_path,
|
168 |
+
is_gene_available=True,
|
169 |
+
is_trait_available=False,
|
170 |
+
is_biased=True,
|
171 |
+
df=pd.DataFrame(),
|
172 |
+
note=f"Unexpected row_count={row_count} in clinical data."
|
173 |
+
)
|
174 |
+
raise SystemExit("Unexpected row_count in clinical data file. Stopping.")
|
175 |
+
|
176 |
+
selected_clinical_df = tmp_df
|
177 |
+
|
178 |
+
# Link the clinical and gene expression data
|
179 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
180 |
+
|
181 |
+
# 3) Handle missing values
|
182 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
183 |
+
|
184 |
+
# 4) Evaluate bias in the trait (and remove biased demographics if any)
|
185 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
186 |
+
|
187 |
+
# 5) Final validation
|
188 |
+
is_usable = validate_and_save_cohort_info(
|
189 |
+
is_final=True,
|
190 |
+
cohort=cohort,
|
191 |
+
info_path=json_path,
|
192 |
+
is_gene_available=True,
|
193 |
+
is_trait_available=True,
|
194 |
+
is_biased=trait_biased,
|
195 |
+
df=final_data,
|
196 |
+
note=note_msg
|
197 |
+
)
|
198 |
+
|
199 |
+
# 6) If the dataset is usable, save
|
200 |
+
if is_usable:
|
201 |
+
final_data.to_csv(out_data_file)
|
202 |
+
|
203 |
+
except (pd.errors.EmptyDataError, ValueError):
|
204 |
+
# If file is present but empty or invalid, treat trait data as unavailable
|
205 |
+
empty_df = pd.DataFrame()
|
206 |
+
validate_and_save_cohort_info(
|
207 |
+
is_final=True,
|
208 |
+
cohort=cohort,
|
209 |
+
info_path=json_path,
|
210 |
+
is_gene_available=True,
|
211 |
+
is_trait_available=False,
|
212 |
+
is_biased=True,
|
213 |
+
df=empty_df,
|
214 |
+
note="Trait file is empty or invalid; final dataset output skipped."
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
# If the clinical file does not exist at all, the trait is unavailable
|
218 |
+
empty_df = pd.DataFrame()
|
219 |
+
validate_and_save_cohort_info(
|
220 |
+
is_final=True,
|
221 |
+
cohort=cohort,
|
222 |
+
info_path=json_path,
|
223 |
+
is_gene_available=True,
|
224 |
+
is_trait_available=False,
|
225 |
+
is_biased=True,
|
226 |
+
df=empty_df,
|
227 |
+
note="No trait data file found; final dataset output skipped."
|
228 |
+
)
|
p1/preprocess/Glucocorticoid_Sensitivity/code/TCGA.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glucocorticoid_Sensitivity"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Glucocorticoid_Sensitivity/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Glucocorticoid_Sensitivity/cohort_info.json"
|
15 |
+
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
# 1. Identify subdirectories under tcga_root_dir
|
20 |
+
subdirectories = os.listdir(tcga_root_dir)
|
21 |
+
|
22 |
+
# Update search terms to reflect "Glucocorticoid_Sensitivity"
|
23 |
+
search_terms = ["glucocorticoid", "corticoid", "adrenal"]
|
24 |
+
|
25 |
+
trait_subdir = None
|
26 |
+
for d in subdirectories:
|
27 |
+
d_lower = d.lower()
|
28 |
+
if any(term in d_lower for term in search_terms):
|
29 |
+
trait_subdir = d
|
30 |
+
break
|
31 |
+
|
32 |
+
# 2. If none found, skip this trait
|
33 |
+
if not trait_subdir:
|
34 |
+
print(f"No suitable subdirectory found for trait '{trait}'. Skipping...")
|
35 |
+
is_gene_available = False
|
36 |
+
is_trait_available = False
|
37 |
+
validate_and_save_cohort_info(
|
38 |
+
is_final=False,
|
39 |
+
cohort="TCGA",
|
40 |
+
info_path=json_path,
|
41 |
+
is_gene_available=is_gene_available,
|
42 |
+
is_trait_available=is_trait_available
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
# 2. Identify file paths
|
46 |
+
cohort_path = os.path.join(tcga_root_dir, trait_subdir)
|
47 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_path)
|
48 |
+
|
49 |
+
# 3. Load both files as dataframes
|
50 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t', low_memory=False)
|
51 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t', low_memory=False)
|
52 |
+
|
53 |
+
# 4. Print the column names of the clinical data
|
54 |
+
print(f"Selected subdirectory: {trait_subdir}")
|
55 |
+
print("Clinical Data Columns:")
|
56 |
+
print(clinical_df.columns.tolist())
|
p1/preprocess/Glucocorticoid_Sensitivity/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE66705": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 104, "note": "Only trait row found; no age or gender."}, "GSE65645": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data file found; final dataset output skipped."}, "GSE58715": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data file found; final dataset output skipped."}, "GSE57795": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 58, "note": "Only trait row found; no age or gender."}, "GSE50012": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 48, "note": "Trait, age, and gender rows found."}, "GSE48801": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 179, "note": "Only trait row found; no age or gender."}, "GSE42002": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE33649": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 48, "note": "Trait, age, and gender rows found."}, "GSE32962": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 43, "note": "Only trait row found; no age or gender."}, "GSE15820": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data file found; final dataset output skipped."}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
|
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE15820.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77e3f459c3dc04435872e7dff2c55971a33a189c75c7c84ae24dfa7b76e367f2
|
3 |
+
size 12945312
|
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE32962.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9cc6e9edb3809b650bd0d8278ae3128a9c012b82c16008068108586a3575729
|
3 |
+
size 11282449
|
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE33649.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:046aa568ff7fb3692737ee31d3c5abe53761761797e2d852bfe16fc75091296e
|
3 |
+
size 12457644
|
p1/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE50012.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9e95acb316c0586d7303c4972b3039155cbfea37f219f524a946435aaefee08
|
3 |
+
size 20849284
|