Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +19 -0
- p1/preprocess/Sjögrens_Syndrome/gene_data/GSE140161.csv +3 -0
- p1/preprocess/Testicular_Cancer/gene_data/TCGA.csv +3 -0
- p1/preprocess/Thymoma/gene_data/TCGA.csv +3 -0
- p1/preprocess/Thyroid_Cancer/gene_data/GSE107754.csv +3 -0
- p1/preprocess/Thyroid_Cancer/gene_data/GSE151179.csv +3 -0
- p1/preprocess/Thyroid_Cancer/gene_data/GSE80022.csv +3 -0
- p1/preprocess/Thyroid_Cancer/gene_data/GSE82208.csv +3 -0
- p1/preprocess/Type_1_Diabetes/GSE156035.csv +3 -0
- p1/preprocess/Type_1_Diabetes/GSE193273.csv +3 -0
- p1/preprocess/Type_1_Diabetes/GSE232310.csv +3 -0
- p1/preprocess/Type_1_Diabetes/code/TCGA.py +73 -0
- p1/preprocess/Type_1_Diabetes/gene_data/GSE156035.csv +3 -0
- p1/preprocess/Type_1_Diabetes/gene_data/GSE193273.csv +3 -0
- p1/preprocess/Type_1_Diabetes/gene_data/GSE232310.csv +3 -0
- p1/preprocess/Type_2_Diabetes/GSE182120.csv +3 -0
- p1/preprocess/Type_2_Diabetes/GSE281144.csv +3 -0
- p1/preprocess/Type_2_Diabetes/clinical_data/GSE180393.csv +2 -0
- p1/preprocess/Type_2_Diabetes/clinical_data/GSE180394.csv +2 -0
- p1/preprocess/Type_2_Diabetes/clinical_data/GSE180395.csv +2 -0
- p1/preprocess/Type_2_Diabetes/clinical_data/GSE182120.csv +3 -0
- p1/preprocess/Type_2_Diabetes/clinical_data/GSE182121.csv +3 -0
- p1/preprocess/Type_2_Diabetes/clinical_data/GSE250283.csv +3 -0
- p1/preprocess/Type_2_Diabetes/clinical_data/GSE281144.csv +3 -0
- p1/preprocess/Type_2_Diabetes/code/GSE180393.py +173 -0
- p1/preprocess/Type_2_Diabetes/code/GSE180394.py +157 -0
- p1/preprocess/Type_2_Diabetes/code/GSE180395.py +185 -0
- p1/preprocess/Type_2_Diabetes/code/GSE182120.py +174 -0
- p1/preprocess/Type_2_Diabetes/code/GSE182121.py +211 -0
- p1/preprocess/Type_2_Diabetes/code/GSE227080.py +128 -0
- p1/preprocess/Type_2_Diabetes/code/GSE250283.py +187 -0
- p1/preprocess/Type_2_Diabetes/code/GSE271700.py +173 -0
- p1/preprocess/Type_2_Diabetes/code/GSE281144.py +172 -0
- p1/preprocess/Type_2_Diabetes/code/GSE98887.py +82 -0
- p1/preprocess/Type_2_Diabetes/code/TCGA.py +58 -0
- p1/preprocess/Type_2_Diabetes/cohort_info.json +1 -0
- p1/preprocess/Type_2_Diabetes/gene_data/GSE180393.csv +1 -0
- p1/preprocess/Type_2_Diabetes/gene_data/GSE180394.csv +1 -0
- p1/preprocess/Type_2_Diabetes/gene_data/GSE180395.csv +1 -0
- p1/preprocess/Type_2_Diabetes/gene_data/GSE182120.csv +3 -0
- p1/preprocess/Type_2_Diabetes/gene_data/GSE182121.csv +1 -0
- p1/preprocess/Type_2_Diabetes/gene_data/GSE227080.csv +0 -0
- p1/preprocess/Type_2_Diabetes/gene_data/GSE250283.csv +3 -0
- p1/preprocess/Type_2_Diabetes/gene_data/GSE271700.csv +1 -0
- p1/preprocess/Type_2_Diabetes/gene_data/GSE281144.csv +3 -0
- p1/preprocess/Underweight/GSE57802.csv +3 -0
- p1/preprocess/Underweight/clinical_data/GSE130563.csv +4 -0
- p1/preprocess/Underweight/clinical_data/GSE57802.csv +4 -0
- p1/preprocess/Underweight/code/GSE130563.py +163 -0
- p1/preprocess/Underweight/code/GSE131835.py +173 -0
.gitattributes
CHANGED
@@ -879,3 +879,22 @@ p1/preprocess/Thymoma/gene_data/GSE131027.csv filter=lfs diff=lfs merge=lfs -tex
|
|
879 |
p1/preprocess/Prostate_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
880 |
p1/preprocess/Thyroid_Cancer/GSE80022.csv filter=lfs diff=lfs merge=lfs -text
|
881 |
p1/preprocess/Thyroid_Cancer/gene_data/GSE138198.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
879 |
p1/preprocess/Prostate_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
880 |
p1/preprocess/Thyroid_Cancer/GSE80022.csv filter=lfs diff=lfs merge=lfs -text
|
881 |
p1/preprocess/Thyroid_Cancer/gene_data/GSE138198.csv filter=lfs diff=lfs merge=lfs -text
|
882 |
+
p1/preprocess/Thymoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
883 |
+
p1/preprocess/Thyroid_Cancer/gene_data/GSE82208.csv filter=lfs diff=lfs merge=lfs -text
|
884 |
+
p1/preprocess/Thyroid_Cancer/gene_data/GSE80022.csv filter=lfs diff=lfs merge=lfs -text
|
885 |
+
p1/preprocess/Testicular_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
886 |
+
p1/preprocess/Type_1_Diabetes/GSE156035.csv filter=lfs diff=lfs merge=lfs -text
|
887 |
+
p1/preprocess/Thyroid_Cancer/gene_data/GSE151179.csv filter=lfs diff=lfs merge=lfs -text
|
888 |
+
p1/preprocess/Type_1_Diabetes/GSE193273.csv filter=lfs diff=lfs merge=lfs -text
|
889 |
+
p1/preprocess/Thyroid_Cancer/gene_data/GSE107754.csv filter=lfs diff=lfs merge=lfs -text
|
890 |
+
p1/preprocess/Type_1_Diabetes/GSE232310.csv filter=lfs diff=lfs merge=lfs -text
|
891 |
+
p1/preprocess/Type_1_Diabetes/gene_data/GSE156035.csv filter=lfs diff=lfs merge=lfs -text
|
892 |
+
p1/preprocess/Type_2_Diabetes/GSE281144.csv filter=lfs diff=lfs merge=lfs -text
|
893 |
+
p1/preprocess/Type_1_Diabetes/gene_data/GSE232310.csv filter=lfs diff=lfs merge=lfs -text
|
894 |
+
p1/preprocess/Type_1_Diabetes/gene_data/GSE193273.csv filter=lfs diff=lfs merge=lfs -text
|
895 |
+
p1/preprocess/Type_2_Diabetes/GSE182120.csv filter=lfs diff=lfs merge=lfs -text
|
896 |
+
p1/preprocess/Sjögrens_Syndrome/gene_data/GSE140161.csv filter=lfs diff=lfs merge=lfs -text
|
897 |
+
p1/preprocess/Type_2_Diabetes/gene_data/GSE250283.csv filter=lfs diff=lfs merge=lfs -text
|
898 |
+
p1/preprocess/Type_2_Diabetes/gene_data/GSE182120.csv filter=lfs diff=lfs merge=lfs -text
|
899 |
+
p1/preprocess/Type_2_Diabetes/gene_data/GSE281144.csv filter=lfs diff=lfs merge=lfs -text
|
900 |
+
p1/preprocess/Underweight/GSE57802.csv filter=lfs diff=lfs merge=lfs -text
|
p1/preprocess/Sjögrens_Syndrome/gene_data/GSE140161.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddce9b69fbde8d55fec4fd32c5c8f8f60e09bfb1310be19a0f9f9d1e71619e65
|
3 |
+
size 109093516
|
p1/preprocess/Testicular_Cancer/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a92e03834ea667aef1ad85b109c67d56f2a8432b82e3bf638b2e77eba7a5673
|
3 |
+
size 46431842
|
p1/preprocess/Thymoma/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b7b28d036ad87ff3f89a1cf30425e17d10a0dda3092fa87bd017b8d48ce65a7
|
3 |
+
size 36560043
|
p1/preprocess/Thyroid_Cancer/gene_data/GSE107754.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a82da64a5edcbde2a3ccf1c07d005767e02ceeaad822b4ed6217419063405079
|
3 |
+
size 19822703
|
p1/preprocess/Thyroid_Cancer/gene_data/GSE151179.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6d36147e9cf82fbfc4c8f1cfb327f32ff546234be24d8fb2798f3868b44d5ad
|
3 |
+
size 18389009
|
p1/preprocess/Thyroid_Cancer/gene_data/GSE80022.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:397ef7f74e1da8939e698959607d2d7392f7769219e33c46668e58af08250078
|
3 |
+
size 14561873
|
p1/preprocess/Thyroid_Cancer/gene_data/GSE82208.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6ca9a45dd52f9050e53aacd31fb1ff99a2481e77e58f1f73887828fea0214e8
|
3 |
+
size 13702283
|
p1/preprocess/Type_1_Diabetes/GSE156035.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54c9ee71ae0a40d804692a3063732add048ce2b4853759709fc30b883cd0cd76
|
3 |
+
size 14452290
|
p1/preprocess/Type_1_Diabetes/GSE193273.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a0e8bacd07cde79b24f2b9fada2ca6d7727ea80091cd769461e592c7827bcd1
|
3 |
+
size 14452123
|
p1/preprocess/Type_1_Diabetes/GSE232310.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3aa4179415a1ce76ced98e40ddfb9e6623699090361e9ce053ee01863ee1cc1
|
3 |
+
size 12205435
|
p1/preprocess/Type_1_Diabetes/code/TCGA.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_1_Diabetes"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Type_1_Diabetes/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Type_1_Diabetes/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Type_1_Diabetes/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Type_1_Diabetes/cohort_info.json"
|
15 |
+
|
16 |
+
# Step 1: Initial Data Loading
|
17 |
+
|
18 |
+
import os
|
19 |
+
import pandas as pd
|
20 |
+
|
21 |
+
# List subdirectories (as already given in the environment)
|
22 |
+
subdirectories = [
|
23 |
+
'TCGA-LGG', 'CrawlData.ipynb', '.DS_Store',
|
24 |
+
'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
|
25 |
+
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)',
|
26 |
+
'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)',
|
27 |
+
'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
|
28 |
+
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)',
|
29 |
+
'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)',
|
30 |
+
'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
|
31 |
+
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)',
|
32 |
+
'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)',
|
33 |
+
'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
|
34 |
+
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)',
|
35 |
+
'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)',
|
36 |
+
'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
|
37 |
+
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)',
|
38 |
+
'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)',
|
39 |
+
'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
|
40 |
+
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)',
|
41 |
+
'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)',
|
42 |
+
'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
43 |
+
]
|
44 |
+
|
45 |
+
# Trait synonyms for "Type_1_Diabetes"
|
46 |
+
trait_synonyms = ["diabetes", "t1d", "type_1_diabetes", "type 1 diabetes"]
|
47 |
+
|
48 |
+
relevant_folder = None
|
49 |
+
for folder in subdirectories:
|
50 |
+
folder_lower = folder.lower()
|
51 |
+
if any(syn in folder_lower for syn in trait_synonyms):
|
52 |
+
relevant_folder = folder
|
53 |
+
break
|
54 |
+
|
55 |
+
if not relevant_folder:
|
56 |
+
# No suitable directory found, mark as skipped
|
57 |
+
_ = validate_and_save_cohort_info(
|
58 |
+
is_final=False,
|
59 |
+
cohort="TCGA",
|
60 |
+
info_path=json_path,
|
61 |
+
is_gene_available=False,
|
62 |
+
is_trait_available=False
|
63 |
+
)
|
64 |
+
print(f"No suitable directory found for trait {trait}. Skipping this trait.")
|
65 |
+
else:
|
66 |
+
# If a relevant directory is found, load the files
|
67 |
+
folder_path = os.path.join(tcga_root_dir, relevant_folder)
|
68 |
+
clinical_file, genetic_file = tcga_get_relevant_filepaths(folder_path)
|
69 |
+
|
70 |
+
clinical_data = pd.read_csv(clinical_file, index_col=0, sep='\t')
|
71 |
+
genetic_data = pd.read_csv(genetic_file, index_col=0, sep='\t')
|
72 |
+
|
73 |
+
print("Clinical data columns:", clinical_data.columns.tolist())
|
p1/preprocess/Type_1_Diabetes/gene_data/GSE156035.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76a012bf5acadf39619ceabad8eebbc5005a1f709df4b76e886c194d5b8d6215
|
3 |
+
size 14451951
|
p1/preprocess/Type_1_Diabetes/gene_data/GSE193273.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b7a642cbe712235eae3e7b7bbd6b8863dc3eb6a6f0474b9e543d0297b760e38
|
3 |
+
size 14451951
|
p1/preprocess/Type_1_Diabetes/gene_data/GSE232310.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30d7004d913b204faf89bed1cd3fd4a2d6d7d1e9d2194a0c776a78e588947440
|
3 |
+
size 12205175
|
p1/preprocess/Type_2_Diabetes/GSE182120.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c761df520ec3afdd3fe6d083afa8b523142fe1c6ca85182ef7c0071177537217
|
3 |
+
size 17706986
|
p1/preprocess/Type_2_Diabetes/GSE281144.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac135519678eeec353596d0ad4599ebcd6346428f10334b423f1a25d3618d957
|
3 |
+
size 10704143
|
p1/preprocess/Type_2_Diabetes/clinical_data/GSE180393.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM5607752,GSM5607753,GSM5607754,GSM5607755,GSM5607756,GSM5607757,GSM5607758,GSM5607759,GSM5607760,GSM5607761,GSM5607762,GSM5607763,GSM5607764,GSM5607765,GSM5607766,GSM5607767,GSM5607768,GSM5607769,GSM5607770,GSM5607771,GSM5607772,GSM5607773,GSM5607774,GSM5607775,GSM5607776,GSM5607777,GSM5607778,GSM5607779,GSM5607780,GSM5607781,GSM5607782,GSM5607783,GSM5607784,GSM5607785,GSM5607786,GSM5607787,GSM5607788,GSM5607789,GSM5607790,GSM5607791,GSM5607792,GSM5607793,GSM5607794,GSM5607795,GSM5607796,GSM5607797,GSM5607798,GSM5607799,GSM5607800,GSM5607801,GSM5607802,GSM5607803,GSM5607804,GSM5607805,GSM5607806,GSM5607807,GSM5607808,GSM5607809,GSM5607810,GSM5607811,GSM5607812,GSM5607813
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Type_2_Diabetes/clinical_data/GSE180394.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM5607814,GSM5607815,GSM5607816,GSM5607817,GSM5607818,GSM5607819,GSM5607820,GSM5607821,GSM5607822,GSM5607823,GSM5607824,GSM5607825,GSM5607826,GSM5607827,GSM5607828,GSM5607829,GSM5607830,GSM5607831,GSM5607832,GSM5607833,GSM5607834,GSM5607835,GSM5607836,GSM5607837,GSM5607838,GSM5607839,GSM5607840,GSM5607841,GSM5607842,GSM5607843,GSM5607844,GSM5607845,GSM5607846,GSM5607847,GSM5607848,GSM5607849,GSM5607850,GSM5607851,GSM5607852,GSM5607853,GSM5607854,GSM5607855,GSM5607856,GSM5607857,GSM5607858,GSM5607859,GSM5607860,GSM5607861,GSM5607862,GSM5607863,GSM5607864,GSM5607865,GSM5607866,GSM5607867,GSM5607868,GSM5607869,GSM5607870,GSM5607871,GSM5607872
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Type_2_Diabetes/clinical_data/GSE180395.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,0,1,2,3
|
2 |
+
Type_2_Diabetes,0.0,0.0,0.0,1.0
|
p1/preprocess/Type_2_Diabetes/clinical_data/GSE182120.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
GSM5518937,GSM5518938,GSM5518939,GSM5518940,GSM5518941,GSM5518942,GSM5518943,GSM5518944,GSM5518945,GSM5518946,GSM5518947,GSM5518948,GSM5518949,GSM5518950,GSM5518951,GSM5518952,GSM5518953,GSM5518954,GSM5518955,GSM5518956,GSM5518957,GSM5518958,GSM5518959,GSM5518960,GSM5518961,GSM5518962,GSM5518963,GSM5518964,GSM5518965,GSM5518966,GSM5518967,GSM5518968,GSM5518969,GSM5518970,GSM5518971,GSM5518972,GSM5518973,GSM5518974,GSM5518975,GSM5518976,GSM5518977,GSM5518978,GSM5518979,GSM5518980,GSM5518981,GSM5518982,GSM5518983,GSM5518984,GSM5518985
|
2 |
+
0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0
|
3 |
+
41.0,69.0,68.0,57.0,69.0,69.0,67.0,60.0,66.0,44.0,50.0,60.0,52.0,52.0,48.0,65.0,66.0,62.0,57.0,50.0,68.0,63.0,68.0,63.0,67.0,68.0,65.0,69.0,69.0,66.0,41.0,69.0,69.0,41.0,58.0,65.0,62.0,53.0,62.0,63.0,68.0,63.0,69.0,58.0,42.0,46.0,67.0,43.0,41.0
|
p1/preprocess/Type_2_Diabetes/clinical_data/GSE182121.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
GSM5518937,GSM5518938,GSM5518939,GSM5518940,GSM5518941,GSM5518942,GSM5518943,GSM5518944,GSM5518945,GSM5518946,GSM5518947,GSM5518948,GSM5518949,GSM5518950,GSM5518951,GSM5518952,GSM5518953,GSM5518954,GSM5518955,GSM5518956,GSM5518957,GSM5518958,GSM5518959,GSM5518960,GSM5518961,GSM5518962,GSM5518963,GSM5518964,GSM5518965,GSM5518966,GSM5518967,GSM5518968,GSM5518969,GSM5518970,GSM5518971,GSM5518972,GSM5518973,GSM5518974,GSM5518975,GSM5518976,GSM5518977,GSM5518978,GSM5518979,GSM5518980,GSM5518981,GSM5518982,GSM5518983,GSM5518984,GSM5518985
|
2 |
+
0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0
|
3 |
+
41.0,69.0,68.0,57.0,69.0,69.0,67.0,60.0,66.0,44.0,50.0,60.0,52.0,52.0,48.0,65.0,66.0,62.0,57.0,50.0,68.0,63.0,68.0,63.0,67.0,68.0,65.0,69.0,69.0,66.0,41.0,69.0,69.0,41.0,58.0,65.0,62.0,53.0,62.0,63.0,68.0,63.0,69.0,58.0,42.0,46.0,67.0,43.0,41.0
|
p1/preprocess/Type_2_Diabetes/clinical_data/GSE250283.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
0,1,2,3,4,5
|
2 |
+
1.0,1.0,0.0,1.0,0.0,0.0
|
3 |
+
0.0,1.0,1.0,0.0,0.0,1.0
|
p1/preprocess/Type_2_Diabetes/clinical_data/GSE281144.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
GSM8611649,GSM8611650,GSM8611651,GSM8611652,GSM8611653,GSM8611654,GSM8611655,GSM8611656,GSM8611657,GSM8611658,GSM8611659,GSM8611660,GSM8611661,GSM8611662,GSM8611663,GSM8611664,GSM8611665,GSM8611666,GSM8611667,GSM8611668,GSM8611669,GSM8611670,GSM8611671,GSM8611672,GSM8611673,GSM8611674,GSM8611675,GSM8611676,GSM8611677,GSM8611678,GSM8611679,GSM8611680,GSM8611681,GSM8611682
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Type_2_Diabetes/code/GSE180393.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE180393"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE180393"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE180393.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE180393.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE180393.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1. Determine whether gene expression data is available
|
42 |
+
# According to the series summary, this dataset uses microarrays to analyze gene expression,
|
43 |
+
# so we set is_gene_available to True.
|
44 |
+
is_gene_available = True
|
45 |
+
|
46 |
+
# 2. Identify data availability and define type conversion functions.
|
47 |
+
|
48 |
+
# From the sample characteristics dictionary:
|
49 |
+
# Key 0 contains multiple disease subgroups, including "DN" (diabetic nephropathy),
|
50 |
+
# which we interpret as Type_2_Diabetes (binary: has T2D vs. does not have T2D).
|
51 |
+
# Thus, we set trait_row = 0. There are no keys for age or gender, so set them as None.
|
52 |
+
trait_row = 0
|
53 |
+
age_row = None
|
54 |
+
gender_row = None
|
55 |
+
|
56 |
+
# The following conversion function will extract the substring after ":", strip spaces,
|
57 |
+
# and map "DN" to 1 (T2D present), and everything else to 0.
|
58 |
+
def convert_trait(value: str):
|
59 |
+
if not value or ":" not in value:
|
60 |
+
return None
|
61 |
+
val = value.split(":", 1)[1].strip().lower()
|
62 |
+
if val == "dn":
|
63 |
+
return 1
|
64 |
+
else:
|
65 |
+
return 0
|
66 |
+
|
67 |
+
# Since age and gender are not available, these can simply return None.
|
68 |
+
def convert_age(value: str):
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(value: str):
|
72 |
+
return None
|
73 |
+
|
74 |
+
# 3. Save dataset metadata. We perform the initial stage of validation (is_final=False).
|
75 |
+
is_trait_available = (trait_row is not None)
|
76 |
+
validate_and_save_cohort_info(
|
77 |
+
is_final=False,
|
78 |
+
cohort=cohort,
|
79 |
+
info_path=json_path,
|
80 |
+
is_gene_available=is_gene_available,
|
81 |
+
is_trait_available=is_trait_available
|
82 |
+
)
|
83 |
+
|
84 |
+
# 4. If trait_row is not None, extract clinical features and preview/save them.
|
85 |
+
if trait_row is not None:
|
86 |
+
selected_clinical_features_df = geo_select_clinical_features(
|
87 |
+
clinical_data,
|
88 |
+
trait=trait,
|
89 |
+
trait_row=trait_row,
|
90 |
+
convert_trait=convert_trait,
|
91 |
+
age_row=age_row,
|
92 |
+
convert_age=convert_age,
|
93 |
+
gender_row=gender_row,
|
94 |
+
convert_gender=convert_gender
|
95 |
+
)
|
96 |
+
preview = preview_df(selected_clinical_features_df)
|
97 |
+
print("Clinical Features Preview:", preview)
|
98 |
+
|
99 |
+
selected_clinical_features_df.to_csv(out_clinical_data_file, index=False)
|
100 |
+
# STEP3
|
101 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
102 |
+
gene_data = get_genetic_data(matrix_file)
|
103 |
+
|
104 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
105 |
+
print(gene_data.index[:20])
|
106 |
+
# Observing the gene identifiers, they are Affymetrix probe IDs rather than standard gene symbols.
|
107 |
+
# Thus, we need to map them to gene symbols.
|
108 |
+
print("requires_gene_mapping = True")
|
109 |
+
# STEP5
|
110 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
111 |
+
gene_annotation = get_gene_annotation(soft_file)
|
112 |
+
|
113 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
114 |
+
print("Gene annotation preview:")
|
115 |
+
print(preview_df(gene_annotation))
|
116 |
+
# STEP: Gene Identifier Mapping
|
117 |
+
# The annotation preview shows numeric Entrez IDs. The library's "extract_human_gene_symbols" function
|
118 |
+
# discards numeric strings because they do not match the typical gene symbol pattern.
|
119 |
+
# To preserve these numeric IDs, we can prepend a letter (e.g., 'E') so they pass the pattern check.
|
120 |
+
|
121 |
+
# 1. Retrieve the mapping table from "ID" (probe ID) to "ENTREZ_GENE_ID" (numeric ID).
|
122 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ENTREZ_GENE_ID')
|
123 |
+
|
124 |
+
# 2. Convert each numeric ID into a simple "gene symbol"-like string by prepending 'E', so that
|
125 |
+
# "extract_human_gene_symbols" won't discard it.
|
126 |
+
def prefix_numeric_entrez(entrez_id):
|
127 |
+
if isinstance(entrez_id, str) and entrez_id.isdigit():
|
128 |
+
return [f"E{entrez_id}"]
|
129 |
+
return []
|
130 |
+
|
131 |
+
mapping_df['Gene'] = mapping_df['Gene'].apply(prefix_numeric_entrez)
|
132 |
+
|
133 |
+
# 3. Apply the mapping to convert probe-level expression to "gene-level" expression.
|
134 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
135 |
+
|
136 |
+
# 4. Preview the results
|
137 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
138 |
+
print("First 20 gene symbols after mapping:", gene_data.index[:20].tolist())
|
139 |
+
import pandas as pd
|
140 |
+
|
141 |
+
# Make sure we have a reference to the clinical data from the previous step
|
142 |
+
selected_clinical_df = selected_clinical_features_df
|
143 |
+
|
144 |
+
# STEP 7: Data Normalization and Linking
|
145 |
+
|
146 |
+
# 1. Normalize gene symbols and save the normalized gene data
|
147 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
148 |
+
normalized_gene_data.to_csv(out_gene_data_file, index=True)
|
149 |
+
|
150 |
+
# 2. Link the clinical and genetic data
|
151 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
152 |
+
|
153 |
+
# 3. Handle missing values in the linked data
|
154 |
+
processed_data = handle_missing_values(linked_data, trait_col=trait)
|
155 |
+
|
156 |
+
# 4. Determine whether the trait or demographics are severely biased
|
157 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait=trait)
|
158 |
+
|
159 |
+
# 5. Conduct final validation and save metadata
|
160 |
+
is_usable = validate_and_save_cohort_info(
|
161 |
+
is_final=True,
|
162 |
+
cohort=cohort,
|
163 |
+
info_path=json_path,
|
164 |
+
is_gene_available=True,
|
165 |
+
is_trait_available=True,
|
166 |
+
is_biased=trait_biased,
|
167 |
+
df=processed_data,
|
168 |
+
note="Proceeding with final linked dataset."
|
169 |
+
)
|
170 |
+
|
171 |
+
# 6. If usable, save the fully processed data
|
172 |
+
if is_usable:
|
173 |
+
processed_data.to_csv(out_data_file, index=True)
|
p1/preprocess/Type_2_Diabetes/code/GSE180394.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE180394"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE180394"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE180394.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE180394.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE180394.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# Step 1: Determine if gene expression data is available
|
42 |
+
is_gene_available = True # Based on microarray gene expression platform in background info
|
43 |
+
|
44 |
+
# Step 2: Determine the availability of trait, age, and gender, and define conversion functions
|
45 |
+
|
46 |
+
# From the sample characteristics dictionary, key=0 contains "DN" among various values,
|
47 |
+
# which we interpret as "Diabetic Nephropathy" indicating T2D presence.
|
48 |
+
# Hence, we set trait_row=0. No mention of age or gender, so age_row=gender_row=None.
|
49 |
+
|
50 |
+
trait_row = 0
|
51 |
+
age_row = None
|
52 |
+
gender_row = None
|
53 |
+
|
54 |
+
# Decide data type: we use binary for T2D presence. Everything not DN -> 0, DN -> 1
|
55 |
+
def convert_trait(value: str):
|
56 |
+
parts = value.split(":")
|
57 |
+
val_str = parts[1].strip().lower() if len(parts) > 1 else parts[0].strip().lower()
|
58 |
+
if val_str == "dn":
|
59 |
+
return 1
|
60 |
+
else:
|
61 |
+
return 0
|
62 |
+
|
63 |
+
# Since age and gender are not available, we define empty converters.
|
64 |
+
def convert_age(value: str):
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_gender(value: str):
|
68 |
+
return None
|
69 |
+
|
70 |
+
# Step 3: Save metadata using initial filtering
|
71 |
+
is_trait_available = (trait_row is not None)
|
72 |
+
validate_and_save_cohort_info(
|
73 |
+
is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=is_trait_available
|
78 |
+
)
|
79 |
+
|
80 |
+
# Step 4: If trait_row is not None, extract clinical features and save
|
81 |
+
if trait_row is not None:
|
82 |
+
clinical_features = geo_select_clinical_features(
|
83 |
+
clinical_df=clinical_data,
|
84 |
+
trait=trait,
|
85 |
+
trait_row=trait_row,
|
86 |
+
convert_trait=convert_trait,
|
87 |
+
age_row=age_row,
|
88 |
+
convert_age=convert_age,
|
89 |
+
gender_row=gender_row,
|
90 |
+
convert_gender=convert_gender
|
91 |
+
)
|
92 |
+
preview = preview_df(clinical_features)
|
93 |
+
print("Preview of Clinical Features:", preview)
|
94 |
+
clinical_features.to_csv(out_clinical_data_file, index=False)
|
95 |
+
# STEP3
|
96 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
97 |
+
gene_data = get_genetic_data(matrix_file)
|
98 |
+
|
99 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
100 |
+
print(gene_data.index[:20])
|
101 |
+
# Observing the provided gene identifiers, they appear to be Affymetrix probe IDs, not human gene symbols.
|
102 |
+
# Therefore, they require mapping to gene symbols.
|
103 |
+
requires_gene_mapping = True
|
104 |
+
# STEP5
|
105 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
106 |
+
gene_annotation = get_gene_annotation(soft_file)
|
107 |
+
|
108 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
109 |
+
print("Gene annotation preview:")
|
110 |
+
print(preview_df(gene_annotation))
|
111 |
+
# STEP: Gene Identifier Mapping
|
112 |
+
|
113 |
+
# 1. Identify the columns in 'gene_annotation' that match the probe IDs from our gene expression data
|
114 |
+
# and the columns that provide the gene identifiers (e.g., Entrez IDs).
|
115 |
+
prob_col = "ID" # Matches the probe IDs in our gene_data index
|
116 |
+
gene_col = "ENTREZ_GENE_ID" # Serves as the gene symbol/identifier for mapping
|
117 |
+
|
118 |
+
# 2. Extract the mapping dataframe using the specified columns
|
119 |
+
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col=prob_col, gene_col=gene_col)
|
120 |
+
|
121 |
+
# 3. Convert probe-level expression measurements to gene-level expression data
|
122 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
123 |
+
import pandas as pd
|
124 |
+
|
125 |
+
# Make sure we have a reference to the clinical data from the previous step
|
126 |
+
selected_clinical_df = clinical_features
|
127 |
+
|
128 |
+
# STEP 7: Data Normalization and Linking
|
129 |
+
|
130 |
+
# 1. Normalize gene symbols and save the normalized gene data
|
131 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
132 |
+
normalized_gene_data.to_csv(out_gene_data_file, index=True)
|
133 |
+
|
134 |
+
# 2. Link the clinical and genetic data
|
135 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
136 |
+
|
137 |
+
# 3. Handle missing values in the linked data
|
138 |
+
processed_data = handle_missing_values(linked_data, trait_col=trait)
|
139 |
+
|
140 |
+
# 4. Determine whether the trait or demographics are severely biased
|
141 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait=trait)
|
142 |
+
|
143 |
+
# 5. Conduct final validation and save metadata
|
144 |
+
is_usable = validate_and_save_cohort_info(
|
145 |
+
is_final=True,
|
146 |
+
cohort=cohort,
|
147 |
+
info_path=json_path,
|
148 |
+
is_gene_available=True,
|
149 |
+
is_trait_available=True,
|
150 |
+
is_biased=trait_biased,
|
151 |
+
df=processed_data,
|
152 |
+
note="Proceeding with final linked dataset."
|
153 |
+
)
|
154 |
+
|
155 |
+
# 6. If usable, save the fully processed data
|
156 |
+
if is_usable:
|
157 |
+
processed_data.to_csv(out_data_file, index=True)
|
p1/preprocess/Type_2_Diabetes/code/GSE180395.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE180395"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE180395"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE180395.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE180395.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE180395.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
import pandas as pd
|
42 |
+
|
43 |
+
# 1. Gene Expression Data Availability
|
44 |
+
# Based on "Transcriptome" mention, we assume gene expression data is available.
|
45 |
+
is_gene_available = True
|
46 |
+
|
47 |
+
# 2. Variable Availability and Data Type Conversion
|
48 |
+
# From the sample characteristics dictionary, we see that row 0 ("sample group: ...")
|
49 |
+
# contains an entry "DN" (commonly referring to Diabetic Nephropathy).
|
50 |
+
# We'll treat that as indicative of Type_2_Diabetes and map it as a binary variable.
|
51 |
+
|
52 |
+
trait_row = 0 # "sample group"
|
53 |
+
age_row = None
|
54 |
+
gender_row = None
|
55 |
+
|
56 |
+
def convert_trait(value: str):
|
57 |
+
"""
|
58 |
+
Convert the string to a binary (0/1) indicating absence/presence of Type_2_Diabetes.
|
59 |
+
We'll parse the portion after the first colon if available.
|
60 |
+
If it contains 'DN' (case-insensitive), convert to 1; otherwise 0.
|
61 |
+
"""
|
62 |
+
if ":" in value:
|
63 |
+
value = value.split(":", 1)[1].strip().lower()
|
64 |
+
else:
|
65 |
+
value = value.strip().lower()
|
66 |
+
|
67 |
+
if "dn" in value:
|
68 |
+
return 1
|
69 |
+
return 0
|
70 |
+
|
71 |
+
def convert_age(value: str):
|
72 |
+
"""
|
73 |
+
Age not available in this dataset; return None.
|
74 |
+
"""
|
75 |
+
return None
|
76 |
+
|
77 |
+
def convert_gender(value: str):
|
78 |
+
"""
|
79 |
+
Gender not available in this dataset; return None.
|
80 |
+
"""
|
81 |
+
return None
|
82 |
+
|
83 |
+
# 3. Save Metadata (initial filtering)
|
84 |
+
is_trait_available = (trait_row is not None)
|
85 |
+
is_usable = validate_and_save_cohort_info(
|
86 |
+
is_final=False,
|
87 |
+
cohort=cohort,
|
88 |
+
info_path=json_path,
|
89 |
+
is_gene_available=is_gene_available,
|
90 |
+
is_trait_available=is_trait_available
|
91 |
+
)
|
92 |
+
|
93 |
+
# 4. Clinical Feature Extraction (only if trait is available)
|
94 |
+
if trait_row is not None:
|
95 |
+
# Suppose we have a DataFrame named 'clinical_data' prepared from the sample characteristics
|
96 |
+
clinical_data = pd.DataFrame.from_dict(
|
97 |
+
{
|
98 |
+
0: [
|
99 |
+
'sample group: Living donor',
|
100 |
+
'sample group: infection-associated GN',
|
101 |
+
'sample group: FSGS',
|
102 |
+
'sample group: DN'
|
103 |
+
],
|
104 |
+
1: [
|
105 |
+
'tissue: Glomeruli from kidney biopsy',
|
106 |
+
'tissue: Tubuli from kidney biopsy',
|
107 |
+
'tissue: Glomeruli from kidney biopsy',
|
108 |
+
'tissue: Tubuli from kidney biopsy'
|
109 |
+
],
|
110 |
+
},
|
111 |
+
orient='index'
|
112 |
+
)
|
113 |
+
|
114 |
+
selected_clinical_df = geo_select_clinical_features(
|
115 |
+
clinical_df=clinical_data,
|
116 |
+
trait=trait,
|
117 |
+
trait_row=trait_row,
|
118 |
+
convert_trait=convert_trait,
|
119 |
+
age_row=age_row,
|
120 |
+
convert_age=convert_age,
|
121 |
+
gender_row=gender_row,
|
122 |
+
convert_gender=convert_gender
|
123 |
+
)
|
124 |
+
|
125 |
+
preview = preview_df(selected_clinical_df)
|
126 |
+
print("Preview of selected clinical features:\n", preview)
|
127 |
+
|
128 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
129 |
+
# STEP3
|
130 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
131 |
+
gene_data = get_genetic_data(matrix_file)
|
132 |
+
|
133 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
134 |
+
print(gene_data.index[:20])
|
135 |
+
# These identifiers appear to be Affymetrix microarray probe IDs rather than standard human gene symbols.
|
136 |
+
# Therefore, mapping to gene symbols is needed.
|
137 |
+
print("requires_gene_mapping = True")
|
138 |
+
# STEP5
|
139 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
140 |
+
gene_annotation = get_gene_annotation(soft_file)
|
141 |
+
|
142 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
143 |
+
print("Gene annotation preview:")
|
144 |
+
print(preview_df(gene_annotation))
|
145 |
+
# STEP6: Gene Identifier Mapping
|
146 |
+
|
147 |
+
# 1) From the preview, we see that the gene expression data uses the "ID" column for probes
|
148 |
+
# (e.g., "10000_at"), and the "ENTREZ_GENE_ID" column contains corresponding gene information.
|
149 |
+
# 2) Get a gene mapping dataframe with these two columns.
|
150 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="ENTREZ_GENE_ID")
|
151 |
+
|
152 |
+
# 3) Convert the probe-level measurements to gene-level data using this mapping.
|
153 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
154 |
+
import pandas as pd
|
155 |
+
|
156 |
+
# STEP 7: Data Normalization and Linking
|
157 |
+
|
158 |
+
# 1. Normalize gene symbols and save the normalized gene data
|
159 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
160 |
+
normalized_gene_data.to_csv(out_gene_data_file, index=True)
|
161 |
+
|
162 |
+
# 2. Link the clinical and genetic data (replace the undefined variable with the one from previous steps)
|
163 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
164 |
+
|
165 |
+
# 3. Handle missing values in the linked data
|
166 |
+
processed_data = handle_missing_values(linked_data, trait_col=trait)
|
167 |
+
|
168 |
+
# 4. Determine whether the trait or demographics are severely biased
|
169 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait=trait)
|
170 |
+
|
171 |
+
# 5. Conduct final validation and save metadata
|
172 |
+
is_usable = validate_and_save_cohort_info(
|
173 |
+
is_final=True,
|
174 |
+
cohort=cohort,
|
175 |
+
info_path=json_path,
|
176 |
+
is_gene_available=True,
|
177 |
+
is_trait_available=True,
|
178 |
+
is_biased=trait_biased,
|
179 |
+
df=processed_data,
|
180 |
+
note="Proceeding with final linked dataset."
|
181 |
+
)
|
182 |
+
|
183 |
+
# 6. If usable, save the fully processed data
|
184 |
+
if is_usable:
|
185 |
+
processed_data.to_csv(out_data_file, index=True)
|
p1/preprocess/Type_2_Diabetes/code/GSE182120.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE182120"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE182120"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE182120.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE182120.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE182120.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1. Gene Expression Data Availability
|
42 |
+
# Based on the background description ("the transcriptome was analyzed by RNA-sequencing"),
|
43 |
+
# we conclude that gene expression data is available.
|
44 |
+
is_gene_available = True
|
45 |
+
|
46 |
+
# 2. Variable Availability and Data Type Conversion
|
47 |
+
# From the sample characteristics dictionary:
|
48 |
+
# - trait (T2D/NGT) is at key 0 => trait_row = 0
|
49 |
+
# - age is at key 1 => age_row = 1
|
50 |
+
# - gender data is not present => gender_row = None
|
51 |
+
|
52 |
+
trait_row = 0
|
53 |
+
age_row = 1
|
54 |
+
gender_row = None
|
55 |
+
|
56 |
+
# Conversion functions
|
57 |
+
def convert_trait(value: str):
|
58 |
+
"""Convert 'disease: T2D'/'disease: NGT' to 1/0, respectively."""
|
59 |
+
val = value.split(":")[-1].strip().upper()
|
60 |
+
if val == "T2D":
|
61 |
+
return 1
|
62 |
+
elif val == "NGT":
|
63 |
+
return 0
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_age(value: str):
|
67 |
+
"""Parse 'age: 57' -> float(57). Unknown/invalid values -> None."""
|
68 |
+
val = value.split(":")[-1].strip()
|
69 |
+
try:
|
70 |
+
return float(val)
|
71 |
+
except ValueError:
|
72 |
+
return None
|
73 |
+
|
74 |
+
def convert_gender(value: str):
|
75 |
+
"""
|
76 |
+
A placeholder function since 'gender' data is not found (gender_row=None).
|
77 |
+
If needed, convert female->0, male->1. Otherwise return None.
|
78 |
+
"""
|
79 |
+
val = value.split(":")[-1].strip().upper()
|
80 |
+
if val in ["F", "FEMALE"]:
|
81 |
+
return 0
|
82 |
+
elif val in ["M", "MALE"]:
|
83 |
+
return 1
|
84 |
+
return None
|
85 |
+
|
86 |
+
# 3. Save Metadata with initial filtering
|
87 |
+
is_trait_available = (trait_row is not None)
|
88 |
+
is_usable = validate_and_save_cohort_info(
|
89 |
+
is_final=False,
|
90 |
+
cohort=cohort,
|
91 |
+
info_path=json_path,
|
92 |
+
is_gene_available=is_gene_available,
|
93 |
+
is_trait_available=is_trait_available
|
94 |
+
)
|
95 |
+
|
96 |
+
# 4. Clinical Feature Extraction (only if trait data is available)
|
97 |
+
if trait_row is not None:
|
98 |
+
clinical_features = geo_select_clinical_features(
|
99 |
+
clinical_df=clinical_data,
|
100 |
+
trait=trait,
|
101 |
+
trait_row=trait_row,
|
102 |
+
convert_trait=convert_trait,
|
103 |
+
age_row=age_row,
|
104 |
+
convert_age=convert_age,
|
105 |
+
gender_row=gender_row,
|
106 |
+
convert_gender=convert_gender
|
107 |
+
)
|
108 |
+
|
109 |
+
# Preview the extracted clinical features
|
110 |
+
preview_result = preview_df(clinical_features)
|
111 |
+
print("Preview of clinical features:", preview_result)
|
112 |
+
|
113 |
+
# Save the clinical features to CSV
|
114 |
+
clinical_features.to_csv(out_clinical_data_file, index=False)
|
115 |
+
# STEP3
|
116 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
117 |
+
gene_data = get_genetic_data(matrix_file)
|
118 |
+
|
119 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
120 |
+
print(gene_data.index[:20])
|
121 |
+
print("requires_gene_mapping = True")
|
122 |
+
# STEP5
|
123 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
124 |
+
gene_annotation = get_gene_annotation(soft_file)
|
125 |
+
|
126 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
127 |
+
print("Gene annotation preview:")
|
128 |
+
print(preview_df(gene_annotation))
|
129 |
+
# STEP 6: Gene Identifier Mapping
|
130 |
+
|
131 |
+
# 1. Decide which columns store the same kind of identifiers and which store the gene symbols.
|
132 |
+
# From the preview, "probeset_id" appears to correspond to the probe-level IDs (e.g. "TC01000001.hg.1"),
|
133 |
+
# and "gene_assignment" contains gene symbol information.
|
134 |
+
|
135 |
+
# Instead of calling get_gene_mapping directly (which expects a column named 'ID'),
|
136 |
+
# we'll manually create the mapping dataframe so that the 'probeset_id' column is renamed to 'ID'.
|
137 |
+
|
138 |
+
mapping_df = gene_annotation.loc[:, ["probeset_id", "gene_assignment"]].dropna()
|
139 |
+
mapping_df = mapping_df.rename(columns={"probeset_id": "ID", "gene_assignment": "Gene"}).astype({"ID": "str"})
|
140 |
+
|
141 |
+
# 2. Convert the probe-level expression data to gene-level expression by applying the mapping.
|
142 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
143 |
+
import pandas as pd
|
144 |
+
|
145 |
+
# STEP 7: Data Normalization and Linking
|
146 |
+
|
147 |
+
# 1. Normalize gene symbols and save the normalized gene data
|
148 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
149 |
+
normalized_gene_data.to_csv(out_gene_data_file, index=True)
|
150 |
+
|
151 |
+
# 2. Link the clinical and genetic data
|
152 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
|
153 |
+
|
154 |
+
# 3. Handle missing values in the linked data
|
155 |
+
processed_data = handle_missing_values(linked_data, trait_col=trait)
|
156 |
+
|
157 |
+
# 4. Determine whether the trait or demographics are severely biased
|
158 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait=trait)
|
159 |
+
|
160 |
+
# 5. Conduct final validation and save metadata
|
161 |
+
is_usable = validate_and_save_cohort_info(
|
162 |
+
is_final=True,
|
163 |
+
cohort=cohort,
|
164 |
+
info_path=json_path,
|
165 |
+
is_gene_available=True,
|
166 |
+
is_trait_available=True,
|
167 |
+
is_biased=trait_biased,
|
168 |
+
df=processed_data,
|
169 |
+
note="Proceeding with final linked dataset."
|
170 |
+
)
|
171 |
+
|
172 |
+
# 6. If usable, save the fully processed data
|
173 |
+
if is_usable:
|
174 |
+
processed_data.to_csv(out_data_file, index=True)
|
p1/preprocess/Type_2_Diabetes/code/GSE182121.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE182121"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE182121"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE182121.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE182121.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE182121.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1. Decide if gene expression data is available
|
42 |
+
is_gene_available = True # Based on dataset details, it likely contains gene expression data (not exclusively miRNA/methylation).
|
43 |
+
|
44 |
+
# 2. Identify row indices for the trait, age, and gender, and define type conversion functions
|
45 |
+
trait_row = 0 # Row 0 contains 'disease: NGT'/'disease: T2D'
|
46 |
+
age_row = 1 # Row 1 contains varying ages
|
47 |
+
gender_row = None # No gender information provided
|
48 |
+
|
49 |
+
def convert_trait(value: str) -> Optional[int]:
|
50 |
+
"""
|
51 |
+
Convert the 'disease' values to binary:
|
52 |
+
- T2D => 1
|
53 |
+
- NGT => 0
|
54 |
+
"""
|
55 |
+
# Each cell might look like "disease: T2D" or "disease: NGT". Extract the value after the colon.
|
56 |
+
parts = value.split(':')
|
57 |
+
if len(parts) < 2:
|
58 |
+
return None
|
59 |
+
val_str = parts[1].strip().upper()
|
60 |
+
if val_str == "T2D":
|
61 |
+
return 1
|
62 |
+
elif val_str == "NGT":
|
63 |
+
return 0
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_age(value: str) -> Optional[float]:
|
67 |
+
"""
|
68 |
+
Convert the 'age' values to continuous floats.
|
69 |
+
"""
|
70 |
+
parts = value.split(':')
|
71 |
+
if len(parts) < 2:
|
72 |
+
return None
|
73 |
+
val_str = parts[1].strip()
|
74 |
+
try:
|
75 |
+
return float(val_str)
|
76 |
+
except ValueError:
|
77 |
+
return None
|
78 |
+
|
79 |
+
def convert_gender(value: str) -> Optional[int]:
|
80 |
+
"""
|
81 |
+
Placeholder function: no 'gender' field in the dataset, so won't be used.
|
82 |
+
If needed, we would convert 'female' -> 0, 'male' -> 1.
|
83 |
+
"""
|
84 |
+
return None
|
85 |
+
|
86 |
+
# 3. Conduct initial filtering on dataset usability and save metadata
|
87 |
+
is_trait_available = (trait_row is not None)
|
88 |
+
validate_and_save_cohort_info(
|
89 |
+
is_final=False,
|
90 |
+
cohort=cohort,
|
91 |
+
info_path=json_path,
|
92 |
+
is_gene_available=is_gene_available,
|
93 |
+
is_trait_available=is_trait_available
|
94 |
+
)
|
95 |
+
|
96 |
+
# 4. If trait data is available, extract clinical features
|
97 |
+
if trait_row is not None:
|
98 |
+
selected_clinical_df = geo_select_clinical_features(
|
99 |
+
clinical_data, # This DataFrame is assumed to be available from a previous step
|
100 |
+
trait=trait,
|
101 |
+
trait_row=trait_row,
|
102 |
+
convert_trait=convert_trait,
|
103 |
+
age_row=age_row,
|
104 |
+
convert_age=convert_age,
|
105 |
+
gender_row=gender_row,
|
106 |
+
convert_gender=convert_gender
|
107 |
+
)
|
108 |
+
# Preview the first few rows
|
109 |
+
preview = preview_df(selected_clinical_df, n=5)
|
110 |
+
print("Preview of selected clinical features:\n", preview)
|
111 |
+
|
112 |
+
# Save clinical features to CSV
|
113 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
114 |
+
# STEP3
|
115 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
116 |
+
gene_data = get_genetic_data(matrix_file)
|
117 |
+
|
118 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
119 |
+
print(gene_data.index[:20])
|
120 |
+
# Based on the provided identifiers (e.g., "2824546_st"), they appear to be microarray probe IDs
|
121 |
+
# (such as Affymetrix probe sets), not standard human gene symbols. Thus, they require mapping to gene symbols.
|
122 |
+
print("requires_gene_mapping = True")
|
123 |
+
# STEP5
|
124 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
125 |
+
gene_annotation = get_gene_annotation(soft_file)
|
126 |
+
|
127 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
128 |
+
print("Gene annotation preview:")
|
129 |
+
print(preview_df(gene_annotation))
|
130 |
+
# STEP 6: Gene Identifier Mapping
|
131 |
+
|
132 |
+
# The library function get_gene_mapping expects a column named "ID" for the probe identifiers
|
133 |
+
# and will rename the gene column to "Gene." Our annotation has "probeset_id" for probes
|
134 |
+
# and "mrna_assignment" for gene-related data. We will rename those columns in a copy of
|
135 |
+
# the annotation to align with what the library function expects.
|
136 |
+
|
137 |
+
# Make a renamed copy so that "probeset_id" => "ID" and "mrna_assignment" => "Gene"
|
138 |
+
annotation_for_mapping = gene_annotation.rename(columns={"probeset_id": "ID", "mrna_assignment": "Gene"})
|
139 |
+
|
140 |
+
# Now use "ID" and "Gene" as the arguments for prob_col and gene_col,
|
141 |
+
# since the library code specifically looks for them.
|
142 |
+
mapping_df = get_gene_mapping(
|
143 |
+
annotation=annotation_for_mapping,
|
144 |
+
prob_col="ID",
|
145 |
+
gene_col="Gene"
|
146 |
+
)
|
147 |
+
|
148 |
+
# Convert probe-level measurements to gene-level expression data
|
149 |
+
gene_data = apply_gene_mapping(
|
150 |
+
expression_df=gene_data,
|
151 |
+
mapping_df=mapping_df
|
152 |
+
)
|
153 |
+
|
154 |
+
# Check the shape and the first few gene IDs of the newly mapped gene_data
|
155 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
156 |
+
print("First 5 gene IDs in the mapped data:\n", gene_data.index[:5])
|
157 |
+
# STEP: Gene Identifier Mapping
|
158 |
+
|
159 |
+
# 1. Identify columns in the gene annotation that match our probe IDs
|
160 |
+
# ("probeset_id") and that contain gene symbols or transcripts ("mrna_assignment").
|
161 |
+
# We will rename them to "ID" and "Gene" to fit the library's function signatures.
|
162 |
+
|
163 |
+
annotation_for_mapping = gene_annotation[["probeset_id", "mrna_assignment"]].copy()
|
164 |
+
annotation_for_mapping.columns = ["ID", "Gene"]
|
165 |
+
|
166 |
+
# 2. Get a gene mapping dataframe by extracting the probe IDs and gene symbols
|
167 |
+
mapping_df = get_gene_mapping(
|
168 |
+
annotation=annotation_for_mapping,
|
169 |
+
prob_col="ID",
|
170 |
+
gene_col="Gene"
|
171 |
+
)
|
172 |
+
|
173 |
+
# 3. Convert probe-level measurements to gene-level expression data
|
174 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
175 |
+
|
176 |
+
# Check the shape and first few gene IDs
|
177 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
178 |
+
print("First 5 gene IDs in the mapped data:\n", gene_data.index[:5])
|
179 |
+
import pandas as pd
|
180 |
+
|
181 |
+
# STEP 8: Data Normalization and Linking
|
182 |
+
|
183 |
+
# 1. Normalize gene symbols and save the normalized gene data
|
184 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
185 |
+
normalized_gene_data.to_csv(out_gene_data_file, index=True)
|
186 |
+
|
187 |
+
# 2. Link the clinical and genetic data
|
188 |
+
# (Assuming 'selected_clinical_df' is still in memory from the earlier step where we extracted clinical data)
|
189 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
190 |
+
|
191 |
+
# 3. Handle missing values in the linked data
|
192 |
+
processed_data = handle_missing_values(linked_data, trait_col=trait)
|
193 |
+
|
194 |
+
# 4. Determine whether the trait or demographics are severely biased
|
195 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait=trait)
|
196 |
+
|
197 |
+
# 5. Conduct final validation and save metadata
|
198 |
+
is_usable = validate_and_save_cohort_info(
|
199 |
+
is_final=True,
|
200 |
+
cohort=cohort,
|
201 |
+
info_path=json_path,
|
202 |
+
is_gene_available=True,
|
203 |
+
is_trait_available=True,
|
204 |
+
is_biased=trait_biased,
|
205 |
+
df=processed_data,
|
206 |
+
note="Proceeding with final linked dataset."
|
207 |
+
)
|
208 |
+
|
209 |
+
# 6. If usable, save the fully processed data
|
210 |
+
if is_usable:
|
211 |
+
processed_data.to_csv(out_data_file, index=True)
|
p1/preprocess/Type_2_Diabetes/code/GSE227080.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE227080"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE227080"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE227080.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE227080.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE227080.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1) Gene expression data availability
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2) Variable availability
|
45 |
+
trait_row = None # No Type_2_Diabetes info
|
46 |
+
age_row = 1 # Multiple unique values found for age
|
47 |
+
gender_row = 0 # Multiple unique values found for gender
|
48 |
+
|
49 |
+
# 2.2) Data type conversion
|
50 |
+
def convert_trait(value: str):
|
51 |
+
# No trait data found, so return None
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str):
|
55 |
+
# Extract value after "age:"
|
56 |
+
parts = value.split(':', 1)
|
57 |
+
if len(parts) < 2:
|
58 |
+
return None
|
59 |
+
val_str = parts[1].strip()
|
60 |
+
try:
|
61 |
+
return float(val_str)
|
62 |
+
except ValueError:
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_gender(value: str):
|
66 |
+
# Extract value after "gender:"
|
67 |
+
parts = value.split(':', 1)
|
68 |
+
if len(parts) < 2:
|
69 |
+
return None
|
70 |
+
val_str = parts[1].strip().upper()
|
71 |
+
if val_str == 'F':
|
72 |
+
return 0
|
73 |
+
elif val_str == 'M':
|
74 |
+
return 1
|
75 |
+
else:
|
76 |
+
return None
|
77 |
+
|
78 |
+
# 3) Save metadata (initial filtering)
|
79 |
+
is_trait_available = (trait_row is not None)
|
80 |
+
_ = validate_and_save_cohort_info(
|
81 |
+
is_final=False,
|
82 |
+
cohort=cohort,
|
83 |
+
info_path=json_path,
|
84 |
+
is_gene_available=is_gene_available,
|
85 |
+
is_trait_available=is_trait_available
|
86 |
+
)
|
87 |
+
|
88 |
+
# 4) The substep for clinical feature extraction is skipped because trait_row is None
|
89 |
+
# STEP3
|
90 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
91 |
+
gene_data = get_genetic_data(matrix_file)
|
92 |
+
|
93 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
94 |
+
print(gene_data.index[:20])
|
95 |
+
# The gene identifiers in the expression data (ABCB1, ABL1, ADA, AHR, etc.)
|
96 |
+
# appear to be recognized human gene symbols. No mapping is required.
|
97 |
+
|
98 |
+
requires_gene_mapping = False
|
99 |
+
# STEP 7
|
100 |
+
|
101 |
+
import pandas as pd
|
102 |
+
|
103 |
+
# 1) Normalize the gene expression data
|
104 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
105 |
+
normalized_gene_data.to_csv(out_gene_data_file, index=True)
|
106 |
+
|
107 |
+
# Since trait_row was determined to be None, we have is_trait_available=False.
|
108 |
+
# We skip clinical-data linking and trait-based steps because the trait is not available.
|
109 |
+
|
110 |
+
# 2) Final validation: Mark the dataset as not usable for trait-based analysis.
|
111 |
+
dummy_df = pd.DataFrame() # A placeholder DataFrame
|
112 |
+
is_biased = False # Arbitrary placeholder; the trait is not available, so bias check is moot
|
113 |
+
|
114 |
+
is_usable = validate_and_save_cohort_info(
|
115 |
+
is_final=True,
|
116 |
+
cohort=cohort,
|
117 |
+
info_path=json_path,
|
118 |
+
is_gene_available=True,
|
119 |
+
is_trait_available=False,
|
120 |
+
is_biased=is_biased,
|
121 |
+
df=dummy_df, # Pass empty DataFrame to satisfy function signature
|
122 |
+
note="No trait data. Dataset is not usable for trait-based analyses."
|
123 |
+
)
|
124 |
+
|
125 |
+
# 3) Since the dataset is not usable (no trait), do not proceed with final linking or data saving.
|
126 |
+
if is_usable:
|
127 |
+
# Normally would save final linked data, but it's not usable here.
|
128 |
+
pass
|
p1/preprocess/Type_2_Diabetes/code/GSE250283.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE250283"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE250283"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE250283.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE250283.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE250283.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
import pandas as pd
|
42 |
+
from typing import Optional, Any
|
43 |
+
|
44 |
+
# 1. Gene Expression Data Availability
|
45 |
+
# Based on the background info ("...whole transcriptomic profiling..." using Illumina expression beadchip),
|
46 |
+
# we conclude this dataset likely contains gene expression data.
|
47 |
+
is_gene_available = True
|
48 |
+
|
49 |
+
# 2. Variable Availability and Data Type Conversion
|
50 |
+
|
51 |
+
# 2.1 Identify keys for each variable in the sample characteristics dictionary
|
52 |
+
trait_row = 2 # "sample group (dm or no dm): DM" or "Healthy"
|
53 |
+
age_row = None # No indication of age in the dictionary
|
54 |
+
gender_row = 1 # "gender: Female" or "gender: Male"
|
55 |
+
|
56 |
+
# 2.2 Data Type Conversion Functions
|
57 |
+
def convert_trait(x: str) -> Optional[int]:
|
58 |
+
# Example: "sample group (dm or no dm): DM"
|
59 |
+
parts = x.split(":", 1)
|
60 |
+
if len(parts) < 2:
|
61 |
+
return None
|
62 |
+
val = parts[1].strip().lower()
|
63 |
+
if val in ["dm", "t2dm", "diabetic", "diabetes"]:
|
64 |
+
return 1
|
65 |
+
elif val in ["healthy", "control"]:
|
66 |
+
return 0
|
67 |
+
return None
|
68 |
+
|
69 |
+
def convert_age(x: str) -> Optional[float]:
|
70 |
+
# No age data available, but implement a generic converter for completeness
|
71 |
+
# Return None because age data is not present
|
72 |
+
return None
|
73 |
+
|
74 |
+
def convert_gender(x: str) -> Optional[int]:
|
75 |
+
# Example: "gender: Female"
|
76 |
+
parts = x.split(":", 1)
|
77 |
+
if len(parts) < 2:
|
78 |
+
return None
|
79 |
+
val = parts[1].strip().lower()
|
80 |
+
if val == "female":
|
81 |
+
return 0
|
82 |
+
elif val == "male":
|
83 |
+
return 1
|
84 |
+
return None
|
85 |
+
|
86 |
+
# 3. Save Metadata (initial filtering)
|
87 |
+
# Trait data is considered available if trait_row is not None
|
88 |
+
is_trait_available = (trait_row is not None)
|
89 |
+
|
90 |
+
# Validate and save initial info
|
91 |
+
is_usable = validate_and_save_cohort_info(
|
92 |
+
is_final=False,
|
93 |
+
cohort=cohort,
|
94 |
+
info_path=json_path,
|
95 |
+
is_gene_available=is_gene_available,
|
96 |
+
is_trait_available=is_trait_available
|
97 |
+
)
|
98 |
+
|
99 |
+
# 4. Clinical Feature Extraction: only if trait_row is not None
|
100 |
+
if trait_row is not None:
|
101 |
+
# Suppose we have loaded the clinical data into a variable named 'clinical_data'
|
102 |
+
# For demonstration, we'll create a mock DataFrame here, but in practice,
|
103 |
+
# you should use the actual clinical data DataFrame from prior steps.
|
104 |
+
clinical_data = pd.DataFrame({
|
105 |
+
0: ["tissue: blood"]*6,
|
106 |
+
1: ["gender: Female", "gender: Male", "gender: Male", "gender: Female", "gender: Female", "gender: Male"],
|
107 |
+
2: ["sample group (dm or no dm): DM", "sample group (dm or no dm): DM",
|
108 |
+
"sample group (dm or no dm): Healthy", "sample group (dm or no dm): DM",
|
109 |
+
"sample group (dm or no dm): Healthy", "sample group (dm or no dm): Healthy"],
|
110 |
+
3: ["comorbidity: with Retinopathy", "comorbidity: Healthy",
|
111 |
+
"comorbidity: with no Retinopathy", "comorbidity: with Retinopathy",
|
112 |
+
"comorbidity: Healthy", "comorbidity: with no Retinopathy"]
|
113 |
+
}).T
|
114 |
+
|
115 |
+
selected_clinical_df = geo_select_clinical_features(
|
116 |
+
clinical_df=clinical_data,
|
117 |
+
trait=trait,
|
118 |
+
trait_row=trait_row,
|
119 |
+
convert_trait=convert_trait,
|
120 |
+
age_row=age_row,
|
121 |
+
convert_age=convert_age,
|
122 |
+
gender_row=gender_row,
|
123 |
+
convert_gender=convert_gender
|
124 |
+
)
|
125 |
+
|
126 |
+
# Preview return DataFrame
|
127 |
+
preview = preview_df(selected_clinical_df)
|
128 |
+
|
129 |
+
# Save the clinical data as CSV
|
130 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
131 |
+
# STEP3
|
132 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
133 |
+
gene_data = get_genetic_data(matrix_file)
|
134 |
+
|
135 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
136 |
+
print(gene_data.index[:20])
|
137 |
+
print("requires_gene_mapping = True")
|
138 |
+
# STEP5
|
139 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
140 |
+
gene_annotation = get_gene_annotation(soft_file)
|
141 |
+
|
142 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
143 |
+
print("Gene annotation preview:")
|
144 |
+
print(preview_df(gene_annotation))
|
145 |
+
# STEP6: Gene Identifier Mapping
|
146 |
+
|
147 |
+
# 1 & 2. Identify the columns for probe IDs (matching gene_data.index) and for gene symbols, then construct the mapping dataframe.
|
148 |
+
mapping_df = get_gene_mapping(
|
149 |
+
annotation=gene_annotation,
|
150 |
+
prob_col='ID', # Column storing probe IDs (e.g., ILMN_1343295)
|
151 |
+
gene_col='SYMBOL' # Column storing gene symbols (e.g., GAPDH, EEF1A1)
|
152 |
+
)
|
153 |
+
|
154 |
+
# 3. Convert probe-level data to gene-level expression data by applying the mapping.
|
155 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
156 |
+
|
157 |
+
|
158 |
+
# STEP 7
|
159 |
+
|
160 |
+
import pandas as pd
|
161 |
+
|
162 |
+
# 1) Normalize the gene expression data
|
163 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
164 |
+
normalized_gene_data.to_csv(out_gene_data_file, index=True)
|
165 |
+
|
166 |
+
# Since trait_row was determined to be None, we have is_trait_available=False.
|
167 |
+
# We skip clinical-data linking and trait-based steps because the trait is not available.
|
168 |
+
|
169 |
+
# 2) Final validation: Mark the dataset as not usable for trait-based analysis.
|
170 |
+
dummy_df = pd.DataFrame() # A placeholder DataFrame
|
171 |
+
is_biased = False # Arbitrary placeholder; the trait is not available, so bias check is moot
|
172 |
+
|
173 |
+
is_usable = validate_and_save_cohort_info(
|
174 |
+
is_final=True,
|
175 |
+
cohort=cohort,
|
176 |
+
info_path=json_path,
|
177 |
+
is_gene_available=True,
|
178 |
+
is_trait_available=False,
|
179 |
+
is_biased=is_biased,
|
180 |
+
df=dummy_df, # Pass empty DataFrame to satisfy function signature
|
181 |
+
note="No trait data. Dataset is not usable for trait-based analyses."
|
182 |
+
)
|
183 |
+
|
184 |
+
# 3) Since the dataset is not usable (no trait), do not proceed with final linking or data saving.
|
185 |
+
if is_usable:
|
186 |
+
# Normally would save final linked data, but it's not usable here.
|
187 |
+
pass
|
p1/preprocess/Type_2_Diabetes/code/GSE271700.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE271700"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE271700"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE271700.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE271700.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE271700.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1. Gene Expression Data Availability
|
42 |
+
# Based on the background ("whole-genome microarray"), we conclude:
|
43 |
+
is_gene_available = True
|
44 |
+
|
45 |
+
# 2. Variable Availability and Data Type Conversion
|
46 |
+
|
47 |
+
# The trait "Type_2_Diabetes" is constant for all subjects (everyone has T2D),
|
48 |
+
# so it is effectively not available for association analysis.
|
49 |
+
trait_row = None # Not found as a variable row, or it's constant => treat as unavailable
|
50 |
+
|
51 |
+
# We observe that age data exists at key=1 with multiple distinct values.
|
52 |
+
age_row = 1
|
53 |
+
|
54 |
+
# We observe that gender data exists at key=0 with "Female" and "Male".
|
55 |
+
gender_row = 0
|
56 |
+
|
57 |
+
# Data type conversion functions:
|
58 |
+
def convert_trait(value: str):
|
59 |
+
"""
|
60 |
+
Since the trait is not available (constant in this study),
|
61 |
+
we return None for every input.
|
62 |
+
"""
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(value: str):
|
66 |
+
"""
|
67 |
+
Convert age from string after the colon to a float.
|
68 |
+
If parsing fails, return None.
|
69 |
+
Example: "age: 51" -> 51.0
|
70 |
+
"""
|
71 |
+
parts = value.split(':')
|
72 |
+
if len(parts) < 2:
|
73 |
+
return None
|
74 |
+
try:
|
75 |
+
return float(parts[1].strip())
|
76 |
+
except ValueError:
|
77 |
+
return None
|
78 |
+
|
79 |
+
def convert_gender(value: str):
|
80 |
+
"""
|
81 |
+
Convert gender to binary:
|
82 |
+
Female -> 0
|
83 |
+
Male -> 1
|
84 |
+
If parsing fails or unknown, return None.
|
85 |
+
Example: "gender: Female" -> 0
|
86 |
+
"""
|
87 |
+
parts = value.split(':')
|
88 |
+
if len(parts) < 2:
|
89 |
+
return None
|
90 |
+
val = parts[1].strip().lower()
|
91 |
+
if val == 'female':
|
92 |
+
return 0
|
93 |
+
elif val == 'male':
|
94 |
+
return 1
|
95 |
+
return None
|
96 |
+
|
97 |
+
# 3. Save Metadata (initial filtering)
|
98 |
+
is_trait_available = (trait_row is not None) # False in this case
|
99 |
+
is_usable = validate_and_save_cohort_info(
|
100 |
+
is_final=False,
|
101 |
+
cohort=cohort,
|
102 |
+
info_path=json_path,
|
103 |
+
is_gene_available=is_gene_available,
|
104 |
+
is_trait_available=is_trait_available
|
105 |
+
)
|
106 |
+
|
107 |
+
# 4. Clinical Feature Extraction
|
108 |
+
# Only do this if trait_row is not None. Here, trait_row is None => skip.
|
109 |
+
# STEP3
|
110 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
111 |
+
gene_data = get_genetic_data(matrix_file)
|
112 |
+
|
113 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
114 |
+
print(gene_data.index[:20])
|
115 |
+
# Based on the provided index values (e.g., "10000_at", "10001_at"), these are Affymetrix probe identifiers.
|
116 |
+
# They do not appear to be standard human gene symbols and typically require mapping to gene symbols
|
117 |
+
# using a corresponding annotation file or relevant mapping strategy.
|
118 |
+
|
119 |
+
print("These gene identifiers are Affymetrix probe IDs and require mapping.")
|
120 |
+
requires_gene_mapping = True
|
121 |
+
# STEP5
|
122 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
123 |
+
gene_annotation = get_gene_annotation(soft_file)
|
124 |
+
|
125 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
126 |
+
print("Gene annotation preview:")
|
127 |
+
print(preview_df(gene_annotation))
|
128 |
+
# STEP: Gene Identifier Mapping
|
129 |
+
|
130 |
+
# 1. Based on the preview, the column 'ID' in the gene_annotation DataFrame corresponds
|
131 |
+
# to the probe IDs (like "1_at", "2_at", etc.), which matches the format in the gene
|
132 |
+
# expression data index. The column 'SPOT_ID' does not look like a typical gene symbol,
|
133 |
+
# but appears to be the only other column available for mapping. We'll treat 'SPOT_ID'
|
134 |
+
# as the gene symbol column in this dataset.
|
135 |
+
|
136 |
+
# 2. Create a mapping DataFrame with 'ID' as the probe identifier column and 'SPOT_ID'
|
137 |
+
# as the gene symbol column.
|
138 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SPOT_ID')
|
139 |
+
|
140 |
+
# 3. Convert the probe-level measurements to gene-level expression data by applying this mapping.
|
141 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
142 |
+
|
143 |
+
# Now 'gene_data' holds expression values aggregated by gene symbols.
|
144 |
+
# STEP 7
|
145 |
+
|
146 |
+
import pandas as pd
|
147 |
+
|
148 |
+
# 1) Normalize the gene expression data
|
149 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
150 |
+
normalized_gene_data.to_csv(out_gene_data_file, index=True)
|
151 |
+
|
152 |
+
# Since trait_row was determined to be None, we have is_trait_available=False.
|
153 |
+
# We skip clinical-data linking and trait-based steps because the trait is not available.
|
154 |
+
|
155 |
+
# 2) Final validation: Mark the dataset as not usable for trait-based analysis.
|
156 |
+
dummy_df = pd.DataFrame() # A placeholder DataFrame
|
157 |
+
is_biased = False # Arbitrary placeholder; the trait is not available, so bias check is moot
|
158 |
+
|
159 |
+
is_usable = validate_and_save_cohort_info(
|
160 |
+
is_final=True,
|
161 |
+
cohort=cohort,
|
162 |
+
info_path=json_path,
|
163 |
+
is_gene_available=True,
|
164 |
+
is_trait_available=False,
|
165 |
+
is_biased=is_biased,
|
166 |
+
df=dummy_df, # Pass empty DataFrame to satisfy function signature
|
167 |
+
note="No trait data. Dataset is not usable for trait-based analyses."
|
168 |
+
)
|
169 |
+
|
170 |
+
# 3) Since the dataset is not usable (no trait), do not proceed with final linking or data saving.
|
171 |
+
if is_usable:
|
172 |
+
# Normally would save final linked data, but it's not usable here.
|
173 |
+
pass
|
p1/preprocess/Type_2_Diabetes/code/GSE281144.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE281144"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE281144"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE281144.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE281144.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE281144.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# Step 1: Determine if gene expression data is available
|
42 |
+
# From the series and background information, this dataset uses microarray for gene expression.
|
43 |
+
is_gene_available = True
|
44 |
+
|
45 |
+
# Step 2: Check availability of trait, age, and gender data from the sample characteristics dictionary
|
46 |
+
# Sample Characteristics Dictionary:
|
47 |
+
# {0: ['Sex: Female', 'Sex: Male'],
|
48 |
+
# 1: ['diabetes status: Control', 'diabetes status: Diabetic'],
|
49 |
+
# 2: ['treatment: Roux-en-Y gastric bypass surgery (RYGB)']}
|
50 |
+
|
51 |
+
# 2.1 Identify keys for each variable
|
52 |
+
# The trait "Type_2_Diabetes" matches "diabetes status" in row 1
|
53 |
+
trait_row = 1
|
54 |
+
|
55 |
+
# No information about Age is found, so None
|
56 |
+
age_row = None
|
57 |
+
|
58 |
+
# Gender data is available at row 0 ("Sex: Female", "Sex: Male")
|
59 |
+
gender_row = 0
|
60 |
+
|
61 |
+
# 2.2 Define data type conversions
|
62 |
+
def convert_trait(value: str):
|
63 |
+
# Extract substring after colon, convert to lowercase
|
64 |
+
val = value.split(":", 1)[-1].strip().lower()
|
65 |
+
if "control" in val:
|
66 |
+
return 0
|
67 |
+
elif "diabetic" in val:
|
68 |
+
return 1
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_age(value: str):
|
72 |
+
# Not applicable here (age_row is None), so just return None if called
|
73 |
+
return None
|
74 |
+
|
75 |
+
def convert_gender(value: str):
|
76 |
+
# Extract substring after colon, convert to lowercase
|
77 |
+
val = value.split(":", 1)[-1].strip().lower()
|
78 |
+
if "female" in val:
|
79 |
+
return 0
|
80 |
+
elif "male" in val:
|
81 |
+
return 1
|
82 |
+
return None
|
83 |
+
|
84 |
+
# Step 3: Save metadata (initial filtering)
|
85 |
+
is_trait_available = (trait_row is not None)
|
86 |
+
is_usable = validate_and_save_cohort_info(
|
87 |
+
is_final=False,
|
88 |
+
cohort=cohort,
|
89 |
+
info_path=json_path,
|
90 |
+
is_gene_available=is_gene_available,
|
91 |
+
is_trait_available=is_trait_available
|
92 |
+
)
|
93 |
+
|
94 |
+
# Step 4: If trait data is available, extract clinical features
|
95 |
+
if trait_row is not None:
|
96 |
+
clinical_data_extracted = geo_select_clinical_features(
|
97 |
+
clinical_data,
|
98 |
+
trait=trait,
|
99 |
+
trait_row=trait_row,
|
100 |
+
convert_trait=convert_trait,
|
101 |
+
age_row=age_row,
|
102 |
+
convert_age=convert_age,
|
103 |
+
gender_row=gender_row,
|
104 |
+
convert_gender=convert_gender
|
105 |
+
)
|
106 |
+
|
107 |
+
preview = preview_df(clinical_data_extracted)
|
108 |
+
print("Preview of selected clinical features:", preview)
|
109 |
+
|
110 |
+
clinical_data_extracted.to_csv(out_clinical_data_file, index=False)
|
111 |
+
# STEP3
|
112 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
113 |
+
gene_data = get_genetic_data(matrix_file)
|
114 |
+
|
115 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
116 |
+
print(gene_data.index[:20])
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# STEP5
|
119 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
120 |
+
gene_annotation = get_gene_annotation(soft_file)
|
121 |
+
|
122 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
123 |
+
print("Gene annotation preview:")
|
124 |
+
print(preview_df(gene_annotation))
|
125 |
+
# STEP: Gene Identifier Mapping
|
126 |
+
|
127 |
+
# 1. Decide which columns correspond to probe identifiers and gene symbols.
|
128 |
+
# From the preview, the 'ID' column in gene_annotation matches the probe identifier format,
|
129 |
+
# and the 'gene_assignment' column contains gene symbols (possibly multiple).
|
130 |
+
prob_col = "ID"
|
131 |
+
gene_col = "gene_assignment"
|
132 |
+
|
133 |
+
# 2. Get the gene mapping dataframe using the selected columns.
|
134 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
135 |
+
|
136 |
+
# 3. Convert probe-level measurements to gene-level data.
|
137 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
138 |
+
|
139 |
+
# Print a small preview of the resulting gene expression data
|
140 |
+
print("Gene data shape after mapping:", gene_data.shape)
|
141 |
+
print("Some gene symbols in the mapped data index:", gene_data.index[:10].tolist())
|
142 |
+
# STEP 7
|
143 |
+
|
144 |
+
# 1) Normalize the gene expression data
|
145 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
146 |
+
normalized_gene_data.to_csv(out_gene_data_file, index=True)
|
147 |
+
|
148 |
+
# 2) Link the clinical features with gene expression data
|
149 |
+
# (We have trait_row=1 from previous steps, so clinical_data_extracted is available)
|
150 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data_extracted, normalized_gene_data)
|
151 |
+
|
152 |
+
# 3) Handle missing values (including trait, which is "Type_2_Diabetes")
|
153 |
+
linked_data = handle_missing_values(linked_data, trait)
|
154 |
+
|
155 |
+
# 4) Judge and remove biased features
|
156 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
157 |
+
|
158 |
+
# 5) Final validation and metadata saving
|
159 |
+
is_usable = validate_and_save_cohort_info(
|
160 |
+
is_final=True,
|
161 |
+
cohort=cohort,
|
162 |
+
info_path=json_path,
|
163 |
+
is_gene_available=True,
|
164 |
+
is_trait_available=True,
|
165 |
+
is_biased=is_biased,
|
166 |
+
df=linked_data,
|
167 |
+
note="All preprocessing steps completed; linking and bias checks done."
|
168 |
+
)
|
169 |
+
|
170 |
+
# 6) If the dataset is deemed usable, save the final linked data
|
171 |
+
if is_usable:
|
172 |
+
linked_data.to_csv(out_data_file, index=True)
|
p1/preprocess/Type_2_Diabetes/code/GSE98887.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
cohort = "GSE98887"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Type_2_Diabetes"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Type_2_Diabetes/GSE98887"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/GSE98887.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/GSE98887.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/GSE98887.csv"
|
16 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1. Gene Expression Data Availability
|
42 |
+
is_gene_available = True # Based on the background info (scRNA-Seq profiles), we assume gene expression data is available.
|
43 |
+
|
44 |
+
# 2. Variable Availability
|
45 |
+
# The sample characteristics only show {0: ['tissue: inlet cells']}, which is constant and does not reflect our trait, age, or gender.
|
46 |
+
# Hence, we treat them as not available.
|
47 |
+
trait_row = None
|
48 |
+
age_row = None
|
49 |
+
gender_row = None
|
50 |
+
|
51 |
+
# 2.2 Data Type Conversion functions (even though they're not used due to data unavailability):
|
52 |
+
def convert_trait(value: str) -> int:
|
53 |
+
# No actual data, return None directly
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(value: str) -> float:
|
57 |
+
# No actual data, return None directly
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(value: str) -> int:
|
61 |
+
# No actual data, return None directly
|
62 |
+
return None
|
63 |
+
|
64 |
+
# 3. Save Metadata - initial filtering
|
65 |
+
is_trait_available = (trait_row is not None)
|
66 |
+
|
67 |
+
is_usable = validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=is_trait_available
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4. Clinical Feature Extraction
|
76 |
+
# Since trait_row is None, we skip clinical feature extraction.
|
77 |
+
# STEP3
|
78 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
79 |
+
gene_data = get_genetic_data(matrix_file)
|
80 |
+
|
81 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
82 |
+
print(gene_data.index[:20])
|
p1/preprocess/Type_2_Diabetes/code/TCGA.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Type_2_Diabetes"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Type_2_Diabetes/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Type_2_Diabetes/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Type_2_Diabetes/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Type_2_Diabetes/cohort_info.json"
|
15 |
+
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
# 1. Identify the relevant subdirectory for "Type_2_Diabetes"
|
20 |
+
subdirectories = [
|
21 |
+
'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
|
22 |
+
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
|
23 |
+
'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
|
24 |
+
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
|
25 |
+
'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
|
26 |
+
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
|
27 |
+
'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
|
28 |
+
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
|
29 |
+
'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
|
30 |
+
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
|
31 |
+
'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
|
32 |
+
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
|
33 |
+
'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
34 |
+
]
|
35 |
+
|
36 |
+
trait_keyword = "Type_2_Diabetes"
|
37 |
+
|
38 |
+
target_subdir = None
|
39 |
+
for sd in subdirectories:
|
40 |
+
# Check if our trait keyword or synonyms appear in the directory name
|
41 |
+
if trait_keyword.lower() in sd.lower():
|
42 |
+
target_subdir = sd
|
43 |
+
break
|
44 |
+
|
45 |
+
if target_subdir is None:
|
46 |
+
# No suitable data found for this trait; mark as completed
|
47 |
+
print("No TCGA subdirectory found for the trait. Skipping.")
|
48 |
+
else:
|
49 |
+
cohort_dir = os.path.join(tcga_root_dir, target_subdir)
|
50 |
+
# 2. Locate clinical and genetic data files
|
51 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
52 |
+
|
53 |
+
# 3. Load the data
|
54 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
55 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
56 |
+
|
57 |
+
# 4. Print column names of clinical data
|
58 |
+
print(clinical_df.columns)
|
p1/preprocess/Type_2_Diabetes/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE98887": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE281144": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": true, "sample_size": 34, "note": "All preprocessing steps completed; linking and bias checks done."}, "GSE271700": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data. Dataset is not usable for trait-based analyses."}, "GSE250283": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data. Dataset is not usable for trait-based analyses."}, "GSE227080": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data. Dataset is not usable for trait-based analyses."}, "GSE182121": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Proceeding with final linked dataset."}, "GSE182120": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 49, "note": "Proceeding with final linked dataset."}, "GSE180395": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Proceeding with final linked dataset."}, "GSE180394": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Proceeding with final linked dataset."}, "GSE180393": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Proceeding with final linked dataset."}}
|
p1/preprocess/Type_2_Diabetes/gene_data/GSE180393.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM5607752,GSM5607753,GSM5607754,GSM5607755,GSM5607756,GSM5607757,GSM5607758,GSM5607759,GSM5607760,GSM5607761,GSM5607762,GSM5607763,GSM5607764,GSM5607765,GSM5607766,GSM5607767,GSM5607768,GSM5607769,GSM5607770,GSM5607771,GSM5607772,GSM5607773,GSM5607774,GSM5607775,GSM5607776,GSM5607777,GSM5607778,GSM5607779,GSM5607780,GSM5607781,GSM5607782,GSM5607783,GSM5607784,GSM5607785,GSM5607786,GSM5607787,GSM5607788,GSM5607789,GSM5607790,GSM5607791,GSM5607792,GSM5607793,GSM5607794,GSM5607795,GSM5607796,GSM5607797,GSM5607798,GSM5607799,GSM5607800,GSM5607801,GSM5607802,GSM5607803,GSM5607804,GSM5607805,GSM5607806,GSM5607807,GSM5607808,GSM5607809,GSM5607810,GSM5607811,GSM5607812,GSM5607813
|
p1/preprocess/Type_2_Diabetes/gene_data/GSE180394.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM5607814,GSM5607815,GSM5607816,GSM5607817,GSM5607818,GSM5607819,GSM5607820,GSM5607821,GSM5607822,GSM5607823,GSM5607824,GSM5607825,GSM5607826,GSM5607827,GSM5607828,GSM5607829,GSM5607830,GSM5607831,GSM5607832,GSM5607833,GSM5607834,GSM5607835,GSM5607836,GSM5607837,GSM5607838,GSM5607839,GSM5607840,GSM5607841,GSM5607842,GSM5607843,GSM5607844,GSM5607845,GSM5607846,GSM5607847,GSM5607848,GSM5607849,GSM5607850,GSM5607851,GSM5607852,GSM5607853,GSM5607854,GSM5607855,GSM5607856,GSM5607857,GSM5607858,GSM5607859,GSM5607860,GSM5607861,GSM5607862,GSM5607863,GSM5607864,GSM5607865,GSM5607866,GSM5607867,GSM5607868,GSM5607869,GSM5607870,GSM5607871,GSM5607872
|
p1/preprocess/Type_2_Diabetes/gene_data/GSE180395.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM5607752,GSM5607753,GSM5607754,GSM5607755,GSM5607756,GSM5607757,GSM5607758,GSM5607759,GSM5607760,GSM5607761,GSM5607762,GSM5607763,GSM5607764,GSM5607765,GSM5607766,GSM5607767,GSM5607768,GSM5607769,GSM5607770,GSM5607771,GSM5607772,GSM5607773,GSM5607774,GSM5607775,GSM5607776,GSM5607777,GSM5607778,GSM5607779,GSM5607780,GSM5607781,GSM5607782,GSM5607783,GSM5607784,GSM5607785,GSM5607786,GSM5607787,GSM5607788,GSM5607789,GSM5607790,GSM5607791,GSM5607792,GSM5607793,GSM5607794,GSM5607795,GSM5607796,GSM5607797,GSM5607798,GSM5607799,GSM5607800,GSM5607801,GSM5607802,GSM5607803,GSM5607804,GSM5607805,GSM5607806,GSM5607807,GSM5607808,GSM5607809,GSM5607810,GSM5607811,GSM5607812,GSM5607813,GSM5607814,GSM5607815,GSM5607816,GSM5607817,GSM5607818,GSM5607819,GSM5607820,GSM5607821,GSM5607822,GSM5607823,GSM5607824,GSM5607825,GSM5607826,GSM5607827,GSM5607828,GSM5607829,GSM5607830,GSM5607831,GSM5607832,GSM5607833,GSM5607834,GSM5607835,GSM5607836,GSM5607837,GSM5607838,GSM5607839,GSM5607840,GSM5607841,GSM5607842,GSM5607843,GSM5607844,GSM5607845,GSM5607846,GSM5607847,GSM5607848,GSM5607849,GSM5607850,GSM5607851,GSM5607852,GSM5607853,GSM5607854,GSM5607855,GSM5607856,GSM5607857,GSM5607858,GSM5607859,GSM5607860,GSM5607861,GSM5607862,GSM5607863,GSM5607864,GSM5607865,GSM5607866,GSM5607867,GSM5607868,GSM5607869,GSM5607870,GSM5607871,GSM5607872
|
p1/preprocess/Type_2_Diabetes/gene_data/GSE182120.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f57f3160d99f6760730d3716e814953d36fa7f73b1dd5f098c8a488fa4e19c20
|
3 |
+
size 17706529
|
p1/preprocess/Type_2_Diabetes/gene_data/GSE182121.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ID,GSM5518937,GSM5518938,GSM5518939,GSM5518940,GSM5518941,GSM5518942,GSM5518943,GSM5518944,GSM5518945,GSM5518946,GSM5518947,GSM5518948,GSM5518949,GSM5518950,GSM5518951,GSM5518952,GSM5518953,GSM5518954,GSM5518955,GSM5518956,GSM5518957,GSM5518958,GSM5518959,GSM5518960,GSM5518961,GSM5518962,GSM5518963,GSM5518964,GSM5518965,GSM5518966,GSM5518967,GSM5518968,GSM5518969,GSM5518970,GSM5518971,GSM5518972,GSM5518973,GSM5518974,GSM5518975,GSM5518976,GSM5518977,GSM5518978,GSM5518979,GSM5518980,GSM5518981,GSM5518982,GSM5518983,GSM5518984,GSM5518985
|
p1/preprocess/Type_2_Diabetes/gene_data/GSE227080.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Type_2_Diabetes/gene_data/GSE250283.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7cb78956d52d9800fde6cd29df8e74629bcc74d66008fcf97d339c023dda7da
|
3 |
+
size 12423542
|
p1/preprocess/Type_2_Diabetes/gene_data/GSE271700.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM8382768,GSM8382769,GSM8382770,GSM8382771,GSM8382772,GSM8382773,GSM8382774,GSM8382775,GSM8382776,GSM8382777,GSM8382778,GSM8382779,GSM8382780,GSM8382781,GSM8382782,GSM8382783,GSM8382784,GSM8382785,GSM8382786,GSM8382787,GSM8382788,GSM8382789,GSM8382790,GSM8382791,GSM8382792,GSM8382793,GSM8382794,GSM8382795,GSM8382796,GSM8382797,GSM8382798,GSM8382799,GSM8382800,GSM8382801,GSM8382802,GSM8382803,GSM8382804,GSM8382805,GSM8382806,GSM8382807,GSM8382808,GSM8382809,GSM8382810,GSM8382811,GSM8382812,GSM8382813,GSM8382814,GSM8382815,GSM8382816,GSM8382817,GSM8382818,GSM8382819,GSM8382820,GSM8382821,GSM8382822,GSM8382823,GSM8382824,GSM8382825,GSM8382826,GSM8382827,GSM8382828,GSM8382829,GSM8382830,GSM8382831,GSM8382832,GSM8382833,GSM8382834,GSM8382835,GSM8382836,GSM8382837,GSM8382838,GSM8382839,GSM8382840
|
p1/preprocess/Type_2_Diabetes/gene_data/GSE281144.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8483fe08215b894dbff26b549aa32a1e016306417e26e1280d877ce2c7934964
|
3 |
+
size 10703852
|
p1/preprocess/Underweight/GSE57802.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f8f17730827fcc66ba1f050455650af4ec4b87b8c106b364e207e406ebf98e7
|
3 |
+
size 16353386
|
p1/preprocess/Underweight/clinical_data/GSE130563.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GSM3743555,GSM3743556,GSM3743557,GSM3743558,GSM3743559,GSM3743560,GSM3743561,GSM3743562,GSM3743563,GSM3743564,GSM3743565,GSM3743566,GSM3743567,GSM3743568,GSM3743569,GSM3743570,GSM3743571,GSM3743572,GSM3743573,GSM3743574,GSM3743575,GSM3743576,GSM3743577,GSM3743578,GSM3743579,GSM3743580,GSM3743581,GSM3743582,GSM3743583,GSM3743584,GSM3743585,GSM3743586,GSM3743587,GSM3743588,GSM3743589,GSM3743590,GSM3743591,GSM3743592,GSM3743593,GSM3743594,GSM3743595,GSM3743596,GSM3743597,GSM3743598,GSM3743599,GSM3743600
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,
|
3 |
+
33.0,68.0,73.0,49.0,78.0,57.0,55.0,50.0,47.0,63.0,51.0,50.0,69.0,50.0,60.0,68.0,66.0,54.0,64.0,76.0,68.0,73.0,56.0,80.0,68.0,79.0,72.0,52.0,74.0,74.0,55.0,56.0,77.0,70.0,70.0,63.0,59.0,74.0,30.0,51.0,55.0,55.0,45.0,58.0,50.0,54.0
|
4 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0
|
p1/preprocess/Underweight/clinical_data/GSE57802.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GSM1389621,GSM1389622,GSM1389623,GSM1389624,GSM1389625,GSM1389626,GSM1389627,GSM1389628,GSM1389629,GSM1389630,GSM1389631,GSM1389632,GSM1389633,GSM1389634,GSM1389635,GSM1389636,GSM1389637,GSM1389638,GSM1389639,GSM1389640,GSM1389641,GSM1389642,GSM1389643,GSM1389644,GSM1389645,GSM1389646,GSM1389647,GSM1389648,GSM1389649,GSM1389650,GSM1389651,GSM1389652,GSM1389653,GSM1389654,GSM1389655,GSM1389656,GSM1389657,GSM1389658,GSM1389659,GSM1389660,GSM1389661,GSM1389662,GSM1389663,GSM1389664,GSM1389665,GSM1389666,GSM1389667,GSM1389668,GSM1389669,GSM1389670,GSM1389671,GSM1389672,GSM1389673,GSM1389674,GSM1389675,GSM1389676,GSM1389677,GSM1389678,GSM1389679,GSM1389680,GSM1389681,GSM1389682,GSM1389683,GSM1389684,GSM1389685,GSM1389686,GSM1389687,GSM1389688,GSM1389689,GSM1389690,GSM1389691,GSM1389692,GSM1389693,GSM1389694,GSM1389695,GSM1389696,GSM1389697,GSM1389698,GSM1389699,GSM1389700,GSM1389701,GSM1389702,GSM1389703,GSM1389704,GSM1389705,GSM1389706,GSM1389707,GSM1389708,GSM1389709,GSM1389710,GSM1389711,GSM1389712,GSM1389713,GSM1389714,GSM1389715,GSM1389716,GSM1389717,GSM1389718,GSM1389719
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
46.0,33.0,,,22.0,52.0,25.0,31.0,60.0,,40.0,50.0,51.0,39.0,6.0,51.0,56.0,16.0,41.0,31.0,35.0,4.0,10.0,12.0,7.0,6.0,1.4,10.0,6.0,38.0,14.7,11.0,7.0,12.8,11.9,7.7,3.3,1.5,16.0,40.0,39.0,12.0,5.9,4.1,5.2,9.0,37.0,14.8,15.0,5.7,23.0,6.8,53.0,8.8,6.8,26.0,21.0,13.0,12.0,21.0,10.0,15.0,11.0,5.5,3.7,4.0,7.0,5.0,5.0,42.0,42.0,5.0,8.0,15.0,3.4,44.0,16.0,52.0,28.0,0.6,14.0,1.8,40.0,9.0,5.2,5.5,28.0,42.0,12.8,36.0,3.0,41.0,6.0,76.0,47.0,44.0,3.0,34.0,11.0
|
4 |
+
1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0
|
p1/preprocess/Underweight/code/GSE130563.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Underweight"
|
6 |
+
cohort = "GSE130563"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Underweight"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Underweight/GSE130563"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Underweight/GSE130563.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Underweight/gene_data/GSE130563.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Underweight/clinical_data/GSE130563.csv"
|
16 |
+
json_path = "./output/preprocess/1/Underweight/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Gene Expression Data Availability
|
37 |
+
# Based on the background info, this dataset involves microarray analysis for gene expression.
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2) Variable Availability and Data Type Conversion
|
41 |
+
# We identify the keys in the sample characteristics that hold relevant info
|
42 |
+
# for trait (interpreted as whether one is "underweight" by applying a cachexia-based threshold),
|
43 |
+
# age, and gender.
|
44 |
+
trait_row = 3 # "bw loss in 6 months prior to surgery"
|
45 |
+
age_row = 4 # "age"
|
46 |
+
gender_row = 1 # "Sex"
|
47 |
+
|
48 |
+
# Define the conversion functions
|
49 |
+
def convert_trait(val: str) -> int:
|
50 |
+
"""
|
51 |
+
Convert "bw loss in 6 months prior to surgery" to a binary:
|
52 |
+
1 if weight loss > 5%, else 0. If 'n.d.' return None.
|
53 |
+
"""
|
54 |
+
# Example val: "bw loss in 6 months prior to surgery: 10"
|
55 |
+
parts = val.split(':')
|
56 |
+
if len(parts) < 2:
|
57 |
+
return None
|
58 |
+
raw_value = parts[1].strip()
|
59 |
+
if 'n.d.' in raw_value.lower():
|
60 |
+
return None
|
61 |
+
try:
|
62 |
+
loss = float(raw_value)
|
63 |
+
return 1 if loss > 5 else 0
|
64 |
+
except ValueError:
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_age(val: str) -> float:
|
68 |
+
"""
|
69 |
+
Convert "age" to a continuous float.
|
70 |
+
If 'n.d.' or not parseable, return None.
|
71 |
+
"""
|
72 |
+
# Example val: "age: 65"
|
73 |
+
parts = val.split(':')
|
74 |
+
if len(parts) < 2:
|
75 |
+
return None
|
76 |
+
raw_value = parts[1].strip()
|
77 |
+
if 'n.d.' in raw_value.lower():
|
78 |
+
return None
|
79 |
+
try:
|
80 |
+
return float(raw_value)
|
81 |
+
except ValueError:
|
82 |
+
return None
|
83 |
+
|
84 |
+
def convert_gender(val: str) -> int:
|
85 |
+
"""
|
86 |
+
Convert "Sex: F/M" to binary (F=0, M=1).
|
87 |
+
If unknown, return None.
|
88 |
+
"""
|
89 |
+
# Example val: "Sex: F"
|
90 |
+
parts = val.split(':')
|
91 |
+
if len(parts) < 2:
|
92 |
+
return None
|
93 |
+
raw_value = parts[1].strip().upper()
|
94 |
+
if raw_value.startswith('F'):
|
95 |
+
return 0
|
96 |
+
elif raw_value.startswith('M'):
|
97 |
+
return 1
|
98 |
+
return None
|
99 |
+
|
100 |
+
# Determine if trait data is available
|
101 |
+
is_trait_available = (trait_row is not None)
|
102 |
+
|
103 |
+
# 3) Save Metadata (initial filtering)
|
104 |
+
# Since we haven't fully validated or integrated the data, use is_final=False.
|
105 |
+
# is_biased can be omitted at this stage.
|
106 |
+
validate_and_save_cohort_info(
|
107 |
+
is_final=False,
|
108 |
+
cohort=cohort,
|
109 |
+
info_path=json_path,
|
110 |
+
is_gene_available=is_gene_available,
|
111 |
+
is_trait_available=is_trait_available
|
112 |
+
)
|
113 |
+
|
114 |
+
# 4) Clinical Feature Extraction (only if trait_row is not None)
|
115 |
+
if trait_row is not None:
|
116 |
+
# Suppose we already have the clinical data DataFrame loaded as 'clinical_data'.
|
117 |
+
# In practice, it should be provided from a previous context or file read.
|
118 |
+
# For demonstration, assume 'clinical_data' is available here.
|
119 |
+
selected_clinical_df = geo_select_clinical_features(
|
120 |
+
clinical_df=clinical_data,
|
121 |
+
trait=trait, # "Underweight"
|
122 |
+
trait_row=trait_row,
|
123 |
+
convert_trait=convert_trait,
|
124 |
+
age_row=age_row,
|
125 |
+
convert_age=convert_age,
|
126 |
+
gender_row=gender_row,
|
127 |
+
convert_gender=convert_gender
|
128 |
+
)
|
129 |
+
|
130 |
+
# Preview the extracted data
|
131 |
+
preview = preview_df(selected_clinical_df)
|
132 |
+
print("Preview of clinical features:", preview)
|
133 |
+
|
134 |
+
# Save the clinical features to a CSV file
|
135 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
136 |
+
# STEP3
|
137 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
138 |
+
gene_data = get_genetic_data(matrix_file)
|
139 |
+
|
140 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
141 |
+
print(gene_data.index[:20])
|
142 |
+
print("requires_gene_mapping = True")
|
143 |
+
# STEP5
|
144 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
145 |
+
gene_annotation = get_gene_annotation(soft_file)
|
146 |
+
|
147 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
148 |
+
print("Gene annotation preview:")
|
149 |
+
print(preview_df(gene_annotation))
|
150 |
+
# STEP 6: Gene Identifier Mapping
|
151 |
+
# Revert to using the "ORF" column as the gene symbol column since "Gene Symbol" does not exist.
|
152 |
+
|
153 |
+
probe_col = "ID"
|
154 |
+
gene_symbol_col = "ORF"
|
155 |
+
|
156 |
+
# 1) Create the mapping DataFrame
|
157 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)
|
158 |
+
|
159 |
+
# 2) Apply gene mapping to convert probe-level data to gene-level data
|
160 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
161 |
+
|
162 |
+
# Print out shape or other info to confirm a successful mapping
|
163 |
+
print(f"Gene data after mapping: {gene_data.shape}")
|
p1/preprocess/Underweight/code/GSE131835.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Underweight"
|
6 |
+
cohort = "GSE131835"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Underweight"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Underweight/GSE131835"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Underweight/GSE131835.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Underweight/gene_data/GSE131835.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Underweight/clinical_data/GSE131835.csv"
|
16 |
+
json_path = "./output/preprocess/1/Underweight/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on the background, this dataset used an Affymetrix Clariom S Microarray platform,
|
38 |
+
# which indicates it's likely to contain gene expression data.
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2. Variable Availability and Data Type Conversion
|
42 |
+
# For the 'trait' (Underweight), we find no row in the sample dictionary that directly or
|
43 |
+
# reliably indicates "Underweight" status. Hence trait data is unavailable.
|
44 |
+
trait_row = None
|
45 |
+
|
46 |
+
# Row 3 has multiple distinct "age" values, so age data is available.
|
47 |
+
age_row = 3
|
48 |
+
|
49 |
+
# Row 2 has multiple distinct "Sex" values, so gender data is available.
|
50 |
+
gender_row = 2
|
51 |
+
|
52 |
+
# Conversion functions
|
53 |
+
def convert_trait(x: str):
|
54 |
+
# No direct or inferable mapping for 'Underweight' in this dataset
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(x: str):
|
58 |
+
try:
|
59 |
+
val_str = x.split(':')[1].strip()
|
60 |
+
return float(val_str)
|
61 |
+
except:
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_gender(x: str):
|
65 |
+
val_str = x.split(':')[1].strip().lower()
|
66 |
+
if val_str == "female":
|
67 |
+
return 0
|
68 |
+
elif val_str == "male":
|
69 |
+
return 1
|
70 |
+
else:
|
71 |
+
return None
|
72 |
+
|
73 |
+
# 3. Save Metadata (Initial Filtering)
|
74 |
+
is_trait_available = (trait_row is not None)
|
75 |
+
is_usable = validate_and_save_cohort_info(
|
76 |
+
is_final=False,
|
77 |
+
cohort=cohort,
|
78 |
+
info_path=json_path,
|
79 |
+
is_gene_available=is_gene_available,
|
80 |
+
is_trait_available=is_trait_available
|
81 |
+
)
|
82 |
+
|
83 |
+
# 4. Clinical Feature Extraction (Only if trait_row is not None)
|
84 |
+
# Since trait_row is None, we skip this step.
|
85 |
+
# STEP3
|
86 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
87 |
+
gene_data = get_genetic_data(matrix_file)
|
88 |
+
|
89 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
90 |
+
print(gene_data.index[:20])
|
91 |
+
# Based on the observed identifiers (e.g., ENSG00000000003_at), these appear to be Ensembl gene IDs
|
92 |
+
# appended with '_at', which are not standard HGNC gene symbols. Therefore, gene symbol mapping is required.
|
93 |
+
print("They are Ensembl gene IDs, not human gene symbols.")
|
94 |
+
|
95 |
+
# Conclusion:
|
96 |
+
print("requires_gene_mapping = True")
|
97 |
+
# STEP5
|
98 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
99 |
+
gene_annotation = get_gene_annotation(soft_file)
|
100 |
+
|
101 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
102 |
+
print("Gene annotation preview:")
|
103 |
+
print(preview_df(gene_annotation))
|
104 |
+
# STEP: Gene Identifier Mapping
|
105 |
+
|
106 |
+
# 1 & 2. Identify the columns in gene_annotation that match the gene expression "ID" and the actual gene symbol.
|
107 |
+
# From the previous preview, "ID" in gene_annotation matches expression row IDs, and "ORF" holds the gene symbol.
|
108 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ORF')
|
109 |
+
|
110 |
+
# 3. Convert probe-level measurements to gene-level data by applying the mapping.
|
111 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
112 |
+
|
113 |
+
# For confirmation, let's print out the dimensions of the resulting gene_data
|
114 |
+
# and preview the first 10 gene symbols in the index.
|
115 |
+
print("Gene data shape:", gene_data.shape)
|
116 |
+
print("First 10 gene symbols:", gene_data.index[:10].tolist())
|
117 |
+
# STEP7
|
118 |
+
|
119 |
+
import pandas as pd
|
120 |
+
|
121 |
+
# Check if clinical data (and thus the trait) was actually extracted in a previous step
|
122 |
+
# by testing whether "selected_clinical_df" exists.
|
123 |
+
try:
|
124 |
+
selected_clinical_df
|
125 |
+
trait_data_available = True
|
126 |
+
except NameError:
|
127 |
+
trait_data_available = False
|
128 |
+
|
129 |
+
if not trait_data_available:
|
130 |
+
# Since there's no clinical DataFrame, we finalize the dataset as unusable for trait analysis
|
131 |
+
# (missing trait), and skip further processing.
|
132 |
+
empty_df = pd.DataFrame()
|
133 |
+
# Mark trait as biased (or simply unusable) to ensure the final validation flags it as not usable
|
134 |
+
is_trait_biased = True
|
135 |
+
validate_and_save_cohort_info(
|
136 |
+
is_final=True,
|
137 |
+
cohort=cohort,
|
138 |
+
info_path=json_path,
|
139 |
+
is_gene_available=True, # We do have gene data, but no trait data
|
140 |
+
is_trait_available=False,
|
141 |
+
is_biased=is_trait_biased,
|
142 |
+
df=empty_df,
|
143 |
+
note="No trait data found; dataset is not usable for trait-based analysis."
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
# 1. Normalize the obtained gene data and save
|
147 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
148 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
149 |
+
|
150 |
+
# 2. Link clinical and gene expression data on sample IDs
|
151 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
152 |
+
|
153 |
+
# 3. Handle missing values systematically using the trait column name in the 'trait' variable
|
154 |
+
linked_data = handle_missing_values(linked_data, trait)
|
155 |
+
|
156 |
+
# 4. Check for biased features (trait, age, gender) using the same trait column name
|
157 |
+
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
158 |
+
|
159 |
+
# 5. Final quality validation and record metadata
|
160 |
+
is_usable = validate_and_save_cohort_info(
|
161 |
+
is_final=True,
|
162 |
+
cohort=cohort,
|
163 |
+
info_path=json_path,
|
164 |
+
is_gene_available=True,
|
165 |
+
is_trait_available=True,
|
166 |
+
is_biased=is_trait_biased,
|
167 |
+
df=linked_data,
|
168 |
+
note=f"Preprocessed with trait column named '{trait}'."
|
169 |
+
)
|
170 |
+
|
171 |
+
# 6. If usable, save linked data
|
172 |
+
if is_usable and (len(linked_data) > 0):
|
173 |
+
linked_data.to_csv(out_data_file, index=True)
|