Liu-Hy commited on
Commit
c192597
·
verified ·
1 Parent(s): 5c59ea7

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +22 -0
  2. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE162635.csv +3 -0
  3. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE208662.csv +0 -0
  4. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE212331.csv +3 -0
  5. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE21359.csv +3 -0
  6. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/code/GSE32030.py +147 -0
  7. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/code/GSE64593.py +144 -0
  8. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/code/TCGA.py +113 -0
  9. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE162635.csv +3 -0
  10. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE175616.csv +0 -0
  11. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE208662.csv +0 -0
  12. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE212331.csv +3 -0
  13. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE21359.csv +3 -0
  14. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE32030.csv +3 -0
  15. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE64593.csv +0 -0
  16. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE64599.csv +0 -0
  17. p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE84046.csv +3 -0
  18. p1/preprocess/Fibromyalgia/GSE67311.csv +3 -0
  19. p1/preprocess/Fibromyalgia/clinical_data/GSE67311.csv +2 -0
  20. p1/preprocess/Fibromyalgia/code/GSE67311.py +219 -0
  21. p1/preprocess/Fibromyalgia/code/TCGA.py +55 -0
  22. p1/preprocess/Fibromyalgia/cohort_info.json +1 -0
  23. p1/preprocess/Fibromyalgia/gene_data/GSE67311.csv +3 -0
  24. p1/preprocess/Glioblastoma/TCGA.csv +3 -0
  25. p1/preprocess/Glioblastoma/gene_data/TCGA.csv +3 -0
  26. p1/preprocess/Head_and_Neck_Cancer/TCGA.csv +3 -0
  27. p1/preprocess/Head_and_Neck_Cancer/gene_data/TCGA.csv +3 -0
  28. p1/preprocess/Hemochromatosis/TCGA.csv +3 -0
  29. p1/preprocess/Hemochromatosis/gene_data/TCGA.csv +3 -0
  30. p1/preprocess/Huntingtons_Disease/gene_data/GSE71220.csv +3 -0
  31. p1/preprocess/Hypertension/gene_data/GSE256539.csv +3 -0
  32. p1/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv +3 -0
  33. p1/preprocess/Hypertrophic_Cardiomyopathy/clinical_data/GSE36961.csv +4 -0
  34. p1/preprocess/Hypertrophic_Cardiomyopathy/code/GSE36961.py +147 -0
  35. p1/preprocess/Hypertrophic_Cardiomyopathy/code/TCGA.py +50 -0
  36. p1/preprocess/Hypertrophic_Cardiomyopathy/cohort_info.json +1 -0
  37. p1/preprocess/Hypertrophic_Cardiomyopathy/gene_data/GSE36961.csv +3 -0
  38. p1/preprocess/Hypothyroidism/GSE151158.csv +0 -0
  39. p1/preprocess/Hypothyroidism/clinical_data/GSE151158.csv +4 -0
  40. p1/preprocess/Hypothyroidism/clinical_data/GSE224330.csv +4 -0
  41. p1/preprocess/Hypothyroidism/clinical_data/GSE75678.csv +3 -0
  42. p1/preprocess/Hypothyroidism/clinical_data/GSE75685.csv +3 -0
  43. p1/preprocess/Hypothyroidism/clinical_data/TCGA.csv +573 -0
  44. p1/preprocess/Hypothyroidism/code/GSE151158.py +147 -0
  45. p1/preprocess/Hypothyroidism/code/GSE224330.py +162 -0
  46. p1/preprocess/Hypothyroidism/code/GSE32445.py +109 -0
  47. p1/preprocess/Hypothyroidism/code/GSE75678.py +153 -0
  48. p1/preprocess/Hypothyroidism/code/GSE75685.py +175 -0
  49. p1/preprocess/Hypothyroidism/code/TCGA.py +111 -0
  50. p1/preprocess/Hypothyroidism/cohort_info.json +1 -0
.gitattributes CHANGED
@@ -1172,3 +1172,25 @@ p1/preprocess/Hypertension/gene_data/GSE117261.csv filter=lfs diff=lfs merge=lfs
1172
  p1/preprocess/Huntingtons_Disease/gene_data/GSE135589.csv filter=lfs diff=lfs merge=lfs -text
1173
  p1/preprocess/Hypertension/gene_data/GSE71994.csv filter=lfs diff=lfs merge=lfs -text
1174
  p1/preprocess/Hypertension/gene_data/GSE77627.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172
  p1/preprocess/Huntingtons_Disease/gene_data/GSE135589.csv filter=lfs diff=lfs merge=lfs -text
1173
  p1/preprocess/Hypertension/gene_data/GSE71994.csv filter=lfs diff=lfs merge=lfs -text
1174
  p1/preprocess/Hypertension/gene_data/GSE77627.csv filter=lfs diff=lfs merge=lfs -text
1175
+ p1/preprocess/Hypertension/gene_data/GSE256539.csv filter=lfs diff=lfs merge=lfs -text
1176
+ p1/preprocess/Huntingtons_Disease/gene_data/GSE71220.csv filter=lfs diff=lfs merge=lfs -text
1177
+ p1/preprocess/Head_and_Neck_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1178
+ p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE84046.csv filter=lfs diff=lfs merge=lfs -text
1179
+ p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE212331.csv filter=lfs diff=lfs merge=lfs -text
1180
+ p1/preprocess/Glioblastoma/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1181
+ p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE21359.csv filter=lfs diff=lfs merge=lfs -text
1182
+ p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE212331.csv filter=lfs diff=lfs merge=lfs -text
1183
+ p1/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/GSE112943.csv filter=lfs diff=lfs merge=lfs -text
1184
+ p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE21359.csv filter=lfs diff=lfs merge=lfs -text
1185
+ p1/preprocess/Glioblastoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1186
+ p1/preprocess/Hemochromatosis/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1187
+ p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE162635.csv filter=lfs diff=lfs merge=lfs -text
1188
+ p1/preprocess/Head_and_Neck_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1189
+ p1/preprocess/Fibromyalgia/GSE67311.csv filter=lfs diff=lfs merge=lfs -text
1190
+ p1/preprocess/Hemochromatosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1191
+ p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE32030.csv filter=lfs diff=lfs merge=lfs -text
1192
+ p1/preprocess/Hypertrophic_Cardiomyopathy/gene_data/GSE36961.csv filter=lfs diff=lfs merge=lfs -text
1193
+ p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE162635.csv filter=lfs diff=lfs merge=lfs -text
1194
+ p1/preprocess/Fibromyalgia/gene_data/GSE67311.csv filter=lfs diff=lfs merge=lfs -text
1195
+ p1/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/gene_data/GSE112943.csv filter=lfs diff=lfs merge=lfs -text
1196
+ p1/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv filter=lfs diff=lfs merge=lfs -text
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE162635.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3159e5b7325e26c201fcc441d373f29ab81b9c0648b2002785f0daa5c91e1dd0
3
+ size 45984037
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE208662.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE212331.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6066a5b8bd07cff45e504dd0131c29d77f948593e2ad8500981cb22d2df4b06
3
+ size 22262575
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE21359.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba7450fc67ee50cb7c2d08f0b714336059d09cd9bb664432157a417c4b0f56e7
3
+ size 27474937
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/code/GSE32030.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Chronic_obstructive_pulmonary_disease_(COPD)"
6
+ cohort = "GSE32030"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Chronic_obstructive_pulmonary_disease_(COPD)"
10
+ in_cohort_dir = "../DATA/GEO/Chronic_obstructive_pulmonary_disease_(COPD)/GSE32030"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/GSE32030.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE32030.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/clinical_data/GSE32030.csv"
16
+ json_path = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Gene Expression Data Availability
37
+ is_gene_available = True # Based on background info indicating microarray gene expression data
38
+
39
+ # 2) Variable Availability
40
+ # Checking the sample characteristics dictionary, 'copd status' only appears as "yes", no variation.
41
+ # No explicit age or gender info is provided in the dictionary. Thus, all are considered unavailable.
42
+ trait_row = None
43
+ age_row = None
44
+ gender_row = None
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(value: str) -> int:
48
+ # For demonstration, but will not be used because trait_row is None
49
+ # e.g., return 1 if the string (after the colon) indicates COPD, else 0 or None
50
+ parts = str(value).split(':', 1)
51
+ val = parts[1].strip().lower() if len(parts) > 1 else ''
52
+ if val == 'yes':
53
+ return 1
54
+ elif val == 'no':
55
+ return 0
56
+ return None
57
+
58
+ def convert_age(value: str) -> float:
59
+ # For demonstration, but will not be used because age_row is None
60
+ parts = str(value).split(':', 1)
61
+ val = parts[1].strip().lower() if len(parts) > 1 else ''
62
+ try:
63
+ return float(val)
64
+ except ValueError:
65
+ return None
66
+
67
+ def convert_gender(value: str) -> int:
68
+ # For demonstration, but will not be used because gender_row is None
69
+ parts = str(value).split(':', 1)
70
+ val = parts[1].strip().lower() if len(parts) > 1 else ''
71
+ if val in ['m', 'male']:
72
+ return 1
73
+ elif val in ['f', 'female']:
74
+ return 0
75
+ return None
76
+
77
+ # 3) Save Metadata with initial filtering
78
+ is_trait_available = (trait_row is not None)
79
+ _ = validate_and_save_cohort_info(
80
+ is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=is_trait_available
85
+ )
86
+
87
+ # 4) Clinical Feature Extraction - skip since trait_row is None
88
+ # STEP3
89
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
90
+ gene_data = get_genetic_data(matrix_file)
91
+
92
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
93
+ print(gene_data.index[:20])
94
+ # These identifiers (e.g., "1007_s_at", "1053_at") are probe set IDs (commonly used by Affymetrix microarray platforms).
95
+ # Therefore, they are not standard human gene symbols and do require mapping.
96
+ print("\nrequires_gene_mapping = True")
97
+ # STEP5
98
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
99
+ gene_annotation = get_gene_annotation(soft_file)
100
+
101
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
102
+ print("Gene annotation preview:")
103
+ print(preview_df(gene_annotation))
104
+ # STEP: Gene Identifier Mapping
105
+
106
+ # 1. Identify the columns in gene_annotation corresponding to the same identifiers as in gene_data and the gene symbols.
107
+ # From the preview, "ID" matches the probe IDs in gene_data, and "Gene Symbol" holds the gene symbols.
108
+
109
+ # 2. Get the gene mapping dataframe using the 'get_gene_mapping' function.
110
+ mapping_df = get_gene_mapping(
111
+ annotation=gene_annotation,
112
+ prob_col="ID", # Probe ID column
113
+ gene_col="Gene Symbol" # Gene symbol column
114
+ )
115
+
116
+ # 3. Convert probe-level measurements to gene-level expression data by applying the mapping.
117
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
118
+
119
+ # For verification, let's print the shape of the mapped gene_data and a small slice.
120
+ print("Mapped gene_data shape:", gene_data.shape)
121
+ print(gene_data.iloc[:5, :5])
122
+ # STEP7
123
+
124
+ # In a previous step, we determined that trait data is not available, which means
125
+ # is_trait_available = False. Hence, clinical feature extraction was skipped
126
+ # and "selected_clinical_df" was never created.
127
+
128
+ # 1) Normalize gene symbols using synonym information from NCBI, then save the result.
129
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
130
+ normalized_gene_data.to_csv(out_gene_data_file)
131
+
132
+ # 2) Since the trait is unavailable, we skip linking clinical data (no "selected_clinical_df").
133
+
134
+ # 3), 4), 5) Provide final validation. The library requires 'is_biased' to be a boolean.
135
+ # Since the dataset has no trait, we set is_biased=False.
136
+ is_usable = validate_and_save_cohort_info(
137
+ is_final=True,
138
+ cohort=cohort,
139
+ info_path=json_path,
140
+ is_gene_available=True,
141
+ is_trait_available=False,
142
+ is_biased=False,
143
+ df=normalized_gene_data,
144
+ note="Trait data unavailable; only gene expression data was processed."
145
+ )
146
+
147
+ # 6) Without trait data, we cannot perform further trait-based analysis, so no final linked dataset is saved.
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/code/GSE64593.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Chronic_obstructive_pulmonary_disease_(COPD)"
6
+ cohort = "GSE64593"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Chronic_obstructive_pulmonary_disease_(COPD)"
10
+ in_cohort_dir = "../DATA/GEO/Chronic_obstructive_pulmonary_disease_(COPD)/GSE64593"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/GSE64593.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE64593.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/clinical_data/GSE64593.csv"
16
+ json_path = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Because the dataset is from an Affymetrix microarray, which typically measures gene expression.
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+
41
+ # From the sample characteristics dictionary:
42
+ # {0: ['smoking status: smoker'],
43
+ # 1: ['disease state: HIV+', 'disease state: HIV-'],
44
+ # 2: ['cell type: alveolar macrophage']}
45
+ # None of the keys mentions COPD explicitly, nor is there age or gender information.
46
+ # Hence no variation for COPD, age, or gender can be found.
47
+
48
+ trait_row = None
49
+ age_row = None
50
+ gender_row = None
51
+
52
+ # Define conversion functions (though no data is available for actual use):
53
+ def convert_trait(value: str):
54
+ # Typically we'd parse the string for COPD vs. non-COPD.
55
+ # This dataset does not provide COPD info; default to None.
56
+ return None
57
+
58
+ def convert_age(value: str):
59
+ # Typically we'd parse the string for numeric age.
60
+ # No age data is present; default to None.
61
+ return None
62
+
63
+ def convert_gender(value: str):
64
+ # Typically we'd parse the string for 'male' or 'female'.
65
+ # No gender data is present; default to None.
66
+ return None
67
+
68
+ # 3. Save Metadata (initial filtering)
69
+ # Trait data is not available => is_trait_available = False
70
+ is_usable = validate_and_save_cohort_info(
71
+ is_final=False,
72
+ cohort=cohort,
73
+ info_path=json_path,
74
+ is_gene_available=is_gene_available,
75
+ is_trait_available=(trait_row is not None)
76
+ )
77
+
78
+ # 4. Clinical Feature Extraction
79
+ # Skip because trait_row is None (no trait data available).
80
+ # STEP3
81
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
82
+ gene_data = get_genetic_data(matrix_file)
83
+
84
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
85
+ print(gene_data.index[:20])
86
+ # The given identifiers (e.g., "1007_s_at", "1053_at", etc.) represent Affymetrix probe set IDs,
87
+ # which are not standard human gene symbols and thus require mapping to gene symbols.
88
+
89
+ print("requires_gene_mapping = True")
90
+ # STEP5
91
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
92
+ gene_annotation = get_gene_annotation(soft_file)
93
+
94
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
95
+ print("Gene annotation preview:")
96
+ print(preview_df(gene_annotation))
97
+ # STEP6: Gene Identifier Mapping
98
+
99
+ # 1 & 2. From the preview, the gene expression data uses the "ID" column (e.g., "1007_s_at"),
100
+ # and the corresponding column in gene_annotation that stores gene symbols is "Gene Symbol".
101
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
102
+
103
+ # 3. Convert probe-level measurements to gene-level data.
104
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
105
+ import pandas as pd
106
+
107
+ # STEP7
108
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function.
109
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
110
+ normalized_gene_data.to_csv(out_gene_data_file)
111
+
112
+ # Because we determined in earlier steps that there is no trait data (trait_row=None),
113
+ # we have no clinical data to link. Hence, we define an empty DataFrame for clinical data.
114
+ selected_clinical_df = pd.DataFrame()
115
+
116
+ # We also know there is no trait information, so is_trait_available is False.
117
+ # According to the instructions, if there is no trait data, we cannot proceed with
118
+ # linking, missing-value handling (which depends on trait), or bias checking.
119
+ # Instead, we finalize and record the metadata accordingly.
120
+
121
+ # 2. (Skip linking clinical and genetic data due to no trait)
122
+
123
+ # 3. (Skip missing value handling because trait column does not exist)
124
+
125
+ # 4. (Skip bias checking since there's no trait column)
126
+
127
+ # 5. Perform final quality validation and save the metadata.
128
+ # Since no trait is available, we must pass a boolean for is_biased.
129
+ # We'll set is_biased=False because we cannot check bias on nonexistent trait data.
130
+ is_usable = validate_and_save_cohort_info(
131
+ is_final=True,
132
+ cohort=cohort,
133
+ info_path=json_path,
134
+ is_gene_available=True,
135
+ is_trait_available=False,
136
+ is_biased=False,
137
+ df=pd.DataFrame(),
138
+ note="No trait data detected; dataset is not suitable for trait association analysis."
139
+ )
140
+
141
+ # 6. Because no trait data is available, the dataset is not usable, so we do not save linked data.
142
+ if is_usable:
143
+ # In principle, this should not happen because is_trait_available=False implies is_usable=False
144
+ print("Unexpectedly marked as usable despite lacking trait data.")
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/code/TCGA.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Chronic_obstructive_pulmonary_disease_(COPD)"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify a suitable subdirectory for "Chronic_obstructive_pulmonary_disease_(COPD)"
20
+ subdirs = [
21
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
23
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
24
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
25
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
26
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
27
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
28
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
29
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
30
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
31
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
32
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
33
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
34
+ ]
35
+
36
+ # Looking for "lung" as a proxy for COPD-related data
37
+ candidate_subdirs = [s for s in subdirs if 'lung' in s.lower()]
38
+
39
+ if not candidate_subdirs:
40
+ print("No matching subdirectory found for Chronic_obstructive_pulmonary_disease_(COPD). Skipping this trait.")
41
+ else:
42
+ # Choose the most general lung-related directory if multiple exist
43
+ # Here, "TCGA_Lung_Cancer_(LUNG)" is the most general match
44
+ chosen_subdir = "TCGA_Lung_Cancer_(LUNG)"
45
+ if chosen_subdir not in candidate_subdirs:
46
+ chosen_subdir = candidate_subdirs[0] # fallback if not found
47
+
48
+ cohort_dir = os.path.join(tcga_root_dir, chosen_subdir)
49
+
50
+ # 2. Identify file paths for clinical and genetic data
51
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
52
+
53
+ # 3. Load data into Pandas DataFrames
54
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
55
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
56
+
57
+ # 4. Print the column names of the clinical data
58
+ print("Clinical Data Columns:", clinical_df.columns.tolist())
59
+ candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"]
60
+ candidate_gender_cols = ["gender"]
61
+
62
+ # Extract and preview the candidate columns
63
+ columns_to_extract = candidate_age_cols + candidate_gender_cols
64
+ df_extracted = clinical_df.loc[:, columns_to_extract]
65
+ preview_result = preview_df(df_extracted, n=5, max_items=200)
66
+ print(preview_result)
67
+ age_col = "age_at_initial_pathologic_diagnosis"
68
+ gender_col = "gender"
69
+
70
+ print(f"Chosen age column: {age_col}")
71
+ print(f"Chosen gender column: {gender_col}")
72
+ # 1) Extract and standardize clinical features
73
+ age_col = "age_at_initial_pathologic_diagnosis" # Updated valid age column
74
+ gender_col = "gender" # Remains valid
75
+
76
+ selected_clinical_df = tcga_select_clinical_features(
77
+ clinical_df=clinical_df,
78
+ trait=trait,
79
+ age_col=age_col,
80
+ gender_col=gender_col
81
+ )
82
+
83
+ # 2) Normalize gene symbols and save
84
+ normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
85
+ normalized_gene_df.to_csv(out_gene_data_file)
86
+
87
+ # 3) Link the clinical and genetic data
88
+ linked_data = selected_clinical_df.join(normalized_gene_df, how='inner')
89
+
90
+ # 4) Handle missing values
91
+ processed_linked_data = handle_missing_values(linked_data, trait)
92
+
93
+ # 5) Determine whether the trait/demographic features are biased
94
+ is_trait_biased, final_data = judge_and_remove_biased_features(processed_linked_data, trait)
95
+
96
+ # 6) Conduct final validation
97
+ is_usable = validate_and_save_cohort_info(
98
+ is_final=True,
99
+ cohort="TCGA",
100
+ info_path=json_path,
101
+ is_gene_available=True,
102
+ is_trait_available=True,
103
+ is_biased=is_trait_biased,
104
+ df=final_data,
105
+ note="Preprocessing complete for Chronic_kidney_disease (TCGA)."
106
+ )
107
+
108
+ # 7) If usable, save the final linked data and clinical subset
109
+ if is_usable:
110
+ final_data.to_csv(out_data_file)
111
+ clinical_cols = [c for c in [trait, "Age", "Gender"] if c in final_data.columns]
112
+ if clinical_cols:
113
+ final_data[clinical_cols].to_csv(out_clinical_data_file)
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE162635.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:082997e1f591180b3c875e2e8f3ce10c7bf06f5751db4676fb85864b0fe2acb3
3
+ size 45983176
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE175616.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE208662.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE212331.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:967fcad06150eef5443e19636e1b06db24f74f4d4fd127fa0ccec7133deb4f05
3
+ size 22261392
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE21359.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a449edf4d094d7479ffb0808221c001aecaab141df3e23788d9e6083a87d5b8a
3
+ size 27473130
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE32030.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93ddebab0c0d764da823fcc3341c93271f75ef43390e3ed99bba86d40fed528f
3
+ size 42395312
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE64593.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE64599.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE84046.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d28cbd17a3b8fde7cad97fdd235a4eb7f60a848d6819c231ae2f861172439408
3
+ size 12843969
p1/preprocess/Fibromyalgia/GSE67311.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11c8d40a52cd9eea5a300fd608b53b476b0e9df60aab092539a162387bc03ddb
3
+ size 33089399
p1/preprocess/Fibromyalgia/clinical_data/GSE67311.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM1644447,GSM1644448,GSM1644449,GSM1644450,GSM1644451,GSM1644452,GSM1644453,GSM1644454,GSM1644455,GSM1644456,GSM1644457,GSM1644458,GSM1644459,GSM1644460,GSM1644461,GSM1644462,GSM1644463,GSM1644464,GSM1644465,GSM1644466,GSM1644467,GSM1644468,GSM1644469,GSM1644470,GSM1644471,GSM1644472,GSM1644473,GSM1644474,GSM1644475,GSM1644476,GSM1644477,GSM1644478,GSM1644479,GSM1644480,GSM1644481,GSM1644482,GSM1644483,GSM1644484,GSM1644485,GSM1644486,GSM1644487,GSM1644488,GSM1644489,GSM1644490,GSM1644491,GSM1644492,GSM1644493,GSM1644494,GSM1644495,GSM1644496,GSM1644497,GSM1644498,GSM1644499,GSM1644500,GSM1644501,GSM1644502,GSM1644503,GSM1644504,GSM1644505,GSM1644506,GSM1644507,GSM1644508,GSM1644509,GSM1644510,GSM1644511,GSM1644512,GSM1644513,GSM1644514,GSM1644515,GSM1644516,GSM1644517,GSM1644518,GSM1644519,GSM1644520,GSM1644521,GSM1644522,GSM1644523,GSM1644524,GSM1644525,GSM1644526,GSM1644527,GSM1644528,GSM1644529,GSM1644530,GSM1644531,GSM1644532,GSM1644533,GSM1644534,GSM1644535,GSM1644536,GSM1644537,GSM1644538,GSM1644539,GSM1644540,GSM1644541,GSM1644542,GSM1644543,GSM1644544,GSM1644545,GSM1644546,GSM1644547,GSM1644548,GSM1644549,GSM1644550,GSM1644551,GSM1644552,GSM1644553,GSM1644554,GSM1644555,GSM1644556,GSM1644557,GSM1644558,GSM1644559,GSM1644560,GSM1644561,GSM1644562,GSM1644563,GSM1644564,GSM1644565,GSM1644566,GSM1644567,GSM1644568,GSM1644569,GSM1644570,GSM1644571,GSM1644572,GSM1644573,GSM1644574,GSM1644575,GSM1644576,GSM1644577,GSM1644578,GSM1644579,GSM1644580,GSM1644581,GSM1644582,GSM1644583,GSM1644584,GSM1644585,GSM1644586,GSM1644587,GSM1644588
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Fibromyalgia/code/GSE67311.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Fibromyalgia"
6
+ cohort = "GSE67311"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Fibromyalgia"
10
+ in_cohort_dir = "../DATA/GEO/Fibromyalgia/GSE67311"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Fibromyalgia/GSE67311.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Fibromyalgia/gene_data/GSE67311.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Fibromyalgia/clinical_data/GSE67311.csv"
16
+ json_path = "./output/preprocess/1/Fibromyalgia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if gene expression data is available
37
+ is_gene_available = True # From the background info, this is a gene expression dataset
38
+
39
+ # 2. Identify row keys for trait, age, and gender, and define conversion functions
40
+
41
+ # We see that sample characteristics dictionary at row 0 includes:
42
+ # 'diagnosis: fibromyalgia', 'diagnosis: healthy control'.
43
+ # This matches our trait-of-interest (Fibromyalgia) vs. Healthy control cohorts, so:
44
+ trait_row = 0
45
+
46
+ # There's no apparent age or gender data in the dictionary, so:
47
+ age_row = None
48
+ gender_row = None
49
+
50
+ # Define trait conversion function (binary: fibromyalgia=1, healthy=0)
51
+ def convert_trait(value: str):
52
+ if ':' in value:
53
+ value = value.split(':', 1)[1].strip()
54
+ val_lower = value.lower()
55
+ if val_lower == 'fibromyalgia':
56
+ return 1
57
+ elif val_lower == 'healthy control':
58
+ return 0
59
+ return None
60
+
61
+ # Age and gender are unavailable, so set the converting functions to None
62
+ convert_age = None
63
+ convert_gender = None
64
+
65
+ # 3. Save metadata using initial filtering
66
+ is_trait_available = (trait_row is not None)
67
+ is_usable = validate_and_save_cohort_info(
68
+ is_final=False,
69
+ cohort=cohort,
70
+ info_path=json_path,
71
+ is_gene_available=is_gene_available,
72
+ is_trait_available=is_trait_available
73
+ )
74
+
75
+ # 4. Clinical feature extraction if trait data is available
76
+ if trait_row is not None:
77
+ selected_clinical_df = geo_select_clinical_features(
78
+ clinical_df=clinical_data,
79
+ trait=trait,
80
+ trait_row=trait_row,
81
+ convert_trait=convert_trait,
82
+ age_row=age_row,
83
+ convert_age=convert_age,
84
+ gender_row=gender_row,
85
+ convert_gender=convert_gender
86
+ )
87
+
88
+ # Preview and save extracted clinical features
89
+ preview_result = preview_df(selected_clinical_df)
90
+ print("Preview of selected clinical features:", preview_result)
91
+
92
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
93
+ # STEP3
94
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
95
+ gene_data = get_genetic_data(matrix_file)
96
+
97
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
98
+ print(gene_data.index[:20])
99
+ # The given identifiers look like numeric probe IDs rather than standard human gene symbols,
100
+ # so they likely require mapping to gene symbols.
101
+
102
+ print("requires_gene_mapping = True")
103
+ # STEP5
104
+ import pandas as pd
105
+ import io
106
+
107
+ # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
108
+ annotation_text, _ = filter_content_by_prefix(
109
+ source=soft_file,
110
+ prefixes_a=['^', '!', '#'],
111
+ unselect=True,
112
+ source_type='file',
113
+ return_df_a=False,
114
+ return_df_b=False
115
+ )
116
+
117
+ # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
118
+ gene_annotation = pd.read_csv(
119
+ io.StringIO(annotation_text),
120
+ delimiter='\t',
121
+ on_bad_lines='skip',
122
+ engine='python'
123
+ )
124
+
125
+ print("Gene annotation preview:")
126
+ print(preview_df(gene_annotation))
127
+ # STEP: Gene Identifier Mapping
128
+
129
+ # 1. Identify which columns in the gene_annotation dataframe match our probe identifiers and gene symbols.
130
+ # From the preview, the "ID" column in gene_annotation corresponds to the same probe IDs
131
+ # used in gene_data (both numeric, e.g. '7896736', '7896738'), and "gene_assignment" stores text containing gene symbols.
132
+
133
+ # 2. Get a gene mapping dataframe: extract the "ID" column (probe ID) and "gene_assignment" column (gene text).
134
+ mapping_df = get_gene_mapping(
135
+ annotation=gene_annotation,
136
+ prob_col="ID",
137
+ gene_col="gene_assignment"
138
+ )
139
+
140
+ # 3. Apply the probe-to-gene mapping to convert probe-level data into gene-level expression.
141
+ gene_data = apply_gene_mapping(
142
+ expression_df=gene_data,
143
+ mapping_df=mapping_df
144
+ )
145
+
146
+ print("Gene-level expression data shape:", gene_data.shape)
147
+ import os
148
+ import pandas as pd
149
+
150
+ # STEP7
151
+
152
+ # 1) Normalize gene symbols and save
153
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
154
+ normalized_gene_data.to_csv(out_gene_data_file)
155
+
156
+ # 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
157
+ if os.path.exists(out_clinical_data_file):
158
+ try:
159
+ tmp_df = pd.read_csv(out_clinical_data_file, header=0)
160
+ # If successfully read, check the number of rows to rename their index properly.
161
+ row_count = tmp_df.shape[0]
162
+ if row_count == 1:
163
+ tmp_df.index = [trait]
164
+ elif row_count == 2:
165
+ tmp_df.index = [trait, "Gender"]
166
+
167
+ selected_clinical_df = tmp_df
168
+
169
+ # Link the clinical and gene expression data
170
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
171
+
172
+ # 3) Handle missing values
173
+ final_data = handle_missing_values(linked_data, trait_col=trait)
174
+
175
+ # 4) Evaluate bias in the trait (and remove biased demographics if any)
176
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
177
+
178
+ # 5) Final validation
179
+ is_usable = validate_and_save_cohort_info(
180
+ is_final=True,
181
+ cohort=cohort,
182
+ info_path=json_path,
183
+ is_gene_available=True,
184
+ is_trait_available=True,
185
+ is_biased=trait_biased,
186
+ df=final_data,
187
+ note="Trait and gender rows found; no age row."
188
+ )
189
+
190
+ # 6) If the dataset is usable, save
191
+ if is_usable:
192
+ final_data.to_csv(out_data_file)
193
+
194
+ except (pd.errors.EmptyDataError, ValueError):
195
+ # If file is present but empty or invalid, treat trait data as unavailable
196
+ empty_df = pd.DataFrame()
197
+ validate_and_save_cohort_info(
198
+ is_final=True,
199
+ cohort=cohort,
200
+ info_path=json_path,
201
+ is_gene_available=True,
202
+ is_trait_available=False,
203
+ is_biased=True,
204
+ df=empty_df,
205
+ note="Trait file is empty or invalid; linking and final dataset output are skipped."
206
+ )
207
+ else:
208
+ # If the clinical file does not exist at all, the trait is unavailable
209
+ empty_df = pd.DataFrame()
210
+ validate_and_save_cohort_info(
211
+ is_final=True,
212
+ cohort=cohort,
213
+ info_path=json_path,
214
+ is_gene_available=True,
215
+ is_trait_available=False,
216
+ is_biased=True,
217
+ df=empty_df,
218
+ note="No trait data file was found; linking and final dataset output are skipped."
219
+ )
p1/preprocess/Fibromyalgia/code/TCGA.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Fibromyalgia"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Fibromyalgia/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Fibromyalgia/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Fibromyalgia/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Fibromyalgia/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify subdirectories under tcga_root_dir
20
+ subdirectories = os.listdir(tcga_root_dir)
21
+
22
+ # Search terms related to "Fibromyalgia"
23
+ search_terms = ["fibromyalgia", "fibro", "myalgia", "chronic_widespread_pain", "cwp"]
24
+
25
+ trait_subdir = None
26
+ for d in subdirectories:
27
+ d_lower = d.lower()
28
+ if any(term in d_lower for term in search_terms):
29
+ trait_subdir = d
30
+ break
31
+
32
+ # 2. If none found, skip this trait
33
+ if not trait_subdir:
34
+ print(f"No suitable subdirectory found for trait '{trait}'. Skipping...")
35
+ is_gene_available = False
36
+ is_trait_available = False
37
+ validate_and_save_cohort_info(
38
+ is_final=False,
39
+ cohort="TCGA",
40
+ info_path=json_path,
41
+ is_gene_available=is_gene_available,
42
+ is_trait_available=is_trait_available
43
+ )
44
+ else:
45
+ # 2. Identify file paths
46
+ cohort_path = os.path.join(tcga_root_dir, trait_subdir)
47
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_path)
48
+
49
+ # 3. Load both files as dataframes
50
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t', low_memory=False)
51
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t', low_memory=False)
52
+
53
+ # 4. Print the column names of the clinical data
54
+ print("Clinical Data Columns:")
55
+ print(clinical_df.columns.tolist())
p1/preprocess/Fibromyalgia/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE67311": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 142, "note": "Trait and gender rows found; no age row."}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
p1/preprocess/Fibromyalgia/gene_data/GSE67311.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdc80550137956d622d2ec9a5baefec581baacd4c28f983c456b9d007fbd70b7
3
+ size 33088822
p1/preprocess/Glioblastoma/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5170e381783cf867e23ecb4790f0c49eff21d537ecb0607fc90621f2ce31281b
3
+ size 203624113
p1/preprocess/Glioblastoma/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca538730424e09dc117dcbf2b9e361e18a559838fbd5166c65c39e001c215c63
3
+ size 203622702
p1/preprocess/Head_and_Neck_Cancer/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a9b72fb349ad95e08acaebe045aa49a7d95ad31aae83e577f590fd9a3056abc
3
+ size 169988287
p1/preprocess/Head_and_Neck_Cancer/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebda0991a4c4e9b1b7e992e8c4f50e2908e2645936891de033875c79b30d9d3a
3
+ size 169983153
p1/preprocess/Hemochromatosis/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eec160b54aa9855ceddc4988ca780752ff5298e5566b4d67b0234c972fbcc3d1
3
+ size 126898644
p1/preprocess/Hemochromatosis/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda4b7e0eb1b7d3ae8ef43544fbcfc1289fc40b4c948499e0a55cde48b1cf574
3
+ size 126894803
p1/preprocess/Huntingtons_Disease/gene_data/GSE71220.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4f0575f14ea122261d0572e8589b41ae150b12d772014d41c58d99724519df8
3
+ size 70795998
p1/preprocess/Hypertension/gene_data/GSE256539.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5d9bb647998b040f0223d33002ee74f0c056ba2da0e63216486b09fb81c0e23
3
+ size 22918341
p1/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0f2c7c618224cd61d0c3265ce233974df4bcff562b6310f301a944862d35f59
3
+ size 31702635
p1/preprocess/Hypertrophic_Cardiomyopathy/clinical_data/GSE36961.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM907203,GSM907204,GSM907205,GSM907206,GSM907207,GSM907208,GSM907209,GSM907210,GSM907211,GSM907212,GSM907213,GSM907214,GSM907215,GSM907216,GSM907217,GSM907218,GSM907219,GSM907220,GSM907221,GSM907222,GSM907223,GSM907224,GSM907225,GSM907226,GSM907227,GSM907228,GSM907229,GSM907230,GSM907231,GSM907232,GSM907233,GSM907234,GSM907235,GSM907236,GSM907237,GSM907238,GSM907239,GSM907240,GSM907241,GSM907242,GSM907243,GSM907244,GSM907245,GSM907246,GSM907247,GSM907248,GSM907249,GSM907250,GSM907251,GSM907252,GSM907253,GSM907254,GSM907255,GSM907256,GSM907257,GSM907258,GSM907259,GSM907260,GSM907261,GSM907262,GSM907263,GSM907264,GSM907265,GSM907266,GSM907267,GSM907268,GSM907269,GSM907270,GSM907271,GSM907272,GSM907273,GSM907274,GSM907275,GSM907276,GSM907277,GSM907278,GSM907279,GSM907280,GSM907281,GSM907282,GSM907283,GSM907284,GSM907285,GSM907286,GSM907287,GSM907288,GSM907289,GSM907290,GSM907291,GSM907292,GSM907293,GSM907294,GSM907295,GSM907296,GSM907297,GSM907298,GSM907299,GSM907300,GSM907301,GSM907302,GSM907303,GSM907304,GSM907305,GSM907306,GSM907307,GSM907308,GSM907309,GSM907310,GSM907311,GSM907312,GSM907313,GSM907314,GSM907315,GSM907316,GSM907317,GSM907318,GSM907319,GSM907320,GSM907321,GSM907322,GSM907323,GSM907324,GSM907325,GSM907326,GSM907327,GSM907328,GSM907329,GSM907330,GSM907331,GSM907332,GSM907333,GSM907334,GSM907335,GSM907336,GSM907337,GSM907338,GSM907339,GSM907340,GSM907341,GSM907342,GSM907343,GSM907344,GSM907345,GSM907346,GSM907347
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,0.0,0.0,,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 9.0,10.0,10.0,11.0,13.0,14.0,15.0,15.0,15.0,15.0,16.0,16.0,17.0,19.0,19.0,20.0,23.0,23.0,26.0,27.0,28.0,30.0,30.0,30.0,31.0,32.0,32.0,33.0,35.0,35.0,37.0,37.0,38.0,38.0,41.0,43.0,43.0,43.0,43.0,44.0,44.0,44.0,45.0,45.0,45.0,45.0,46.0,46.0,47.0,48.0,48.0,50.0,50.0,51.0,51.0,51.0,52.0,52.0,52.0,52.0,53.0,53.0,54.0,54.0,54.0,55.0,56.0,56.0,56.0,56.0,57.0,58.0,58.0,59.0,59.0,59.0,59.0,59.0,59.0,60.0,60.0,62.0,63.0,64.0,65.0,65.0,66.0,67.0,67.0,67.0,67.0,67.0,67.0,69.0,69.0,70.0,70.0,71.0,71.0,71.0,73.0,73.0,75.0,76.0,77.0,78.0,,49.0,48.0,,42.0,53.0,,31.0,54.0,52.0,47.0,26.0,65.0,21.0,41.0,55.0,61.0,36.0,7.0,23.0,17.0,45.0,40.0,37.0,51.0,39.0,37.0,23.0,19.0,53.0,48.0,47.0,4.0,48.0,25.0,27.0,21.0,27.0,21.0
4
+ 1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0
p1/preprocess/Hypertrophic_Cardiomyopathy/code/GSE36961.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Hypertrophic_Cardiomyopathy"
6
+ cohort = "GSE36961"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Hypertrophic_Cardiomyopathy"
10
+ in_cohort_dir = "../DATA/GEO/Hypertrophic_Cardiomyopathy/GSE36961"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Hypertrophic_Cardiomyopathy/GSE36961.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Hypertrophic_Cardiomyopathy/gene_data/GSE36961.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Hypertrophic_Cardiomyopathy/clinical_data/GSE36961.csv"
16
+ json_path = "./output/preprocess/1/Hypertrophic_Cardiomyopathy/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # This is a gene expression (mRNA) study
38
+
39
+ # 2. Variable Availability
40
+ trait_row = 3 # "disease state: hypertrophic cardiomyopathy (HCM)" vs "sample type: control"
41
+ age_row = 1 # "age (yrs): 9, 10, 11, ... 51"
42
+ gender_row = 0 # "Sex: male", "Sex: female"
43
+
44
+ # 2.2 Data Type Conversion
45
+ def convert_trait(value: str):
46
+ if not isinstance(value, str):
47
+ return None
48
+ parts = value.split(':', 1)
49
+ if len(parts) > 1:
50
+ raw_val = parts[1].strip().lower()
51
+ else:
52
+ raw_val = value.strip().lower()
53
+ if "cardiomyopathy" in raw_val:
54
+ return 1
55
+ elif "control" in raw_val:
56
+ return 0
57
+ else:
58
+ return None
59
+
60
+ def convert_age(value: str):
61
+ if not isinstance(value, str):
62
+ return None
63
+ parts = value.split(':', 1)
64
+ if len(parts) > 1:
65
+ raw_val = parts[1].strip()
66
+ else:
67
+ raw_val = value.strip()
68
+ try:
69
+ return float(raw_val)
70
+ except:
71
+ return None
72
+
73
+ def convert_gender(value: str):
74
+ if not isinstance(value, str):
75
+ return None
76
+ parts = value.split(':', 1)
77
+ if len(parts) > 1:
78
+ raw_val = parts[1].strip().lower()
79
+ else:
80
+ raw_val = value.strip().lower()
81
+ if "female" in raw_val:
82
+ return 0
83
+ elif "male" in raw_val:
84
+ return 1
85
+ else:
86
+ return None
87
+
88
+ # 3. Save Metadata (initial filtering)
89
+ is_trait_available = (trait_row is not None)
90
+ usable_init = validate_and_save_cohort_info(
91
+ is_final=False,
92
+ cohort=cohort,
93
+ info_path=json_path,
94
+ is_gene_available=is_gene_available,
95
+ is_trait_available=is_trait_available
96
+ )
97
+
98
+ # 4. Clinical Feature Extraction (only if trait_row is not None)
99
+ if trait_row is not None:
100
+ selected_clinical_df = geo_select_clinical_features(
101
+ clinical_data,
102
+ trait,
103
+ trait_row,
104
+ convert_trait,
105
+ age_row,
106
+ convert_age,
107
+ gender_row,
108
+ convert_gender
109
+ )
110
+ print("Preview of selected clinical features:")
111
+ print(preview_df(selected_clinical_df, 5))
112
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
113
+ # STEP3
114
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
115
+ gene_data = get_genetic_data(matrix_file)
116
+
117
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
118
+ print(gene_data.index[:20])
119
+ print("Based on the gene identifier list, they appear to be standard gene symbols.\nrequires_gene_mapping = False")
120
+ # STEP5
121
+ # 1. Normalize gene symbols using the NCBI Gene database synonym information.
122
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
123
+ normalized_gene_data.to_csv(out_gene_data_file)
124
+
125
+ # 2. Link the clinical and genetic data.
126
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
127
+
128
+ # 3. Handle missing values.
129
+ linked_data = handle_missing_values(linked_data, trait)
130
+
131
+ # 4. Determine bias in the trait and demographic features.
132
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
133
+
134
+ # 5. Final quality validation and metadata saving.
135
+ is_usable = validate_and_save_cohort_info(
136
+ is_final=True,
137
+ cohort=cohort,
138
+ info_path=json_path,
139
+ is_gene_available=True,
140
+ is_trait_available=True,
141
+ is_biased=is_trait_biased,
142
+ df=unbiased_linked_data
143
+ )
144
+
145
+ # 6. Save the fully processed data only if it's usable.
146
+ if is_usable:
147
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Hypertrophic_Cardiomyopathy/code/TCGA.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Hypertrophic_Cardiomyopathy"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Hypertrophic_Cardiomyopathy/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Hypertrophic_Cardiomyopathy/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Hypertrophic_Cardiomyopathy/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Hypertrophic_Cardiomyopathy/cohort_info.json"
15
+
16
+ import os
17
+
18
+ # 1. Identify subdirectories in tcga_root_dir
19
+ subdirs = [d for d in os.listdir(tcga_root_dir) if os.path.isdir(os.path.join(tcga_root_dir, d))]
20
+
21
+ # 2. Attempt to find a match to "Hypertrophic_Cardiomyopathy"
22
+ trait_keywords = ["hypertrophic", "cardiomyopathy", "heart", "cardiac"]
23
+ matched_dirs = []
24
+ for d in subdirs:
25
+ lower_d = d.lower()
26
+ if any(keyword in lower_d for keyword in trait_keywords):
27
+ matched_dirs.append(d)
28
+
29
+ # 3. If no suitable directories found, skip this trait and mark the task completed
30
+ if not matched_dirs:
31
+ print("No suitable TCGA subdirectory found for trait:", trait)
32
+ validate_and_save_cohort_info(
33
+ is_final=False,
34
+ cohort="TCGA",
35
+ info_path=json_path,
36
+ is_gene_available=False,
37
+ is_trait_available=False,
38
+ note="No matched subdirectory found for this trait."
39
+ )
40
+ else:
41
+ # Normally, we'd pick the best match if multiple. For now, pick the first.
42
+ chosen_dir = matched_dirs[0]
43
+ chosen_path = os.path.join(tcga_root_dir, chosen_dir)
44
+ # 2. Identify data file paths
45
+ clinical_file, genetic_file = tcga_get_relevant_filepaths(chosen_path)
46
+ # 3. Load both files as dataframes
47
+ clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
48
+ genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')
49
+ # 4. Print the clinical data columns
50
+ print("Clinical data columns:", clinical_df.columns.tolist())
p1/preprocess/Hypertrophic_Cardiomyopathy/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE36961": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 142, "note": ""}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
p1/preprocess/Hypertrophic_Cardiomyopathy/gene_data/GSE36961.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fd3cb153e8a94a03d27a8048601cf21af7c6b47d562397e7c7c0d3e9e2ed1bf
3
+ size 32368017
p1/preprocess/Hypothyroidism/GSE151158.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Hypothyroidism/clinical_data/GSE151158.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM4567420,GSM4567421,GSM4567422,GSM4567423,GSM4567424,GSM4567425,GSM4567426,GSM4567427,GSM4567428,GSM4567429,GSM4567430,GSM4567431,GSM4567432,GSM4567433,GSM4567434,GSM4567435,GSM4567436,GSM4567437,GSM4567438,GSM4567439,GSM4567440,GSM4567441,GSM4567442,GSM4567443,GSM4567444,GSM4567445,GSM4567446,GSM4567447,GSM4567448,GSM4567449,GSM4567450,GSM4567451,GSM4567452,GSM4567453,GSM4567454,GSM4567455,GSM4567456,GSM4567457,GSM4567458,GSM4567459,GSM4567460,GSM4567461,GSM4567462,GSM4567463,GSM4567464,GSM4567465,GSM4567466,GSM4567467,GSM4567468,GSM4567469,GSM4567470,GSM4567471,GSM4567472,GSM4567473,GSM4567474,GSM4567475,GSM4567476,GSM4567477,GSM4567478,GSM4567479,GSM4567480,GSM4567481,GSM4567482,GSM4567483,GSM4567484,GSM4567485
2
+ 0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,,,,
3
+ 53.0,40.0,51.0,36.0,44.0,60.0,31.0,41.0,55.0,15.0,57.0,56.0,34.0,43.0,49.0,55.0,52.0,35.0,35.0,40.0,34.0,42.0,53.0,33.0,31.0,57.0,42.0,48.0,47.0,51.0,65.0,40.0,59.0,49.0,61.0,59.0,28.0,46.0,42.0,60.0,25.0,43.0,51.0,52.0,51.0,56.0,27.0,35.0,54.0,37.0,45.0,45.0,47.0,40.0,33.0,39.0,39.0,44.0,47.0,37.0,49.0,,,,,
4
+ 0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,,,,,
p1/preprocess/Hypothyroidism/clinical_data/GSE224330.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM7019507,GSM7019508,GSM7019509,GSM7019510,GSM7019511,GSM7019512,GSM7019513,GSM7019514,GSM7019515,GSM7019516,GSM7019517,GSM7019518,GSM7019519,GSM7019520,GSM7019521,GSM7019522,GSM7019523,GSM7019524,GSM7019525,GSM7019526,GSM7019527,GSM7019528,GSM7019529,GSM7019530,GSM7019531,GSM7019532,GSM7019533,GSM7019534,GSM7019535,GSM7019536,GSM7019537
2
+ 1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 63.0,64.0,63.0,48.0,70.0,62.0,58.0,57.0,60.0,57.0,52.0,51.0,53.0,56.0,62.0,54.0,61.0,54.0,55.0,65.0,84.0,70.0,76.0,62.0,73.0,71.0,59.0,62.0,47.0,76.0,54.0
4
+ 0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0
p1/preprocess/Hypothyroidism/clinical_data/GSE75678.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM1963528,GSM1963529,GSM1963530,GSM1963531,GSM1963532,GSM1963533,GSM1963534,GSM1963535,GSM1963536,GSM1963537,GSM1963538,GSM1963539,GSM1963540,GSM1963541,GSM1963542,GSM1963543,GSM1963544,GSM1963545,GSM1963546,GSM1963547,GSM1963548,GSM1963549,GSM1963550,GSM1963551,GSM1963552,GSM1963553,GSM1963554,GSM1963555,GSM1963556,GSM1963557,GSM1963558,GSM1963559,GSM1963560,GSM1963561,GSM1963562,GSM1963563,GSM1963564,GSM1963565,GSM1963566,GSM1963567,GSM1963568,GSM1963569,GSM1963570,GSM1963571,GSM1963572,GSM1963573,GSM1963574,GSM1963575,GSM1963576,GSM1963577,GSM1963578,GSM1963579,GSM1963580,GSM1963581
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 45.0,41.0,59.0,57.0,42.0,49.0,59.0,54.0,54.0,31.0,70.0,44.0,50.0,42.0,56.0,51.0,58.0,55.0,71.0,42.0,41.0,40.0,57.0,62.0,87.0,36.0,50.0,45.0,43.0,42.0,43.0,44.0,43.0,48.0,45.0,51.0,56.0,57.0,41.0,48.0,66.0,53.0,36.0,51.0,57.0,45.0,55.0,35.0,44.0,68.0,46.0,58.0,45.0,54.0
p1/preprocess/Hypothyroidism/clinical_data/GSE75685.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM1963127,GSM1963128,GSM1963129,GSM1963130,GSM1963131,GSM1963132,GSM1963133,GSM1963134,GSM1963135,GSM1963136,GSM1963137,GSM1963138,GSM1963139,GSM1963140,GSM1963141,GSM1963142,GSM1963143,GSM1963144,GSM1963145,GSM1963146,GSM1963147,GSM1963148,GSM1963149,GSM1963150,GSM1963151,GSM1963152,GSM1963153,GSM1963154,GSM1963155,GSM1963156,GSM1963157,GSM1963158,GSM1963159,GSM1963160,GSM1963161,GSM1963162,GSM1963163,GSM1963164,GSM1963165,GSM1963166,GSM1963167,GSM1963168,GSM1963169,GSM1963170,GSM1963171,GSM1963172,GSM1963173,GSM1963174,GSM1963175,GSM1963176,GSM1963177,GSM1963178,GSM1963179,GSM1963180
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 54.0,41.0,55.0,51.0,45.0,54.0,48.0,71.0,51.0,43.0,40.0,59.0,45.0,36.0,41.0,41.0,66.0,56.0,50.0,50.0,42.0,57.0,57.0,36.0,55.0,49.0,42.0,70.0,87.0,42.0,59.0,51.0,31.0,62.0,44.0,57.0,56.0,53.0,35.0,45.0,44.0,43.0,68.0,48.0,46.0,45.0,58.0,45.0,44.0,54.0,58.0,57.0,42.0,43.0
p1/preprocess/Hypothyroidism/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Hypothyroidism,Age,Gender
2
+ TCGA-4C-A93U-01,1,74,0
3
+ TCGA-BJ-A0YZ-01,1,65,1
4
+ TCGA-BJ-A0Z0-01,1,55,1
5
+ TCGA-BJ-A0Z2-01,1,57,1
6
+ TCGA-BJ-A0Z3-01,1,33,0
7
+ TCGA-BJ-A0Z5-01,1,58,1
8
+ TCGA-BJ-A0Z9-01,1,57,0
9
+ TCGA-BJ-A0ZA-01,1,67,0
10
+ TCGA-BJ-A0ZB-01,1,66,1
11
+ TCGA-BJ-A0ZC-01,1,55,1
12
+ TCGA-BJ-A0ZE-01,1,63,0
13
+ TCGA-BJ-A0ZF-01,1,54,0
14
+ TCGA-BJ-A0ZG-01,1,80,1
15
+ TCGA-BJ-A0ZH-01,1,52,0
16
+ TCGA-BJ-A0ZJ-01,1,36,1
17
+ TCGA-BJ-A18Y-01,1,29,1
18
+ TCGA-BJ-A18Z-01,1,58,1
19
+ TCGA-BJ-A190-01,1,55,1
20
+ TCGA-BJ-A191-01,1,49,0
21
+ TCGA-BJ-A192-01,1,54,0
22
+ TCGA-BJ-A28R-01,1,38,0
23
+ TCGA-BJ-A28R-11,0,38,0
24
+ TCGA-BJ-A28S-01,1,79,1
25
+ TCGA-BJ-A28T-01,1,34,0
26
+ TCGA-BJ-A28V-01,1,80,0
27
+ TCGA-BJ-A28W-01,1,32,0
28
+ TCGA-BJ-A28W-11,0,32,0
29
+ TCGA-BJ-A28X-01,1,32,0
30
+ TCGA-BJ-A28X-11,0,32,0
31
+ TCGA-BJ-A28Z-01,1,46,0
32
+ TCGA-BJ-A290-01,1,70,1
33
+ TCGA-BJ-A290-11,0,70,1
34
+ TCGA-BJ-A291-01,1,56,0
35
+ TCGA-BJ-A2N7-01,1,30,0
36
+ TCGA-BJ-A2N7-11,0,30,0
37
+ TCGA-BJ-A2N8-01,1,30,0
38
+ TCGA-BJ-A2N8-11,0,30,0
39
+ TCGA-BJ-A2N9-01,1,42,0
40
+ TCGA-BJ-A2N9-11,0,42,0
41
+ TCGA-BJ-A2NA-01,1,77,1
42
+ TCGA-BJ-A2NA-11,0,77,1
43
+ TCGA-BJ-A2P4-01,1,29,0
44
+ TCGA-BJ-A3EZ-01,1,51,1
45
+ TCGA-BJ-A3F0-01,1,64,0
46
+ TCGA-BJ-A3PR-01,1,69,0
47
+ TCGA-BJ-A3PR-11,0,69,0
48
+ TCGA-BJ-A3PT-01,1,51,0
49
+ TCGA-BJ-A3PU-01,1,52,1
50
+ TCGA-BJ-A3PU-11,0,52,1
51
+ TCGA-BJ-A45C-01,1,78,1
52
+ TCGA-BJ-A45D-01,1,36,1
53
+ TCGA-BJ-A45E-01,1,46,0
54
+ TCGA-BJ-A45F-01,1,59,0
55
+ TCGA-BJ-A45G-01,1,48,0
56
+ TCGA-BJ-A45H-01,1,45,1
57
+ TCGA-BJ-A45I-01,1,51,0
58
+ TCGA-BJ-A45J-01,1,39,0
59
+ TCGA-BJ-A45K-01,1,33,1
60
+ TCGA-BJ-A4O8-01,1,47,1
61
+ TCGA-BJ-A4O9-01,1,51,0
62
+ TCGA-CE-A13K-01,1,30,0
63
+ TCGA-CE-A27D-01,1,28,0
64
+ TCGA-CE-A3MD-01,1,31,1
65
+ TCGA-CE-A3ME-01,1,51,0
66
+ TCGA-CE-A481-01,1,41,0
67
+ TCGA-CE-A482-01,1,27,0
68
+ TCGA-CE-A483-01,1,34,0
69
+ TCGA-CE-A484-01,1,37,0
70
+ TCGA-CE-A485-01,1,32,1
71
+ TCGA-DE-A0XZ-01,1,65,0
72
+ TCGA-DE-A0Y2-01,1,30,0
73
+ TCGA-DE-A0Y3-01,1,60,0
74
+ TCGA-DE-A2OL-01,1,44,0
75
+ TCGA-DE-A3KN-01,1,49,0
76
+ TCGA-DE-A4M8-01,1,61,0
77
+ TCGA-DE-A4M9-01,1,28,1
78
+ TCGA-DE-A4MA-01,1,52,0
79
+ TCGA-DE-A4MB-01,1,79,0
80
+ TCGA-DE-A4MC-01,1,43,0
81
+ TCGA-DE-A4MD-01,1,71,1
82
+ TCGA-DE-A4MD-06,1,71,1
83
+ TCGA-DE-A69J-01,1,34,0
84
+ TCGA-DE-A69K-01,1,58,0
85
+ TCGA-DE-A7U5-01,1,36,0
86
+ TCGA-DJ-A13L-01,1,85,1
87
+ TCGA-DJ-A13M-01,1,28,0
88
+ TCGA-DJ-A13O-01,1,56,1
89
+ TCGA-DJ-A13P-01,1,52,0
90
+ TCGA-DJ-A13R-01,1,50,1
91
+ TCGA-DJ-A13S-01,1,19,0
92
+ TCGA-DJ-A13T-01,1,37,0
93
+ TCGA-DJ-A13U-01,1,60,1
94
+ TCGA-DJ-A13V-01,1,21,0
95
+ TCGA-DJ-A13W-01,1,45,0
96
+ TCGA-DJ-A13X-01,1,51,0
97
+ TCGA-DJ-A1QD-01,1,20,0
98
+ TCGA-DJ-A1QE-01,1,62,0
99
+ TCGA-DJ-A1QF-01,1,61,0
100
+ TCGA-DJ-A1QG-01,1,62,1
101
+ TCGA-DJ-A1QH-01,1,58,0
102
+ TCGA-DJ-A1QI-01,1,63,0
103
+ TCGA-DJ-A1QL-01,1,70,1
104
+ TCGA-DJ-A1QM-01,1,42,1
105
+ TCGA-DJ-A1QN-01,1,42,0
106
+ TCGA-DJ-A1QO-01,1,69,1
107
+ TCGA-DJ-A1QQ-01,1,43,1
108
+ TCGA-DJ-A2PN-01,1,70,0
109
+ TCGA-DJ-A2PO-01,1,54,1
110
+ TCGA-DJ-A2PP-01,1,47,1
111
+ TCGA-DJ-A2PQ-01,1,26,1
112
+ TCGA-DJ-A2PR-01,1,27,1
113
+ TCGA-DJ-A2PS-01,1,40,0
114
+ TCGA-DJ-A2PT-01,1,70,0
115
+ TCGA-DJ-A2PU-01,1,52,0
116
+ TCGA-DJ-A2PV-01,1,53,0
117
+ TCGA-DJ-A2PW-01,1,65,1
118
+ TCGA-DJ-A2PX-01,1,55,0
119
+ TCGA-DJ-A2PY-01,1,46,0
120
+ TCGA-DJ-A2PZ-01,1,63,1
121
+ TCGA-DJ-A2Q0-01,1,57,0
122
+ TCGA-DJ-A2Q1-01,1,44,0
123
+ TCGA-DJ-A2Q2-01,1,57,0
124
+ TCGA-DJ-A2Q3-01,1,61,0
125
+ TCGA-DJ-A2Q4-01,1,53,1
126
+ TCGA-DJ-A2Q5-01,1,51,1
127
+ TCGA-DJ-A2Q6-01,1,38,0
128
+ TCGA-DJ-A2Q7-01,1,52,0
129
+ TCGA-DJ-A2Q9-01,1,65,0
130
+ TCGA-DJ-A2QA-01,1,56,0
131
+ TCGA-DJ-A2QB-01,1,53,0
132
+ TCGA-DJ-A2QC-01,1,70,0
133
+ TCGA-DJ-A3UK-01,1,35,0
134
+ TCGA-DJ-A3UM-01,1,45,0
135
+ TCGA-DJ-A3UN-01,1,51,0
136
+ TCGA-DJ-A3UO-01,1,63,1
137
+ TCGA-DJ-A3UP-01,1,38,0
138
+ TCGA-DJ-A3UQ-01,1,45,0
139
+ TCGA-DJ-A3UR-01,1,51,0
140
+ TCGA-DJ-A3US-01,1,37,0
141
+ TCGA-DJ-A3UT-01,1,43,0
142
+ TCGA-DJ-A3UU-01,1,49,0
143
+ TCGA-DJ-A3UV-01,1,18,0
144
+ TCGA-DJ-A3UW-01,1,50,0
145
+ TCGA-DJ-A3UX-01,1,46,0
146
+ TCGA-DJ-A3UY-01,1,32,0
147
+ TCGA-DJ-A3UZ-01,1,70,0
148
+ TCGA-DJ-A3V0-01,1,56,1
149
+ TCGA-DJ-A3V2-01,1,44,0
150
+ TCGA-DJ-A3V3-01,1,57,0
151
+ TCGA-DJ-A3V4-01,1,60,0
152
+ TCGA-DJ-A3V5-01,1,76,0
153
+ TCGA-DJ-A3V6-01,1,54,1
154
+ TCGA-DJ-A3V7-01,1,44,0
155
+ TCGA-DJ-A3V8-01,1,28,0
156
+ TCGA-DJ-A3V9-01,1,50,0
157
+ TCGA-DJ-A3VA-01,1,39,0
158
+ TCGA-DJ-A3VB-01,1,52,1
159
+ TCGA-DJ-A3VD-01,1,32,0
160
+ TCGA-DJ-A3VE-01,1,50,1
161
+ TCGA-DJ-A3VF-01,1,60,0
162
+ TCGA-DJ-A3VG-01,1,40,1
163
+ TCGA-DJ-A3VI-01,1,52,0
164
+ TCGA-DJ-A3VJ-01,1,22,1
165
+ TCGA-DJ-A3VK-01,1,63,1
166
+ TCGA-DJ-A3VL-01,1,38,1
167
+ TCGA-DJ-A3VM-01,1,68,0
168
+ TCGA-DJ-A4UL-01,1,68,0
169
+ TCGA-DJ-A4UP-01,1,15,0
170
+ TCGA-DJ-A4UQ-01,1,60,1
171
+ TCGA-DJ-A4UR-01,1,36,0
172
+ TCGA-DJ-A4UT-01,1,32,0
173
+ TCGA-DJ-A4UW-01,1,34,0
174
+ TCGA-DJ-A4V0-01,1,36,0
175
+ TCGA-DJ-A4V2-01,1,38,0
176
+ TCGA-DJ-A4V4-01,1,48,0
177
+ TCGA-DJ-A4V5-01,1,55,1
178
+ TCGA-DO-A1JZ-01,1,23,0
179
+ TCGA-DO-A1JZ-11,0,23,0
180
+ TCGA-DO-A1K0-01,1,30,0
181
+ TCGA-DO-A2HM-01,1,49,1
182
+ TCGA-E3-A3DY-01,1,37,1
183
+ TCGA-E3-A3DZ-01,1,55,0
184
+ TCGA-E3-A3E0-01,1,34,0
185
+ TCGA-E3-A3E1-01,1,46,0
186
+ TCGA-E3-A3E2-01,1,34,0
187
+ TCGA-E3-A3E3-01,1,49,0
188
+ TCGA-E3-A3E5-01,1,57,1
189
+ TCGA-E8-A242-01,1,56,0
190
+ TCGA-E8-A2EA-01,1,52,0
191
+ TCGA-E8-A2JQ-01,1,18,0
192
+ TCGA-E8-A2JQ-11,0,18,0
193
+ TCGA-E8-A3X7-01,1,57,0
194
+ TCGA-E8-A413-01,1,38,0
195
+ TCGA-E8-A414-01,1,45,0
196
+ TCGA-E8-A415-01,1,39,0
197
+ TCGA-E8-A416-01,1,51,0
198
+ TCGA-E8-A417-01,1,38,0
199
+ TCGA-E8-A418-01,1,75,0
200
+ TCGA-E8-A419-01,1,30,0
201
+ TCGA-E8-A432-01,1,57,0
202
+ TCGA-E8-A433-01,1,25,0
203
+ TCGA-E8-A434-01,1,56,0
204
+ TCGA-E8-A436-01,1,53,0
205
+ TCGA-E8-A437-01,1,57,0
206
+ TCGA-E8-A438-01,1,23,0
207
+ TCGA-E8-A44K-01,1,50,0
208
+ TCGA-E8-A44M-01,1,23,0
209
+ TCGA-EL-A3CL-01,1,70,0
210
+ TCGA-EL-A3CM-01,1,64,0
211
+ TCGA-EL-A3CN-01,1,47,0
212
+ TCGA-EL-A3CO-01,1,88,1
213
+ TCGA-EL-A3CP-01,1,50,0
214
+ TCGA-EL-A3CR-01,1,78,0
215
+ TCGA-EL-A3CS-01,1,62,0
216
+ TCGA-EL-A3CT-01,1,78,0
217
+ TCGA-EL-A3CU-01,1,70,0
218
+ TCGA-EL-A3CV-01,1,40,1
219
+ TCGA-EL-A3CW-01,1,87,0
220
+ TCGA-EL-A3CX-01,1,22,0
221
+ TCGA-EL-A3CY-01,1,28,1
222
+ TCGA-EL-A3CZ-01,1,37,0
223
+ TCGA-EL-A3D0-01,1,61,1
224
+ TCGA-EL-A3D1-01,1,39,1
225
+ TCGA-EL-A3D4-01,1,62,1
226
+ TCGA-EL-A3D5-01,1,44,0
227
+ TCGA-EL-A3D6-01,1,51,0
228
+ TCGA-EL-A3GO-01,1,31,0
229
+ TCGA-EL-A3GP-01,1,70,1
230
+ TCGA-EL-A3GQ-01,1,72,0
231
+ TCGA-EL-A3GR-01,1,31,0
232
+ TCGA-EL-A3GS-01,1,37,0
233
+ TCGA-EL-A3GU-01,1,72,0
234
+ TCGA-EL-A3GV-01,1,65,0
235
+ TCGA-EL-A3GW-01,1,37,0
236
+ TCGA-EL-A3GX-01,1,41,0
237
+ TCGA-EL-A3GY-01,1,40,0
238
+ TCGA-EL-A3GZ-01,1,34,0
239
+ TCGA-EL-A3GZ-11,0,34,0
240
+ TCGA-EL-A3H1-01,1,66,0
241
+ TCGA-EL-A3H1-11,0,66,0
242
+ TCGA-EL-A3H2-01,1,58,1
243
+ TCGA-EL-A3H2-11,0,58,1
244
+ TCGA-EL-A3H3-01,1,19,0
245
+ TCGA-EL-A3H4-01,1,46,0
246
+ TCGA-EL-A3H5-01,1,57,0
247
+ TCGA-EL-A3H7-01,1,36,0
248
+ TCGA-EL-A3H7-11,0,36,0
249
+ TCGA-EL-A3H8-01,1,35,0
250
+ TCGA-EL-A3MW-01,1,55,0
251
+ TCGA-EL-A3MW-11,0,55,0
252
+ TCGA-EL-A3MX-01,1,66,0
253
+ TCGA-EL-A3MX-11,0,66,0
254
+ TCGA-EL-A3MY-01,1,81,1
255
+ TCGA-EL-A3MY-11,0,81,1
256
+ TCGA-EL-A3MZ-01,1,66,1
257
+ TCGA-EL-A3N2-01,1,24,0
258
+ TCGA-EL-A3N2-11,0,24,0
259
+ TCGA-EL-A3N3-01,1,53,0
260
+ TCGA-EL-A3N3-11,0,53,0
261
+ TCGA-EL-A3T0-01,1,45,0
262
+ TCGA-EL-A3T0-11,0,45,0
263
+ TCGA-EL-A3T1-01,1,38,0
264
+ TCGA-EL-A3T1-11,0,38,0
265
+ TCGA-EL-A3T2-01,1,55,0
266
+ TCGA-EL-A3T2-11,0,55,0
267
+ TCGA-EL-A3T3-01,1,63,1
268
+ TCGA-EL-A3T3-11,0,63,1
269
+ TCGA-EL-A3T6-01,1,34,0
270
+ TCGA-EL-A3T6-11,0,34,0
271
+ TCGA-EL-A3T7-01,1,47,0
272
+ TCGA-EL-A3T7-11,0,47,0
273
+ TCGA-EL-A3T8-01,1,36,1
274
+ TCGA-EL-A3T8-11,0,36,1
275
+ TCGA-EL-A3T9-01,1,69,0
276
+ TCGA-EL-A3TA-01,1,42,1
277
+ TCGA-EL-A3TA-11,0,42,1
278
+ TCGA-EL-A3TB-01,1,47,0
279
+ TCGA-EL-A3TB-11,0,47,0
280
+ TCGA-EL-A3ZG-01,1,15,1
281
+ TCGA-EL-A3ZG-11,0,15,1
282
+ TCGA-EL-A3ZH-01,1,42,0
283
+ TCGA-EL-A3ZH-11,0,42,0
284
+ TCGA-EL-A3ZK-01,1,41,0
285
+ TCGA-EL-A3ZK-11,0,41,0
286
+ TCGA-EL-A3ZL-01,1,34,0
287
+ TCGA-EL-A3ZL-11,0,34,0
288
+ TCGA-EL-A3ZM-01,1,60,1
289
+ TCGA-EL-A3ZM-11,0,60,1
290
+ TCGA-EL-A3ZN-01,1,28,0
291
+ TCGA-EL-A3ZO-01,1,79,0
292
+ TCGA-EL-A3ZO-11,0,79,0
293
+ TCGA-EL-A3ZP-01,1,19,1
294
+ TCGA-EL-A3ZP-11,0,19,1
295
+ TCGA-EL-A3ZQ-01,1,78,0
296
+ TCGA-EL-A3ZQ-11,0,78,0
297
+ TCGA-EL-A3ZR-01,1,46,0
298
+ TCGA-EL-A3ZR-11,0,46,0
299
+ TCGA-EL-A3ZS-01,1,22,0
300
+ TCGA-EL-A3ZS-11,0,22,0
301
+ TCGA-EL-A3ZT-01,1,35,1
302
+ TCGA-EL-A3ZT-11,0,35,1
303
+ TCGA-EL-A4JV-01,1,41,0
304
+ TCGA-EL-A4JW-01,1,38,0
305
+ TCGA-EL-A4JX-01,1,31,0
306
+ TCGA-EL-A4JZ-01,1,55,0
307
+ TCGA-EL-A4K0-01,1,54,0
308
+ TCGA-EL-A4K1-01,1,68,0
309
+ TCGA-EL-A4K2-01,1,43,0
310
+ TCGA-EL-A4K4-01,1,33,0
311
+ TCGA-EL-A4K6-01,1,75,1
312
+ TCGA-EL-A4K7-01,1,74,1
313
+ TCGA-EL-A4K9-01,1,68,1
314
+ TCGA-EL-A4KD-01,1,41,1
315
+ TCGA-EL-A4KG-01,1,35,0
316
+ TCGA-EL-A4KH-01,1,36,0
317
+ TCGA-EL-A4KI-01,1,63,1
318
+ TCGA-EM-A1CS-01,1,55,0
319
+ TCGA-EM-A1CS-11,0,55,0
320
+ TCGA-EM-A1CT-01,1,76,1
321
+ TCGA-EM-A1CT-11,0,76,1
322
+ TCGA-EM-A1CU-01,1,31,1
323
+ TCGA-EM-A1CU-11,0,31,1
324
+ TCGA-EM-A1CV-01,1,32,0
325
+ TCGA-EM-A1CV-11,0,32,0
326
+ TCGA-EM-A1CW-01,1,39,0
327
+ TCGA-EM-A1CW-11,0,39,0
328
+ TCGA-EM-A1YA-01,1,74,0
329
+ TCGA-EM-A1YB-01,1,73,0
330
+ TCGA-EM-A1YC-01,1,71,0
331
+ TCGA-EM-A1YC-11,0,71,0
332
+ TCGA-EM-A1YD-01,1,53,0
333
+ TCGA-EM-A1YE-01,1,47,0
334
+ TCGA-EM-A22I-01,1,52,0
335
+ TCGA-EM-A22J-01,1,56,0
336
+ TCGA-EM-A22K-01,1,46,0
337
+ TCGA-EM-A22L-01,1,33,0
338
+ TCGA-EM-A22M-01,1,52,1
339
+ TCGA-EM-A22N-01,1,68,0
340
+ TCGA-EM-A22O-01,1,75,1
341
+ TCGA-EM-A22P-01,1,64,1
342
+ TCGA-EM-A22Q-01,1,36,1
343
+ TCGA-EM-A2CJ-01,1,49,0
344
+ TCGA-EM-A2CK-01,1,28,1
345
+ TCGA-EM-A2CL-01,1,31,1
346
+ TCGA-EM-A2CM-01,1,62,0
347
+ TCGA-EM-A2CN-01,1,62,1
348
+ TCGA-EM-A2CO-01,1,77,0
349
+ TCGA-EM-A2CP-01,1,26,0
350
+ TCGA-EM-A2CQ-01,1,40,0
351
+ TCGA-EM-A2CR-01,1,46,0
352
+ TCGA-EM-A2CS-01,1,51,0
353
+ TCGA-EM-A2CS-06,1,51,0
354
+ TCGA-EM-A2CT-01,1,20,0
355
+ TCGA-EM-A2CU-01,1,47,0
356
+ TCGA-EM-A2OV-01,1,64,0
357
+ TCGA-EM-A2OW-01,1,37,0
358
+ TCGA-EM-A2OX-01,1,46,1
359
+ TCGA-EM-A2OY-01,1,46,0
360
+ TCGA-EM-A2OZ-01,1,66,1
361
+ TCGA-EM-A2P0-01,1,33,1
362
+ TCGA-EM-A2P1-01,1,33,1
363
+ TCGA-EM-A2P1-06,1,33,1
364
+ TCGA-EM-A2P2-01,1,46,1
365
+ TCGA-EM-A2P3-01,1,47,0
366
+ TCGA-EM-A3AI-01,1,67,0
367
+ TCGA-EM-A3AJ-01,1,39,1
368
+ TCGA-EM-A3AK-01,1,62,0
369
+ TCGA-EM-A3AL-01,1,45,0
370
+ TCGA-EM-A3AN-01,1,36,0
371
+ TCGA-EM-A3AO-01,1,61,1
372
+ TCGA-EM-A3AP-01,1,31,0
373
+ TCGA-EM-A3AQ-01,1,85,0
374
+ TCGA-EM-A3AR-01,1,41,1
375
+ TCGA-EM-A3FJ-01,1,24,0
376
+ TCGA-EM-A3FK-01,1,30,0
377
+ TCGA-EM-A3FL-01,1,63,0
378
+ TCGA-EM-A3FM-01,1,57,1
379
+ TCGA-EM-A3FN-01,1,42,0
380
+ TCGA-EM-A3FO-01,1,40,1
381
+ TCGA-EM-A3FP-01,1,71,0
382
+ TCGA-EM-A3FQ-01,1,19,0
383
+ TCGA-EM-A3FQ-06,1,19,0
384
+ TCGA-EM-A3FR-01,1,55,0
385
+ TCGA-EM-A3O3-01,1,83,0
386
+ TCGA-EM-A3O6-01,1,54,0
387
+ TCGA-EM-A3O7-01,1,46,0
388
+ TCGA-EM-A3O8-01,1,33,0
389
+ TCGA-EM-A3O9-01,1,40,1
390
+ TCGA-EM-A3OA-01,1,55,0
391
+ TCGA-EM-A3OB-01,1,33,0
392
+ TCGA-EM-A3ST-01,1,62,0
393
+ TCGA-EM-A3ST-11,0,62,0
394
+ TCGA-EM-A3SU-01,1,43,0
395
+ TCGA-EM-A3SU-06,1,43,0
396
+ TCGA-EM-A3SX-01,1,28,0
397
+ TCGA-EM-A3SY-01,1,36,1
398
+ TCGA-EM-A3SZ-01,1,42,0
399
+ TCGA-EM-A4FF-01,1,40,0
400
+ TCGA-EM-A4FH-01,1,69,1
401
+ TCGA-EM-A4FK-01,1,33,0
402
+ TCGA-EM-A4FM-01,1,59,0
403
+ TCGA-EM-A4FN-01,1,49,0
404
+ TCGA-EM-A4FO-01,1,72,1
405
+ TCGA-EM-A4FQ-01,1,42,0
406
+ TCGA-EM-A4FR-01,1,28,1
407
+ TCGA-EM-A4FU-01,1,35,1
408
+ TCGA-EM-A4FV-01,1,64,0
409
+ TCGA-EM-A4G1-01,1,26,0
410
+ TCGA-ET-A25G-01,1,56,0
411
+ TCGA-ET-A25I-01,1,37,0
412
+ TCGA-ET-A25J-01,1,40,0
413
+ TCGA-ET-A25K-01,1,36,0
414
+ TCGA-ET-A25L-01,1,52,0
415
+ TCGA-ET-A25M-01,1,33,1
416
+ TCGA-ET-A25N-01,1,28,0
417
+ TCGA-ET-A25O-01,1,35,0
418
+ TCGA-ET-A25P-01,1,24,0
419
+ TCGA-ET-A25R-01,1,51,0
420
+ TCGA-ET-A2MX-01,1,27,1
421
+ TCGA-ET-A2MX-11,0,27,1
422
+ TCGA-ET-A2MY-01,1,72,0
423
+ TCGA-ET-A2MZ-01,1,39,1
424
+ TCGA-ET-A2N0-01,1,51,0
425
+ TCGA-ET-A2N3-01,1,34,0
426
+ TCGA-ET-A2N4-01,1,53,0
427
+ TCGA-ET-A2N5-01,1,46,0
428
+ TCGA-ET-A2N5-11,0,46,0
429
+ TCGA-ET-A39I-01,1,83,0
430
+ TCGA-ET-A39J-01,1,23,0
431
+ TCGA-ET-A39K-01,1,48,0
432
+ TCGA-ET-A39L-01,1,20,0
433
+ TCGA-ET-A39M-01,1,34,1
434
+ TCGA-ET-A39N-01,1,35,0
435
+ TCGA-ET-A39O-01,1,39,1
436
+ TCGA-ET-A39P-01,1,73,0
437
+ TCGA-ET-A39R-01,1,24,0
438
+ TCGA-ET-A39S-01,1,27,0
439
+ TCGA-ET-A39T-01,1,55,0
440
+ TCGA-ET-A3BN-01,1,33,0
441
+ TCGA-ET-A3BO-01,1,44,0
442
+ TCGA-ET-A3BP-01,1,34,0
443
+ TCGA-ET-A3BQ-01,1,27,0
444
+ TCGA-ET-A3BS-01,1,42,1
445
+ TCGA-ET-A3BT-01,1,60,0
446
+ TCGA-ET-A3BU-01,1,28,1
447
+ TCGA-ET-A3BV-01,1,47,0
448
+ TCGA-ET-A3BW-01,1,30,0
449
+ TCGA-ET-A3BX-01,1,24,1
450
+ TCGA-ET-A3DO-01,1,33,0
451
+ TCGA-ET-A3DP-01,1,43,0
452
+ TCGA-ET-A3DP-11,0,43,0
453
+ TCGA-ET-A3DQ-01,1,43,0
454
+ TCGA-ET-A3DR-01,1,42,0
455
+ TCGA-ET-A3DS-01,1,33,0
456
+ TCGA-ET-A3DT-01,1,23,0
457
+ TCGA-ET-A3DU-01,1,21,0
458
+ TCGA-ET-A3DV-01,1,68,0
459
+ TCGA-ET-A3DW-01,1,64,1
460
+ TCGA-ET-A3DW-11,0,64,1
461
+ TCGA-ET-A40P-01,1,32,0
462
+ TCGA-ET-A40Q-01,1,38,1
463
+ TCGA-ET-A40R-01,1,24,0
464
+ TCGA-ET-A40S-01,1,62,1
465
+ TCGA-ET-A40T-01,1,26,0
466
+ TCGA-ET-A4KN-01,1,51,0
467
+ TCGA-ET-A4KQ-01,1,45,0
468
+ TCGA-FE-A22Z-01,1,61,0
469
+ TCGA-FE-A230-01,1,30,0
470
+ TCGA-FE-A231-01,1,70,1
471
+ TCGA-FE-A232-01,1,44,0
472
+ TCGA-FE-A233-01,1,18,0
473
+ TCGA-FE-A234-01,1,26,0
474
+ TCGA-FE-A235-01,1,26,0
475
+ TCGA-FE-A236-01,1,33,1
476
+ TCGA-FE-A237-01,1,19,0
477
+ TCGA-FE-A238-01,1,36,0
478
+ TCGA-FE-A239-01,1,82,1
479
+ TCGA-FE-A23A-01,1,27,0
480
+ TCGA-FE-A3PA-01,1,16,1
481
+ TCGA-FE-A3PB-01,1,33,0
482
+ TCGA-FE-A3PC-01,1,37,0
483
+ TCGA-FE-A3PD-01,1,17,0
484
+ TCGA-FK-A3S3-01,1,43,0
485
+ TCGA-FK-A3SB-01,1,28,0
486
+ TCGA-FK-A3SD-01,1,61,0
487
+ TCGA-FK-A3SE-01,1,31,0
488
+ TCGA-FK-A3SG-01,1,21,0
489
+ TCGA-FK-A3SH-01,1,50,0
490
+ TCGA-FK-A4UB-01,1,51,1
491
+ TCGA-FY-A2QD-01,1,61,0
492
+ TCGA-FY-A3BL-01,1,29,1
493
+ TCGA-FY-A3I4-01,1,34,0
494
+ TCGA-FY-A3I5-01,1,64,0
495
+ TCGA-FY-A3NM-01,1,48,0
496
+ TCGA-FY-A3NN-01,1,48,0
497
+ TCGA-FY-A3NP-01,1,69,1
498
+ TCGA-FY-A3ON-01,1,20,1
499
+ TCGA-FY-A3R6-01,1,57,0
500
+ TCGA-FY-A3R7-01,1,50,0
501
+ TCGA-FY-A3R8-01,1,62,0
502
+ TCGA-FY-A3R9-01,1,66,0
503
+ TCGA-FY-A3RA-01,1,21,0
504
+ TCGA-FY-A3TY-01,1,61,0
505
+ TCGA-FY-A3TY-11,0,61,0
506
+ TCGA-FY-A3W9-01,1,66,0
507
+ TCGA-FY-A3WA-01,1,52,0
508
+ TCGA-FY-A3YR-01,1,64,0
509
+ TCGA-FY-A40K-01,1,46,0
510
+ TCGA-FY-A40L-01,1,55,0
511
+ TCGA-FY-A40M-01,1,51,0
512
+ TCGA-FY-A40N-01,1,55,0
513
+ TCGA-FY-A4B0-01,1,76,1
514
+ TCGA-FY-A4B3-01,1,51,1
515
+ TCGA-FY-A4B4-01,1,62,0
516
+ TCGA-FY-A76V-01,1,54,1
517
+ TCGA-GE-A2C6-01,1,33,0
518
+ TCGA-GE-A2C6-11,0,33,0
519
+ TCGA-H2-A26U-01,1,54,0
520
+ TCGA-H2-A2K9-01,1,25,1
521
+ TCGA-H2-A2K9-11,0,25,1
522
+ TCGA-H2-A3RH-01,1,41,0
523
+ TCGA-H2-A3RI-01,1,29,0
524
+ TCGA-H2-A3RI-11,0,29,0
525
+ TCGA-H2-A421-01,1,34,0
526
+ TCGA-H2-A422-01,1,40,0
527
+ TCGA-IM-A3EB-01,1,32,0
528
+ TCGA-IM-A3ED-01,1,58,0
529
+ TCGA-IM-A3U2-01,1,89,0
530
+ TCGA-IM-A3U3-01,1,55,0
531
+ TCGA-IM-A41Y-01,1,42,0
532
+ TCGA-IM-A41Z-01,1,37,0
533
+ TCGA-IM-A420-01,1,39,0
534
+ TCGA-IM-A4EB-01,1,37,1
535
+ TCGA-J8-A3NZ-01,1,52,0
536
+ TCGA-J8-A3O0-01,1,38,1
537
+ TCGA-J8-A3O1-01,1,33,0
538
+ TCGA-J8-A3O2-01,1,39,1
539
+ TCGA-J8-A3O2-06,1,39,1
540
+ TCGA-J8-A3YD-01,1,47,0
541
+ TCGA-J8-A3YE-01,1,31,0
542
+ TCGA-J8-A3YF-01,1,83,1
543
+ TCGA-J8-A3YG-01,1,54,0
544
+ TCGA-J8-A3YH-01,1,39,1
545
+ TCGA-J8-A3YH-06,1,39,1
546
+ TCGA-J8-A42S-01,1,45,1
547
+ TCGA-J8-A4HW-01,1,59,0
548
+ TCGA-J8-A4HW-06,1,59,0
549
+ TCGA-J8-A4HY-01,1,68,0
550
+ TCGA-KS-A41F-01,1,37,0
551
+ TCGA-KS-A41I-01,1,47,0
552
+ TCGA-KS-A41I-11,0,47,0
553
+ TCGA-KS-A41J-01,1,28,0
554
+ TCGA-KS-A41J-11,0,28,0
555
+ TCGA-KS-A41L-01,1,39,0
556
+ TCGA-KS-A41L-11,0,39,0
557
+ TCGA-KS-A4I1-01,1,37,0
558
+ TCGA-KS-A4I3-01,1,41,1
559
+ TCGA-KS-A4I5-01,1,49,0
560
+ TCGA-KS-A4I7-01,1,61,0
561
+ TCGA-KS-A4I9-01,1,46,0
562
+ TCGA-KS-A4IB-01,1,41,0
563
+ TCGA-KS-A4IC-01,1,45,0
564
+ TCGA-KS-A4ID-01,1,55,0
565
+ TCGA-L6-A4EP-01,1,41,0
566
+ TCGA-L6-A4EQ-01,1,47,1
567
+ TCGA-L6-A4ET-01,1,49,0
568
+ TCGA-L6-A4EU-01,1,58,0
569
+ TCGA-MK-A4N6-01,1,35,1
570
+ TCGA-MK-A4N7-01,1,20,0
571
+ TCGA-MK-A4N9-01,1,41,0
572
+ TCGA-MK-A84Z-01,1,74,1
573
+ TCGA-QD-A8IV-01,1,50,0
p1/preprocess/Hypothyroidism/code/GSE151158.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Hypothyroidism"
6
+ cohort = "GSE151158"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Hypothyroidism"
10
+ in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE151158"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Hypothyroidism/GSE151158.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Hypothyroidism/gene_data/GSE151158.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Hypothyroidism/clinical_data/GSE151158.csv"
16
+ json_path = "./output/preprocess/1/Hypothyroidism/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # The series uses RNA from liver tissue and measures expression of ~594 genes.
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+ # 2.1 Identify keys for trait, age, gender
41
+ trait_row = 12 # "hypothyroidism: N", "hypothyroidism: Y" => multiple values => available
42
+ age_row = 1 # "age: 53", "age: 40", etc. => multiple numeric values => available
43
+ gender_row = 2 # "Sex: F", "Sex: M", etc. => multiple values => available
44
+
45
+ # 2.2 Define conversion functions
46
+ def convert_trait(val):
47
+ if not isinstance(val, str):
48
+ return None
49
+ parts = val.split(":")
50
+ if len(parts) < 2:
51
+ return None
52
+ v = parts[1].strip().upper()
53
+ if v == 'Y':
54
+ return 1
55
+ elif v == 'N':
56
+ return 0
57
+ return None
58
+
59
+ def convert_age(val):
60
+ if not isinstance(val, str):
61
+ return None
62
+ parts = val.split(":")
63
+ if len(parts) < 2:
64
+ return None
65
+ v = parts[1].strip()
66
+ try:
67
+ return float(v)
68
+ except ValueError:
69
+ return None
70
+
71
+ def convert_gender(val):
72
+ if not isinstance(val, str):
73
+ return None
74
+ parts = val.split(":")
75
+ if len(parts) < 2:
76
+ return None
77
+ v = parts[1].strip().upper()
78
+ if v == 'M':
79
+ return 1
80
+ elif v == 'F':
81
+ return 0
82
+ return None
83
+
84
+ # 3. Save Metadata (initial filtering)
85
+ is_trait_available = (trait_row is not None)
86
+ is_final = False
87
+ validate_and_save_cohort_info(
88
+ is_final=is_final,
89
+ cohort=cohort,
90
+ info_path=json_path,
91
+ is_gene_available=is_gene_available,
92
+ is_trait_available=is_trait_available
93
+ )
94
+
95
+ # 4. Clinical Feature Extraction (only if trait data is available)
96
+ if trait_row is not None:
97
+ selected_clinical_df = geo_select_clinical_features(
98
+ clinical_data,
99
+ trait=trait,
100
+ trait_row=trait_row,
101
+ convert_trait=convert_trait,
102
+ age_row=age_row,
103
+ convert_age=convert_age,
104
+ gender_row=gender_row,
105
+ convert_gender=convert_gender
106
+ )
107
+ # Preview extracted clinical features
108
+ preview = preview_df(selected_clinical_df, n=5)
109
+ print("Preview of selected clinical features:", preview)
110
+ # Save to CSV
111
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
112
+ # STEP3
113
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
114
+ gene_data = get_genetic_data(matrix_file)
115
+
116
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
117
+ print(gene_data.index[:20])
118
+ # Based on the observed list of gene identifiers, these appear to be standard human gene symbols.
119
+ print("requires_gene_mapping = False")
120
+ # STEP5
121
+ # 1. Normalize gene symbols using the NCBI Gene database synonym information.
122
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
123
+ normalized_gene_data.to_csv(out_gene_data_file)
124
+
125
+ # 2. Link the clinical and genetic data.
126
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
127
+
128
+ # 3. Handle missing values.
129
+ linked_data = handle_missing_values(linked_data, trait)
130
+
131
+ # 4. Determine bias in the trait and demographic features.
132
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
133
+
134
+ # 5. Final quality validation and metadata saving.
135
+ is_usable = validate_and_save_cohort_info(
136
+ is_final=True,
137
+ cohort=cohort,
138
+ info_path=json_path,
139
+ is_gene_available=True,
140
+ is_trait_available=True,
141
+ is_biased=is_trait_biased,
142
+ df=unbiased_linked_data
143
+ )
144
+
145
+ # 6. Save the fully processed data only if it's usable.
146
+ if is_usable:
147
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Hypothyroidism/code/GSE224330.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Hypothyroidism"
6
+ cohort = "GSE224330"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Hypothyroidism"
10
+ in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE224330"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Hypothyroidism/GSE224330.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Hypothyroidism/gene_data/GSE224330.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Hypothyroidism/clinical_data/GSE224330.csv"
16
+ json_path = "./output/preprocess/1/Hypothyroidism/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the background info indicating gene expression data
38
+
39
+ # 2. Variable Availability
40
+ trait_row = 3
41
+ age_row = 1
42
+ gender_row = 2
43
+
44
+ # 2.2 Data Type Conversion
45
+ def convert_trait(value):
46
+ if not isinstance(value, str):
47
+ return 0
48
+ parts = value.split(':', 1)
49
+ if len(parts) < 2:
50
+ return 0
51
+ val = parts[1].strip().lower()
52
+ return 1 if 'hypothyroidism' in val else 0
53
+
54
+ def convert_age(value):
55
+ if not isinstance(value, str):
56
+ return None
57
+ parts = value.split(':', 1)
58
+ if len(parts) < 2:
59
+ return None
60
+ val = parts[1].strip().lower().replace('y', '')
61
+ try:
62
+ return float(val)
63
+ except ValueError:
64
+ return None
65
+
66
+ def convert_gender(value):
67
+ if not isinstance(value, str):
68
+ return None
69
+ parts = value.split(':', 1)
70
+ if len(parts) < 2:
71
+ return None
72
+ val = parts[1].strip().lower()
73
+ if val == 'female':
74
+ return 0
75
+ elif val == 'male':
76
+ return 1
77
+ return None
78
+
79
+ # 3. Save Metadata with initial filtering
80
+ is_trait_available = (trait_row is not None)
81
+ _ = validate_and_save_cohort_info(
82
+ is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=is_trait_available
87
+ )
88
+
89
+ # 4. Clinical Feature Extraction (only if trait data is available)
90
+ if trait_row is not None:
91
+ selected_clinical_df = geo_select_clinical_features(
92
+ clinical_data,
93
+ trait,
94
+ trait_row,
95
+ convert_trait,
96
+ age_row,
97
+ convert_age,
98
+ gender_row,
99
+ convert_gender
100
+ )
101
+ preview = preview_df(selected_clinical_df)
102
+ print("Clinical Data Preview:", preview)
103
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
104
+ # STEP3
105
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
106
+ gene_data = get_genetic_data(matrix_file)
107
+
108
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
109
+ print(gene_data.index[:20])
110
+ # Based on the provided IDs (e.g., A_19_P00315452), they appear to be microarray probe IDs rather than standard human gene symbols.
111
+ # Hence, they likely require mapping to proper gene symbols.
112
+ print("requires_gene_mapping = True")
113
+ # STEP5
114
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
115
+ gene_annotation = get_gene_annotation(soft_file)
116
+
117
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
118
+ print("Gene annotation preview:")
119
+ print(preview_df(gene_annotation))
120
+ # STEP6: Gene Identifier Mapping
121
+
122
+ # 1. Observe columns in the gene annotation dataframe preview:
123
+ # The 'ID' column matches our probe IDs (like 'A_19_P00315452'),
124
+ # and 'GENE_SYMBOL' column holds the corresponding gene symbols.
125
+
126
+ # 2. Get a gene mapping dataframe for these two columns.
127
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
128
+
129
+ # 3. Convert probe-level measurements to gene expression data by applying the gene mapping.
130
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
131
+
132
+ # For verification, let's print the shape of the mapped gene_data
133
+ print("Mapped gene_data shape:", gene_data.shape)
134
+ print("Mapped gene_data index sample:", gene_data.index[:10])
135
+ # STEP5
136
+ # 1. Normalize gene symbols using the NCBI Gene database synonym information.
137
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
138
+ normalized_gene_data.to_csv(out_gene_data_file)
139
+
140
+ # 2. Link the clinical and genetic data.
141
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
142
+
143
+ # 3. Handle missing values.
144
+ linked_data = handle_missing_values(linked_data, trait)
145
+
146
+ # 4. Determine bias in the trait and demographic features.
147
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
148
+
149
+ # 5. Final quality validation and metadata saving.
150
+ is_usable = validate_and_save_cohort_info(
151
+ is_final=True,
152
+ cohort=cohort,
153
+ info_path=json_path,
154
+ is_gene_available=True,
155
+ is_trait_available=True,
156
+ is_biased=is_trait_biased,
157
+ df=unbiased_linked_data
158
+ )
159
+
160
+ # 6. Save the fully processed data only if it's usable.
161
+ if is_usable:
162
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Hypothyroidism/code/GSE32445.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Hypothyroidism"
6
+ cohort = "GSE32445"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Hypothyroidism"
10
+ in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE32445"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Hypothyroidism/GSE32445.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Hypothyroidism/gene_data/GSE32445.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Hypothyroidism/clinical_data/GSE32445.csv"
16
+ json_path = "./output/preprocess/1/Hypothyroidism/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ # Based on the series title mentioning "gene regulation patterns", it is likely gene expression data is available.
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+
42
+ # From the sample characteristics:
43
+ # {0: ['strain: C57/Bl6'], 1: ['gender: male'], 2: ['age: 9 months'], 3: ['tissue: liver']}
44
+ # - The data is from mice, not humans, so no valid human trait information is present.
45
+ # - The "gender" and "age" in this dictionary each have only one unique value ("male", "9 months"), so these are constant.
46
+ # We consider them not available for associative studies.
47
+ trait_row = None
48
+ age_row = None
49
+ gender_row = None
50
+
51
+ def convert_trait(val: str) -> int:
52
+ # No trait data available in this dataset.
53
+ return None
54
+
55
+ def convert_age(val: str) -> float:
56
+ # No human age data available; single constant value for mice.
57
+ return None
58
+
59
+ def convert_gender(val: str) -> int:
60
+ # No human gender data available; single constant value observed (all male mice).
61
+ return None
62
+
63
+ # 3. Save Metadata using initial filtering
64
+ is_trait_available = (trait_row is not None)
65
+ validate_and_save_cohort_info(
66
+ is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=is_trait_available
71
+ )
72
+
73
+ # 4. Clinical Feature Extraction
74
+ # Since trait_row is None, clinical data extraction is skipped.
75
+ # STEP3
76
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
77
+ gene_data = get_genetic_data(matrix_file)
78
+
79
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
80
+ print(gene_data.index[:20])
81
+ # The gene identifiers (e.g., ILMN_1212602) are typical Illumina probe IDs,
82
+ # which are not standard human gene symbols and need to be mapped.
83
+ print("\nrequires_gene_mapping = True")
84
+ # STEP5
85
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
86
+ gene_annotation = get_gene_annotation(soft_file)
87
+
88
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
89
+ print("Gene annotation preview:")
90
+ print(preview_df(gene_annotation))
91
+ # STEP6
92
+ # 1. Identify which columns in the annotation correspond to the Illumina probe IDs in gene_data and to gene symbols.
93
+ # However, from the preview we see "ID" in gene_annotation has entries like "1007_s_at" (Affymetrix),
94
+ # but gene_data uses "ILMN_xxxxxxx" (Illumina). They do not match.
95
+
96
+ # 2. Attempt to extract the mapping between probe IDs ("ID") and gene symbols ("Gene Symbol").
97
+ gene_mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
98
+
99
+ # Check overlap between the annotation and the expression probe IDs.
100
+ common_probes = set(gene_mapping_df["ID"]).intersection(gene_data.index)
101
+ if len(common_probes) == 0:
102
+ print("No valid Illumina annotation found for these probe IDs. Skipping mapping step.")
103
+ else:
104
+ # 3. Convert the probe-level data to gene-level data by applying the mapping if there is overlap.
105
+ gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
106
+
107
+ # Print a brief shape and a few row indices to confirm the transformed data (if any).
108
+ print("Mapped gene_data shape:", gene_data.shape)
109
+ print("First 20 gene symbols/probes after potential mapping:", gene_data.index[:20])
p1/preprocess/Hypothyroidism/code/GSE75678.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Hypothyroidism"
6
+ cohort = "GSE75678"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Hypothyroidism"
10
+ in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE75678"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Hypothyroidism/GSE75678.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Hypothyroidism/gene_data/GSE75678.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Hypothyroidism/clinical_data/GSE75678.csv"
16
+ json_path = "./output/preprocess/1/Hypothyroidism/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Check if gene expression data is available.
37
+ # Based on the background text: "Gene Expression of Mexican Patients with Breast Cancer"
38
+ # it is indeed gene expression data (not miRNA or methylation).
39
+ is_gene_available = True
40
+
41
+ # 2) Determine variable availability and define row indices.
42
+ # We search for "Hypothyroidism" in row 21. The presence of "personal pathological hystory: Hypothyroidism"
43
+ # implies we can interpret that row as indicating whether a sample has hypothyroidism or not.
44
+ trait_row = 21 # row for hypothyroidism = personal pathological hystory
45
+ # Age is available at row 19: "age at diagnosis: ..."
46
+ age_row = 19
47
+ # Gender row (row 1) has only one unique value "female"; no variation => not useful for association.
48
+ gender_row = None
49
+
50
+ # 2.2) Functions to convert the data into the chosen types.
51
+
52
+ def convert_trait(value: str):
53
+ """
54
+ Convert personal pathological history data to a binary indicator for Hypothyroidism.
55
+ Return 1 if 'Hypothyroidism' is in the string, else 0.
56
+ If the string is unparseable or unknown, return None.
57
+ """
58
+ # Split on ":", take the second part if exists
59
+ parts = value.split(":")
60
+ if len(parts) < 2:
61
+ return None
62
+ val_str = parts[1].strip().lower() # e.g. "hypothyroidism", or "rheumatoid arthritis"
63
+ return 1 if "hypothyroidism" in val_str else 0
64
+
65
+ def convert_age(value: str):
66
+ """
67
+ Convert strings like 'age at diagnosis: 45' to a continuous float representing age.
68
+ Unknown or invalid values become None.
69
+ """
70
+ parts = value.split(":")
71
+ if len(parts) < 2:
72
+ return None
73
+ val_str = parts[1].strip()
74
+ try:
75
+ return float(val_str)
76
+ except ValueError:
77
+ return None
78
+
79
+ # Since gender has no variation, we do not need a conversion function.
80
+ convert_gender = None
81
+
82
+ # 3) Perform initial filtering and save metadata.
83
+ # Trait data availability depends on whether 'trait_row' is None.
84
+ is_trait_available = (trait_row is not None)
85
+
86
+ is_usable = validate_and_save_cohort_info(
87
+ is_final=False,
88
+ cohort=cohort,
89
+ info_path=json_path,
90
+ is_gene_available=is_gene_available,
91
+ is_trait_available=is_trait_available
92
+ )
93
+
94
+ # 4) If trait is available, extract clinical features and save them.
95
+ if trait_row is not None:
96
+ selected_clinical_df = geo_select_clinical_features(
97
+ clinical_data,
98
+ trait="Hypothyroidism",
99
+ trait_row=trait_row,
100
+ convert_trait=convert_trait,
101
+ age_row=age_row,
102
+ convert_age=convert_age,
103
+ gender_row=gender_row,
104
+ convert_gender=convert_gender
105
+ )
106
+ preview_output = preview_df(selected_clinical_df)
107
+ print("Preview of selected clinical features:", preview_output)
108
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
109
+ # STEP3
110
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
111
+ gene_data = get_genetic_data(matrix_file)
112
+
113
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
114
+ print(gene_data.index[:20])
115
+ print("requires_gene_mapping = True")
116
+ # STEP5
117
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
118
+ gene_annotation = get_gene_annotation(soft_file)
119
+
120
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
121
+ print("Gene annotation preview:")
122
+ print(preview_df(gene_annotation))
123
+ # Gene Identifier Mapping
124
+ mapping_df = get_gene_mapping(gene_annotation, "ID", "GENE_SYMBOL")
125
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
126
+ # STEP5
127
+ # 1. Normalize gene symbols using the NCBI Gene database synonym information.
128
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
129
+ normalized_gene_data.to_csv(out_gene_data_file)
130
+
131
+ # 2. Link the clinical and genetic data.
132
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
133
+
134
+ # 3. Handle missing values.
135
+ linked_data = handle_missing_values(linked_data, trait)
136
+
137
+ # 4. Determine bias in the trait and demographic features.
138
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
139
+
140
+ # 5. Final quality validation and metadata saving.
141
+ is_usable = validate_and_save_cohort_info(
142
+ is_final=True,
143
+ cohort=cohort,
144
+ info_path=json_path,
145
+ is_gene_available=True,
146
+ is_trait_available=True,
147
+ is_biased=is_trait_biased,
148
+ df=unbiased_linked_data
149
+ )
150
+
151
+ # 6. Save the fully processed data only if it's usable.
152
+ if is_usable:
153
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Hypothyroidism/code/GSE75685.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Hypothyroidism"
6
+ cohort = "GSE75685"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Hypothyroidism"
10
+ in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE75685"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Hypothyroidism/GSE75685.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Hypothyroidism/gene_data/GSE75685.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Hypothyroidism/clinical_data/GSE75685.csv"
16
+ json_path = "./output/preprocess/1/Hypothyroidism/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the metadata, it appears to be an mRNA expression dataset.
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+ # 2.1 Data Availability
41
+ # We identified that "personal pathological hystory: Hypothyroidism" is under key 21.
42
+ trait_row = 21 # multiple unique entries, including "Hypothyroidism"
43
+ # Age at diagnosis is under key 19 with multiple values.
44
+ age_row = 19
45
+ # Gender is under key 1, but it's always 'Female', hence considered not available.
46
+ gender_row = None
47
+
48
+ # 2.2 Data Type Conversion
49
+
50
+ def convert_trait(value: str):
51
+ """
52
+ Convert personal pathological history to a binary indicator of Hypothyroidism.
53
+ 1 if 'Hypothyroidism' is present, else 0.
54
+ """
55
+ # Extract the substring after the first colon, lowercase it:
56
+ val = value.split(':', 1)[-1].strip().lower()
57
+ if 'hypothyroidism' in val:
58
+ return 1
59
+ elif val in {'na', 'n/a', ''}:
60
+ return None
61
+ else:
62
+ return 0
63
+
64
+ def convert_age(value: str):
65
+ """
66
+ Convert age at diagnosis to an integer (continuous).
67
+ """
68
+ val = value.split(':', 1)[-1].strip()
69
+ try:
70
+ return int(val)
71
+ except ValueError:
72
+ return None
73
+
74
+ def convert_gender(value: str):
75
+ """
76
+ Convert gender to binary (female=0, male=1).
77
+ Not used here because gender_row=None, but defined for completeness.
78
+ """
79
+ val = value.split(':', 1)[-1].strip().lower()
80
+ if 'female' in val:
81
+ return 0
82
+ elif 'male' in val:
83
+ return 1
84
+ else:
85
+ return None
86
+
87
+ # Check if trait data is available
88
+ is_trait_available = (trait_row is not None)
89
+
90
+ # 3. Save initial metadata
91
+ is_usable = validate_and_save_cohort_info(
92
+ is_final=False,
93
+ cohort=cohort,
94
+ info_path=json_path,
95
+ is_gene_available=is_gene_available,
96
+ is_trait_available=is_trait_available
97
+ )
98
+
99
+ # 4. Clinical Feature Extraction
100
+ if trait_row is not None:
101
+ # 'clinical_data' is assumed to be the DataFrame containing the parsed sample characteristics
102
+ selected_clinical_df = geo_select_clinical_features(
103
+ clinical_df=clinical_data,
104
+ trait=trait,
105
+ trait_row=trait_row,
106
+ convert_trait=convert_trait,
107
+ age_row=age_row,
108
+ convert_age=convert_age,
109
+ gender_row=gender_row,
110
+ convert_gender=convert_gender
111
+ )
112
+
113
+ # Preview the extracted clinical features
114
+ preview_result = preview_df(selected_clinical_df)
115
+ print("Preview of selected clinical features:", preview_result)
116
+
117
+ # Save to CSV
118
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
119
+ # STEP3
120
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
121
+ gene_data = get_genetic_data(matrix_file)
122
+
123
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
124
+ print(gene_data.index[:20])
125
+ # The given identifiers are numeric indices and not standard human gene symbols.
126
+ # Therefore, mapping to human gene symbols is required.
127
+ print("requires_gene_mapping = True")
128
+ # STEP5
129
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
130
+ gene_annotation = get_gene_annotation(soft_file)
131
+
132
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
133
+ print("Gene annotation preview:")
134
+ print(preview_df(gene_annotation))
135
+ # STEP: Gene Identifier Mapping
136
+
137
+ # 1. Decide columns for probe identifier and gene symbol in the annotation dataframe
138
+ # From observation, "ID" stores the probe identifiers matching the gene_data index,
139
+ # and "GENE_SYMBOL" seems to store the gene symbols.
140
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
141
+
142
+ # 2. Convert probe-level data to gene-level data using the mapping
143
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
144
+
145
+ # Print basic information about the resulting gene_data
146
+ print("Gene data shape after mapping:", gene_data.shape)
147
+ print("Preview of mapped gene indices:", gene_data.index[:20])
148
+ # STEP5
149
+ # 1. Normalize gene symbols using the NCBI Gene database synonym information.
150
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
151
+ normalized_gene_data.to_csv(out_gene_data_file)
152
+
153
+ # 2. Link the clinical and genetic data.
154
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
155
+
156
+ # 3. Handle missing values.
157
+ linked_data = handle_missing_values(linked_data, trait)
158
+
159
+ # 4. Determine bias in the trait and demographic features.
160
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
161
+
162
+ # 5. Final quality validation and metadata saving.
163
+ is_usable = validate_and_save_cohort_info(
164
+ is_final=True,
165
+ cohort=cohort,
166
+ info_path=json_path,
167
+ is_gene_available=True,
168
+ is_trait_available=True,
169
+ is_biased=is_trait_biased,
170
+ df=unbiased_linked_data
171
+ )
172
+
173
+ # 6. Save the fully processed data only if it's usable.
174
+ if is_usable:
175
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Hypothyroidism/code/TCGA.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Hypothyroidism"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Hypothyroidism/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Hypothyroidism/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Hypothyroidism/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Hypothyroidism/cohort_info.json"
15
+
16
+ import os
17
+
18
+ # 1. Identify subdirectories in tcga_root_dir
19
+ subdirs = [d for d in os.listdir(tcga_root_dir) if os.path.isdir(os.path.join(tcga_root_dir, d))]
20
+
21
+ # Use trait-specific or relevant keywords for 'Hypothyroidism'
22
+ trait_keywords = ["hypothyroid", "thyroid"]
23
+
24
+ matched_dirs = []
25
+ for d in subdirs:
26
+ lower_d = d.lower()
27
+ if any(keyword in lower_d for keyword in trait_keywords):
28
+ matched_dirs.append(d)
29
+
30
+ # 3. If no suitable directories found, skip this trait and mark the task completed
31
+ if not matched_dirs:
32
+ print("No suitable TCGA subdirectory found for trait:", trait)
33
+ validate_and_save_cohort_info(
34
+ is_final=False,
35
+ cohort="TCGA",
36
+ info_path=json_path,
37
+ is_gene_available=False,
38
+ is_trait_available=False,
39
+ note="No matched subdirectory found for this trait."
40
+ )
41
+ else:
42
+ # Normally, we'd pick the best match if multiple. For now, pick the first.
43
+ chosen_dir = matched_dirs[0]
44
+ chosen_path = os.path.join(tcga_root_dir, chosen_dir)
45
+ # 2. Identify data file paths
46
+ clinical_file, genetic_file = tcga_get_relevant_filepaths(chosen_path)
47
+ # 3. Load both files as dataframes
48
+ clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
49
+ genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')
50
+ # 4. Print the clinical data columns
51
+ print("Clinical data columns:", clinical_df.columns.tolist())
52
+ # Step 1: Identify columns
53
+ candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"]
54
+ candidate_gender_cols = ["gender"]
55
+ print(f"candidate_age_cols = {candidate_age_cols}")
56
+ print(f"candidate_gender_cols = {candidate_gender_cols}")
57
+
58
+ # Step 2: Extract and preview the data from clinical_df
59
+ if candidate_age_cols:
60
+ age_preview = preview_df(clinical_df[candidate_age_cols], n=5)
61
+ print(age_preview)
62
+ if candidate_gender_cols:
63
+ gender_preview = preview_df(clinical_df[candidate_gender_cols], n=5)
64
+ print(gender_preview)
65
+ age_col = "age_at_initial_pathologic_diagnosis"
66
+ gender_col = "gender"
67
+
68
+ print("Chosen age_col:", age_col)
69
+ print("Chosen gender_col:", gender_col)
70
+ # 1. Extract and standardize the clinical features
71
+ selected_clinical_df = tcga_select_clinical_features(
72
+ clinical_df,
73
+ trait=trait,
74
+ age_col=age_col,
75
+ gender_col=gender_col
76
+ )
77
+
78
+ # 2. Normalize gene symbols and save the normalized gene expression data
79
+ normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df)
80
+ normalized_genetic_df.to_csv(out_gene_data_file)
81
+
82
+ # 3. Link clinical and genetic data by sample IDs
83
+ transposed_genetic_df = normalized_genetic_df.T
84
+ linked_data = selected_clinical_df.join(transposed_genetic_df, how='inner')
85
+
86
+ # 4. Handle missing values in the linked data
87
+ cleaned_data = handle_missing_values(linked_data, trait_col=trait)
88
+
89
+ # 5. Determine trait bias (and remove any heavily biased demographic features)
90
+ is_trait_biased, final_data = judge_and_remove_biased_features(cleaned_data, trait)
91
+
92
+ # 6. Final validation and cohort info recording
93
+ is_usable = validate_and_save_cohort_info(
94
+ is_final=True,
95
+ cohort="TCGA",
96
+ info_path=json_path,
97
+ is_gene_available=True,
98
+ is_trait_available=True,
99
+ is_biased=is_trait_biased,
100
+ df=final_data,
101
+ note="No specific notes."
102
+ )
103
+
104
+ # 7. Save final data if usable
105
+ if is_usable:
106
+ # Save final clinical subset
107
+ demographic_cols = [col for col in [trait, 'Age', 'Gender'] if col in final_data.columns]
108
+ final_data[demographic_cols].to_csv(out_clinical_data_file)
109
+
110
+ # Save the entire linked dataset
111
+ final_data.to_csv(out_data_file)
p1/preprocess/Hypothyroidism/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE75685": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": false, "sample_size": 54, "note": ""}, "GSE75678": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": false, "sample_size": 54, "note": ""}, "GSE32445": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE224330": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": true, "sample_size": 31, "note": ""}, "GSE151158": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 61, "note": ""}, "TCGA": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 572, "note": "No specific notes."}}