Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE19949.csv +3 -0
- p3/preprocess/Lower_Grade_Glioma/GSE107850.csv +3 -0
- p3/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/GSE112943.csv +3 -0
- p3/preprocess/Retinoblastoma/code/GSE58780.py +160 -0
- p3/preprocess/Retinoblastoma/code/GSE59983.py +155 -0
- p3/preprocess/Retinoblastoma/code/GSE63529.py +132 -0
- p3/preprocess/Retinoblastoma/code/GSE68950.py +117 -0
- p3/preprocess/Retinoblastoma/code/TCGA.py +96 -0
- p3/preprocess/Retinoblastoma/gene_data/GSE110811.csv +1 -0
- p3/preprocess/Retinoblastoma/gene_data/GSE208143.csv +0 -0
- p3/preprocess/Retinoblastoma/gene_data/GSE26805.csv +0 -0
- p3/preprocess/Retinoblastoma/gene_data/GSE29683.csv +1 -0
- p3/preprocess/Retinoblastoma/gene_data/GSE58780.csv +0 -0
- p3/preprocess/Retinoblastoma/gene_data/GSE63529.csv +0 -0
- p3/preprocess/Rheumatoid_Arthritis/GSE121894.csv +0 -0
- p3/preprocess/Rheumatoid_Arthritis/GSE143153.csv +0 -0
- p3/preprocess/Rheumatoid_Arthritis/GSE186963.csv +0 -0
- p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE121894.csv +2 -0
- p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE143153.csv +4 -0
- p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE176440.csv +2 -0
- p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE186963.csv +2 -0
- p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224330.csv +4 -0
- p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224842.csv +2 -0
- p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE236924.csv +2 -0
- p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE42842.csv +3 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE121894.py +168 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE140161.py +168 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE143153.py +185 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE176440.py +169 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE186963.py +175 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE224330.py +472 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE224842.py +172 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE236924.py +161 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE42842.py +155 -0
- p3/preprocess/Rheumatoid_Arthritis/code/GSE97475.py +120 -0
- p3/preprocess/Rheumatoid_Arthritis/code/TCGA.py +34 -0
- p3/preprocess/Rheumatoid_Arthritis/cohort_info.json +1 -0
- p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE121894.csv +0 -0
- p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE143153.csv +0 -0
- p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE186963.csv +0 -0
- p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE224330.csv +1 -0
- p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE224842.csv +0 -0
- p3/preprocess/Sarcoma/GSE159848.csv +0 -0
- p3/preprocess/Sarcoma/clinical_data/GSE118336.csv +2 -0
- p3/preprocess/Sarcoma/clinical_data/GSE133228.csv +4 -0
- p3/preprocess/Sarcoma/clinical_data/GSE142162.csv +4 -0
- p3/preprocess/Sarcoma/clinical_data/GSE159847.csv +4 -0
- p3/preprocess/Sarcoma/clinical_data/GSE159848.csv +4 -0
- p3/preprocess/Sarcoma/clinical_data/GSE162785.csv +2 -0
.gitattributes
CHANGED
@@ -1882,3 +1882,6 @@ p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/GSE35158.csv filter=
|
|
1882 |
p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1883 |
p3/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv filter=lfs diff=lfs merge=lfs -text
|
1884 |
p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE119958.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
1882 |
p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1883 |
p3/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv filter=lfs diff=lfs merge=lfs -text
|
1884 |
p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE119958.csv filter=lfs diff=lfs merge=lfs -text
|
1885 |
+
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE19949.csv filter=lfs diff=lfs merge=lfs -text
|
1886 |
+
p3/preprocess/Lower_Grade_Glioma/GSE107850.csv filter=lfs diff=lfs merge=lfs -text
|
1887 |
+
p3/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/GSE112943.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE19949.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:633c345f5e6e42cf13d32490fa18bf65e3e46c642ff5e202b46d4ea9c9cbf398
|
3 |
+
size 32430679
|
p3/preprocess/Lower_Grade_Glioma/GSE107850.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e59635445960e7b620f444d95bfe9c178a939ade0a22fffdeb698b505cba1f2
|
3 |
+
size 47675256
|
p3/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/GSE112943.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d4e43b7dfe5fa8de7c7ccc232ddd1da433b93feb1359dfc6cabbd5c56f276e8
|
3 |
+
size 12112382
|
p3/preprocess/Retinoblastoma/code/GSE58780.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Retinoblastoma"
|
6 |
+
cohort = "GSE58780"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Retinoblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE58780"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Retinoblastoma/GSE58780.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/GSE58780.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/GSE58780.csv"
|
16 |
+
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Analysis
|
33 |
+
# Based on background info mentioning Affymetrix array and gene expression data
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# Trait can be determined from tissue field (row 2)
|
38 |
+
trait_row = 2
|
39 |
+
# Age and gender not available in sample characteristics
|
40 |
+
age_row = None
|
41 |
+
gender_row = None
|
42 |
+
|
43 |
+
# 2.2 Data Type Conversion Functions
|
44 |
+
def convert_trait(value: str) -> int:
|
45 |
+
"""Convert tissue type to binary (0 for control, 1 for retinoblastoma)"""
|
46 |
+
if not value or ':' not in value:
|
47 |
+
return None
|
48 |
+
tissue = value.split(':')[1].strip().lower()
|
49 |
+
if 'retinoblastoma' in tissue:
|
50 |
+
return 1
|
51 |
+
elif 'fetal retina' in tissue:
|
52 |
+
return 0
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(value: str) -> float:
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_gender(value: str) -> int:
|
59 |
+
return None
|
60 |
+
|
61 |
+
# 3. Save Initial Metadata
|
62 |
+
# Trait data is available since trait_row is not None
|
63 |
+
is_trait_available = trait_row is not None
|
64 |
+
validate_and_save_cohort_info(is_final=False,
|
65 |
+
cohort=cohort,
|
66 |
+
info_path=json_path,
|
67 |
+
is_gene_available=is_gene_available,
|
68 |
+
is_trait_available=is_trait_available)
|
69 |
+
|
70 |
+
# 4. Clinical Feature Extraction
|
71 |
+
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
|
72 |
+
trait=trait,
|
73 |
+
trait_row=trait_row,
|
74 |
+
convert_trait=convert_trait)
|
75 |
+
|
76 |
+
# Preview and save clinical features
|
77 |
+
print("Clinical features preview:")
|
78 |
+
print(preview_df(clinical_features))
|
79 |
+
|
80 |
+
# Save clinical data
|
81 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
82 |
+
clinical_features.to_csv(out_clinical_data_file)
|
83 |
+
# Get gene expression data from matrix file
|
84 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
85 |
+
|
86 |
+
# Examine data structure
|
87 |
+
print("Data structure and head:")
|
88 |
+
print(genetic_data.head())
|
89 |
+
|
90 |
+
print("\nShape:", genetic_data.shape)
|
91 |
+
|
92 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
93 |
+
print(list(genetic_data.index)[:20])
|
94 |
+
|
95 |
+
# Get a few column names to verify sample IDs
|
96 |
+
print("\nFirst 5 column names:")
|
97 |
+
print(list(genetic_data.columns)[:5])
|
98 |
+
# Checking the format of gene identifiers, it appears they are probe identifiers with "_at" suffix
|
99 |
+
# This indicates these are probe IDs from an Affymetrix microarray rather than standard gene symbols
|
100 |
+
# We will need to map these probe IDs to human gene symbols
|
101 |
+
requires_gene_mapping = True
|
102 |
+
# Extract gene annotation data
|
103 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
104 |
+
|
105 |
+
# Display column names and preview data
|
106 |
+
print("Column names:")
|
107 |
+
print(gene_annotation.columns)
|
108 |
+
|
109 |
+
print("\nPreview of gene annotation data:")
|
110 |
+
print(preview_df(gene_annotation))
|
111 |
+
# 1. In gene expression data we see IDs like "100009676_at", which matches the "ID" column in annotation
|
112 |
+
# Description field contains gene names that we can extract symbols from
|
113 |
+
|
114 |
+
# 2. Extract mapping between probe IDs and gene symbols
|
115 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description')
|
116 |
+
|
117 |
+
# 3. Apply gene mapping to convert probe data to gene expression data
|
118 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
119 |
+
|
120 |
+
# Preview converted gene data
|
121 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
122 |
+
print("\nPreview of gene expression data:")
|
123 |
+
print(gene_data.head())
|
124 |
+
|
125 |
+
# Save gene data
|
126 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
127 |
+
gene_data.to_csv(out_gene_data_file)
|
128 |
+
# Reload clinical data that was processed earlier
|
129 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
130 |
+
|
131 |
+
# 1. Normalize gene symbols
|
132 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
133 |
+
gene_data.to_csv(out_gene_data_file)
|
134 |
+
|
135 |
+
# 2. Link clinical and genetic data
|
136 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
137 |
+
|
138 |
+
# 3. Handle missing values systematically
|
139 |
+
linked_data = handle_missing_values(linked_data, trait)
|
140 |
+
|
141 |
+
# 4. Check for bias in trait and demographic features
|
142 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
143 |
+
|
144 |
+
# 5. Final validation and information saving
|
145 |
+
note = "Dataset contains gene expression data from primary human retinoblastoma samples profiled with Affymetrix microarray."
|
146 |
+
is_usable = validate_and_save_cohort_info(
|
147 |
+
is_final=True,
|
148 |
+
cohort=cohort,
|
149 |
+
info_path=json_path,
|
150 |
+
is_gene_available=True,
|
151 |
+
is_trait_available=True,
|
152 |
+
is_biased=trait_biased,
|
153 |
+
df=linked_data,
|
154 |
+
note=note
|
155 |
+
)
|
156 |
+
|
157 |
+
# 6. Save linked data only if usable
|
158 |
+
if is_usable:
|
159 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
160 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Retinoblastoma/code/GSE59983.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Retinoblastoma"
|
6 |
+
cohort = "GSE59983"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Retinoblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE59983"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Retinoblastoma/GSE59983.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/GSE59983.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/GSE59983.csv"
|
16 |
+
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes, this dataset contains gene expression data (Affymetrix microarray)
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
trait_row = 0 # "tissue: primary Rb tissue" indicates these are retinoblastoma samples
|
38 |
+
age_row = None # Age not available in sample characteristics
|
39 |
+
gender_row = None # Gender not available in sample characteristics
|
40 |
+
|
41 |
+
# 2.2 Data Type Conversion Functions
|
42 |
+
def convert_trait(value: str) -> int:
|
43 |
+
"""Convert trait value to binary: 1 for retinoblastoma tissue, 0 for normal"""
|
44 |
+
if not value or ':' not in value:
|
45 |
+
return None
|
46 |
+
value = value.split(':')[1].strip().lower()
|
47 |
+
if 'primary rb tissue' in value:
|
48 |
+
return 1
|
49 |
+
return 0
|
50 |
+
|
51 |
+
def convert_age(value: str) -> Optional[float]:
|
52 |
+
"""Convert age value to continuous number"""
|
53 |
+
return None # Not used since age data unavailable
|
54 |
+
|
55 |
+
def convert_gender(value: str) -> Optional[int]:
|
56 |
+
"""Convert gender to binary: 0 for female, 1 for male"""
|
57 |
+
return None # Not used since gender data unavailable
|
58 |
+
|
59 |
+
# 3. Save Metadata
|
60 |
+
is_trait_available = trait_row is not None
|
61 |
+
validate_and_save_cohort_info(is_final=False,
|
62 |
+
cohort=cohort,
|
63 |
+
info_path=json_path,
|
64 |
+
is_gene_available=is_gene_available,
|
65 |
+
is_trait_available=is_trait_available)
|
66 |
+
|
67 |
+
# 4. Clinical Feature Extraction
|
68 |
+
if trait_row is not None:
|
69 |
+
clinical_features = geo_select_clinical_features(
|
70 |
+
clinical_df=clinical_data,
|
71 |
+
trait=trait,
|
72 |
+
trait_row=trait_row,
|
73 |
+
convert_trait=convert_trait,
|
74 |
+
age_row=age_row,
|
75 |
+
convert_age=convert_age,
|
76 |
+
gender_row=gender_row,
|
77 |
+
convert_gender=convert_gender
|
78 |
+
)
|
79 |
+
|
80 |
+
# Preview the extracted features
|
81 |
+
print("Preview of clinical features:")
|
82 |
+
print(preview_df(clinical_features))
|
83 |
+
|
84 |
+
# Save to CSV
|
85 |
+
clinical_features.to_csv(out_clinical_data_file)
|
86 |
+
# Get gene expression data from matrix file
|
87 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
88 |
+
|
89 |
+
# Examine data structure
|
90 |
+
print("Data structure and head:")
|
91 |
+
print(genetic_data.head())
|
92 |
+
|
93 |
+
print("\nShape:", genetic_data.shape)
|
94 |
+
|
95 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
96 |
+
print(list(genetic_data.index)[:20])
|
97 |
+
|
98 |
+
# Get a few column names to verify sample IDs
|
99 |
+
print("\nFirst 5 column names:")
|
100 |
+
print(list(genetic_data.columns)[:5])
|
101 |
+
# Looking at the gene identifiers like '1007_PM_s_at', '1053_PM_at', these are Affymetrix probe IDs
|
102 |
+
# NOT human gene symbols, so they need to be mapped
|
103 |
+
requires_gene_mapping = True
|
104 |
+
# Extract gene annotation data
|
105 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
106 |
+
|
107 |
+
# Display column names and preview data
|
108 |
+
print("Column names:")
|
109 |
+
print(gene_annotation.columns)
|
110 |
+
|
111 |
+
print("\nPreview of gene annotation data:")
|
112 |
+
print(preview_df(gene_annotation))
|
113 |
+
# Create gene mapping dataframe with 'ID' and 'Gene Symbol' columns
|
114 |
+
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')
|
115 |
+
|
116 |
+
# Apply gene mapping to get gene expression data
|
117 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
118 |
+
|
119 |
+
# Peek at the mapped gene data
|
120 |
+
print("Data structure after gene mapping:")
|
121 |
+
print(gene_data.head())
|
122 |
+
print("\nShape:", gene_data.shape)
|
123 |
+
# Reload clinical data that was processed earlier
|
124 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
125 |
+
|
126 |
+
# 1. Normalize gene symbols
|
127 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
128 |
+
gene_data.to_csv(out_gene_data_file)
|
129 |
+
|
130 |
+
# 2. Link clinical and genetic data
|
131 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
132 |
+
|
133 |
+
# 3. Handle missing values systematically
|
134 |
+
linked_data = handle_missing_values(linked_data, trait)
|
135 |
+
|
136 |
+
# 4. Check for bias in trait and demographic features
|
137 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
138 |
+
|
139 |
+
# 5. Final validation and information saving
|
140 |
+
note = "Dataset contains gene expression data from primary human retinoblastoma samples profiled with Affymetrix microarray."
|
141 |
+
is_usable = validate_and_save_cohort_info(
|
142 |
+
is_final=True,
|
143 |
+
cohort=cohort,
|
144 |
+
info_path=json_path,
|
145 |
+
is_gene_available=True,
|
146 |
+
is_trait_available=True,
|
147 |
+
is_biased=trait_biased,
|
148 |
+
df=linked_data,
|
149 |
+
note=note
|
150 |
+
)
|
151 |
+
|
152 |
+
# 6. Save linked data only if usable
|
153 |
+
if is_usable:
|
154 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
155 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Retinoblastoma/code/GSE63529.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Retinoblastoma"
|
6 |
+
cohort = "GSE63529"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Retinoblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE63529"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Retinoblastoma/GSE63529.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/GSE63529.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/GSE63529.csv"
|
16 |
+
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
is_gene_available = True # The Series_summary and design indicate a gene expression study
|
34 |
+
|
35 |
+
# 2.1 Data Availability
|
36 |
+
# This dataset studies ovarian cancer drug resistance, not retinoblastoma
|
37 |
+
trait_row = None # No appropriate retinoblastoma trait data
|
38 |
+
age_row = None # Age information is not provided
|
39 |
+
gender_row = None # Gender information is not provided
|
40 |
+
|
41 |
+
# 2.2 Data Type Conversion Functions
|
42 |
+
def convert_trait(x):
|
43 |
+
# Not needed since trait data is unavailable
|
44 |
+
return None
|
45 |
+
|
46 |
+
def convert_age(x):
|
47 |
+
# Not needed since age data is unavailable
|
48 |
+
return None
|
49 |
+
|
50 |
+
def convert_gender(x):
|
51 |
+
# Not needed since gender data is unavailable
|
52 |
+
return None
|
53 |
+
|
54 |
+
# 3. Save Metadata
|
55 |
+
is_trait_available = trait_row is not None
|
56 |
+
validate_and_save_cohort_info(
|
57 |
+
is_final=False,
|
58 |
+
cohort=cohort,
|
59 |
+
info_path=json_path,
|
60 |
+
is_gene_available=is_gene_available,
|
61 |
+
is_trait_available=is_trait_available
|
62 |
+
)
|
63 |
+
|
64 |
+
# 4. Clinical Feature Extraction
|
65 |
+
# Skip since trait_row is None
|
66 |
+
# Get gene expression data from matrix file
|
67 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
68 |
+
|
69 |
+
# Examine data structure
|
70 |
+
print("Data structure and head:")
|
71 |
+
print(genetic_data.head())
|
72 |
+
|
73 |
+
print("\nShape:", genetic_data.shape)
|
74 |
+
|
75 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
76 |
+
print(list(genetic_data.index)[:20])
|
77 |
+
|
78 |
+
# Get a few column names to verify sample IDs
|
79 |
+
print("\nFirst 5 column names:")
|
80 |
+
print(list(genetic_data.columns)[:5])
|
81 |
+
# The identifiers starting with "ILMN_" are Illumina probe IDs used in microarrays.
|
82 |
+
# They need to be mapped to human gene symbols for consistent analysis.
|
83 |
+
requires_gene_mapping = True
|
84 |
+
# Extract gene annotation data
|
85 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
86 |
+
|
87 |
+
# Display column names and preview data
|
88 |
+
print("Column names:")
|
89 |
+
print(gene_annotation.columns)
|
90 |
+
|
91 |
+
print("\nPreview of gene annotation data:")
|
92 |
+
print(preview_df(gene_annotation))
|
93 |
+
# 1. Column names identified:
|
94 |
+
# 'ID' in gene annotation corresponds to the probe IDs (ILMN_*) in gene expression data
|
95 |
+
# 'Symbol' contains the gene symbols to map to
|
96 |
+
|
97 |
+
# 2. Get gene mapping dataframe with probe ID and gene symbol columns
|
98 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
99 |
+
|
100 |
+
# 3. Convert probe-level measurements to gene expression data
|
101 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
102 |
+
|
103 |
+
# Print info about the conversion
|
104 |
+
print("Original probe data shape:", genetic_data.shape)
|
105 |
+
print("Gene mapping data shape:", mapping_data.shape)
|
106 |
+
print("Final gene expression data shape:", gene_data.shape)
|
107 |
+
|
108 |
+
print("\nPreview of gene expression data:")
|
109 |
+
print(preview_df(gene_data))
|
110 |
+
# 1. Normalize gene symbols and save
|
111 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
112 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
113 |
+
gene_data.to_csv(out_gene_data_file)
|
114 |
+
|
115 |
+
# 2-4. Skip clinical data linking and bias checking since trait data is unavailable
|
116 |
+
linked_data = gene_data # Use gene data as linked data since no clinical data available
|
117 |
+
trait_biased = True # No retinoblastoma data makes it maximally biased for this trait
|
118 |
+
|
119 |
+
# 5. Final validation - mark as unusable due to lack of retinoblastoma trait data
|
120 |
+
note = "Dataset contains gene expression data from ovarian cancer drug resistance study, not retinoblastoma."
|
121 |
+
is_usable = validate_and_save_cohort_info(
|
122 |
+
is_final=True,
|
123 |
+
cohort=cohort,
|
124 |
+
info_path=json_path,
|
125 |
+
is_gene_available=True,
|
126 |
+
is_trait_available=False,
|
127 |
+
is_biased=trait_biased,
|
128 |
+
df=linked_data,
|
129 |
+
note=note
|
130 |
+
)
|
131 |
+
|
132 |
+
# 6. Skip saving linked data since dataset is unusable
|
p3/preprocess/Retinoblastoma/code/GSE68950.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Retinoblastoma"
|
6 |
+
cohort = "GSE68950"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Retinoblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE68950"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Retinoblastoma/GSE68950.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/GSE68950.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/GSE68950.csv"
|
16 |
+
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# Check gene expression data availability (yes, this is Affymetrix gene expression data)
|
33 |
+
is_gene_available = True
|
34 |
+
|
35 |
+
# After reviewing disease states, there are no retinoblastoma cases
|
36 |
+
trait_row = None # No retinoblastoma cases in the dataset
|
37 |
+
age_row = None # No age information available
|
38 |
+
gender_row = None # No gender information available
|
39 |
+
|
40 |
+
# Define conversion functions
|
41 |
+
def convert_trait(value: str) -> int:
|
42 |
+
"""Convert disease state to binary: 1 for Retinoblastoma, 0 for others"""
|
43 |
+
if not value or ':' not in value:
|
44 |
+
return None
|
45 |
+
disease = value.split(':', 1)[1].strip().lower()
|
46 |
+
if 'retinoblastoma' in disease:
|
47 |
+
return 1
|
48 |
+
return 0
|
49 |
+
|
50 |
+
def convert_age(value: str) -> float:
|
51 |
+
"""Placeholder function since age data is not available"""
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_gender(value: str) -> int:
|
55 |
+
"""Placeholder function since gender data is not available"""
|
56 |
+
return None
|
57 |
+
|
58 |
+
# Save metadata
|
59 |
+
validate_and_save_cohort_info(is_final=False,
|
60 |
+
cohort=cohort,
|
61 |
+
info_path=json_path,
|
62 |
+
is_gene_available=is_gene_available,
|
63 |
+
is_trait_available=trait_row is not None)
|
64 |
+
|
65 |
+
# Skip clinical feature extraction since trait data is not available
|
66 |
+
# Get gene expression data from matrix file
|
67 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
68 |
+
|
69 |
+
# Examine data structure
|
70 |
+
print("Data structure and head:")
|
71 |
+
print(genetic_data.head())
|
72 |
+
|
73 |
+
print("\nShape:", genetic_data.shape)
|
74 |
+
|
75 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
76 |
+
print(list(genetic_data.index)[:20])
|
77 |
+
|
78 |
+
# Get a few column names to verify sample IDs
|
79 |
+
print("\nFirst 5 column names:")
|
80 |
+
print(list(genetic_data.columns)[:5])
|
81 |
+
requires_gene_mapping = True
|
82 |
+
# Extract gene annotation data
|
83 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
84 |
+
|
85 |
+
# Display column names and preview data
|
86 |
+
print("Column names:")
|
87 |
+
print(gene_annotation.columns)
|
88 |
+
|
89 |
+
print("\nPreview of gene annotation data:")
|
90 |
+
print(preview_df(gene_annotation))
|
91 |
+
# Get gene mapping information from annotation data
|
92 |
+
# The ID column in gene_annotation matches the probe IDs in genetic_data
|
93 |
+
# The Gene Symbol column contains corresponding gene symbols
|
94 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
95 |
+
|
96 |
+
# Apply the mapping to convert probe data to gene expression data
|
97 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
98 |
+
|
99 |
+
# Save gene data
|
100 |
+
gene_data.to_csv(out_gene_data_file)
|
101 |
+
import pandas as pd
|
102 |
+
|
103 |
+
# Create empty DataFrame for validation
|
104 |
+
empty_df = pd.DataFrame()
|
105 |
+
|
106 |
+
# Final validation and information saving
|
107 |
+
note = "Dataset lacks retinoblastoma trait information, cannot be used for analysis."
|
108 |
+
is_usable = validate_and_save_cohort_info(
|
109 |
+
is_final=True,
|
110 |
+
cohort=cohort,
|
111 |
+
info_path=json_path,
|
112 |
+
is_gene_available=True,
|
113 |
+
is_trait_available=False,
|
114 |
+
is_biased=True,
|
115 |
+
df=empty_df,
|
116 |
+
note=note
|
117 |
+
)
|
p3/preprocess/Retinoblastoma/code/TCGA.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Retinoblastoma"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Retinoblastoma/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"
|
15 |
+
|
16 |
+
# 1. Look for directories related to retinoblastoma (eye/ocular cancer)
|
17 |
+
available_cohorts = os.listdir(tcga_root_dir)
|
18 |
+
relevant_dirs = [d for d in available_cohorts if any(term in d.lower() for term in ['eye', 'ocular', 'retina', 'retinoblastoma'])]
|
19 |
+
|
20 |
+
# If no exact match found, use ocular melanoma as closest available eye cancer data
|
21 |
+
if len(relevant_dirs) == 0:
|
22 |
+
# Record unavailability and exit
|
23 |
+
validate_and_save_cohort_info(
|
24 |
+
is_final=False,
|
25 |
+
cohort="TCGA",
|
26 |
+
info_path=json_path,
|
27 |
+
is_gene_available=False,
|
28 |
+
is_trait_available=False
|
29 |
+
)
|
30 |
+
# Since we need to skip this trait, return empty dataframes to avoid errors in subsequent code
|
31 |
+
clinical_df = pd.DataFrame()
|
32 |
+
genetic_df = pd.DataFrame()
|
33 |
+
else:
|
34 |
+
# Select the most relevant directory (first match)
|
35 |
+
selected_dir = relevant_dirs[0]
|
36 |
+
cohort_dir = os.path.join(tcga_root_dir, selected_dir)
|
37 |
+
|
38 |
+
# 2. Get file paths for clinical and genetic data
|
39 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
40 |
+
|
41 |
+
# 3. Load the data files
|
42 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
43 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
44 |
+
|
45 |
+
# 4. Print clinical data columns
|
46 |
+
print("Clinical data columns:")
|
47 |
+
print(clinical_df.columns.tolist())
|
48 |
+
|
49 |
+
# Record data availability
|
50 |
+
is_gene_available = len(genetic_df.columns) > 0
|
51 |
+
is_trait_available = len(clinical_df.columns) > 0
|
52 |
+
|
53 |
+
validate_and_save_cohort_info(
|
54 |
+
is_final=False,
|
55 |
+
cohort="TCGA",
|
56 |
+
info_path=json_path,
|
57 |
+
is_gene_available=is_gene_available,
|
58 |
+
is_trait_available=is_trait_available
|
59 |
+
)
|
60 |
+
# Identify candidate demographic columns
|
61 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
|
62 |
+
candidate_gender_cols = ['gender']
|
63 |
+
|
64 |
+
# Get list of TCGA cohort directories
|
65 |
+
cohorts = os.listdir(tcga_root_dir)
|
66 |
+
|
67 |
+
# Find any clinical files containing Retinoblastoma data
|
68 |
+
clinical_df = None
|
69 |
+
for cohort in cohorts:
|
70 |
+
cohort_dir = os.path.join(tcga_root_dir, cohort)
|
71 |
+
if os.path.isdir(cohort_dir):
|
72 |
+
try:
|
73 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
|
74 |
+
temp_df = pd.read_csv(clinical_file_path, index_col=0)
|
75 |
+
if any('retinoblastoma' in str(col).lower() for col in temp_df.columns):
|
76 |
+
clinical_df = temp_df
|
77 |
+
break
|
78 |
+
except:
|
79 |
+
continue
|
80 |
+
|
81 |
+
if clinical_df is not None:
|
82 |
+
# Preview age columns
|
83 |
+
age_preview = {}
|
84 |
+
for col in candidate_age_cols:
|
85 |
+
if col in clinical_df.columns:
|
86 |
+
age_preview[col] = clinical_df[col].head().tolist()
|
87 |
+
print("Age columns preview:", age_preview)
|
88 |
+
|
89 |
+
# Preview gender columns
|
90 |
+
gender_preview = {}
|
91 |
+
for col in candidate_gender_cols:
|
92 |
+
if col in clinical_df.columns:
|
93 |
+
gender_preview[col] = clinical_df[col].head().tolist()
|
94 |
+
print("Gender columns preview:", gender_preview)
|
95 |
+
else:
|
96 |
+
print("No clinical data found containing Retinoblastoma information")
|
p3/preprocess/Retinoblastoma/gene_data/GSE110811.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM3017123,GSM3017124,GSM3017125,GSM3017126,GSM3017127,GSM3017128,GSM3017129,GSM3017130,GSM3017131,GSM3017132,GSM3017133,GSM3017134,GSM3017135,GSM3017136,GSM3017137,GSM3017138,GSM3017139,GSM3017140,GSM3017141,GSM3017142,GSM3017143,GSM3017144,GSM3017145,GSM3017146,GSM3017147,GSM3017148,GSM3017149,GSM3017150,GSM3017151,GSM3017152,GSM3017153,GSM3017154,GSM3017155,GSM3017156
|
p3/preprocess/Retinoblastoma/gene_data/GSE208143.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Retinoblastoma/gene_data/GSE26805.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Retinoblastoma/gene_data/GSE29683.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ID,GSM736228,GSM736229,GSM736230,GSM736231,GSM736232,GSM736233,GSM736234,GSM736235,GSM736236,GSM736237,GSM736238,GSM736239,GSM736240,GSM736241,GSM736242,GSM736243,GSM736244,GSM736245,GSM736246,GSM736247,GSM736248,GSM736249,GSM736250,GSM736251,GSM736252,GSM736253,GSM736254,GSM736255,GSM736256,GSM736257,GSM736258,GSM736259,GSM736260,GSM736261,GSM736262,GSM736263,GSM736264,GSM736265,GSM736266,GSM736267,GSM736268,GSM736269,GSM736270,GSM736271,GSM736272,GSM736273,GSM736274,GSM736275,GSM736276,GSM736277,GSM736278,GSM736279,GSM736280,GSM736281,GSM736282,GSM736283,GSM736284,GSM736285,GSM736286,GSM736287,GSM736288,GSM736289
|
p3/preprocess/Retinoblastoma/gene_data/GSE58780.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Retinoblastoma/gene_data/GSE63529.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Rheumatoid_Arthritis/GSE121894.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Rheumatoid_Arthritis/GSE143153.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Rheumatoid_Arthritis/GSE186963.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE121894.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3449621,GSM3449622,GSM3449623,GSM3449624,GSM3449625,GSM3449626,GSM3449627,GSM3449628,GSM3449629,GSM3449630,GSM3449631,GSM3449632,GSM3449633,GSM3449634,GSM3449635,GSM3449636,GSM3449637,GSM3449638,GSM3449639,GSM3449640,GSM3449641,GSM3449642,GSM3449643,GSM3449644,GSM3449645,GSM3449646,GSM3449647,GSM3449648,GSM3449649,GSM3449650,GSM3449651,GSM3449652,GSM3449653,GSM3449654,GSM3449655,GSM3449656,GSM3449657,GSM3449658,GSM3449659,GSM3449660,GSM3449661,GSM3449662,GSM3449663,GSM3449664,GSM3449665,GSM3449666,GSM3449667,GSM3449668,GSM3449669,GSM3449670,GSM3449671,GSM3449672,GSM3449673,GSM3449674,GSM3449675,GSM3449676,GSM3449677,GSM3449678
|
2 |
+
Rheumatoid_Arthritis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE143153.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM4251021,GSM4251022,GSM4251023,GSM4251024,GSM4251025,GSM4251026,GSM4251027,GSM4251028,GSM4251029,GSM4251030,GSM4251031,GSM4251032,GSM4251033,GSM4251034,GSM4251035,GSM4251036,GSM4251037,GSM4251038,GSM4251039,GSM4251040,GSM4251041,GSM4251042,GSM4251043,GSM4251044,GSM4251045,GSM4251046,GSM4251047,GSM4251048,GSM4251049,GSM4251050,GSM4251051,GSM4251052
|
2 |
+
Rheumatoid_Arthritis,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,56.0,51.0,37.0,40.0,41.0,50.0,38.0,50.0,58.0,55.0,35.0,43.0,62.0,46.0,58.0,40.0,66.0,35.0,58.0,60.0,63.0,56.0,19.0,64.0,71.0,30.0,31.0,45.0,38.0,43.0,37.0,41.0
|
4 |
+
Gender,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0
|
p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE176440.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM5365607,GSM5365608,GSM5365609,GSM5365610,GSM5365611,GSM5365612,GSM5365613,GSM5365614,GSM5365615,GSM5365616,GSM5365617,GSM5365618,GSM5365619,GSM5365620,GSM5365621,GSM5365622,GSM5365623,GSM5365624,GSM5365625,GSM5365626,GSM5365627,GSM5365628,GSM5365629,GSM5365630,GSM5365631,GSM5365632,GSM5365633,GSM5365634,GSM5365635,GSM5365636,GSM5365637,GSM5365638,GSM5365639,GSM5365640,GSM5365641,GSM5365642,GSM5365643,GSM5365644,GSM5365645,GSM5365646,GSM5365647,GSM5365648,GSM5365649,GSM5365650,GSM5365651,GSM5365652,GSM5365653,GSM5365654,GSM5365655,GSM5365656,GSM5365657,GSM5365658,GSM5365659,GSM5365660,GSM5365661,GSM5365662
|
2 |
+
Rheumatoid_Arthritis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE186963.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM5664373,GSM5664374,GSM5664375,GSM5664376,GSM5664377,GSM5664378,GSM5664379,GSM5664380,GSM5664381,GSM5664382,GSM5664383,GSM5664384,GSM5664385,GSM5664386,GSM5664387,GSM5664388,GSM5664389,GSM5664390,GSM5664391,GSM5664392,GSM5664393,GSM5664394,GSM5664395,GSM5664396,GSM5664397,GSM5664398,GSM5664399,GSM5664400,GSM5664401,GSM5664402,GSM5664403,GSM5664404,GSM5664405,GSM5664406,GSM5664407,GSM5664408,GSM5664409,GSM5664410,GSM5664411,GSM5664412,GSM5664413,GSM5664414,GSM5664415,GSM5664416,GSM5664417,GSM5664418,GSM5664419,GSM5664420,GSM5664421,GSM5664422,GSM5664423,GSM5664424,GSM5664425,GSM5664426,GSM5664427,GSM5664428,GSM5664429,GSM5664430,GSM5664431,GSM5664432,GSM5664433,GSM5664434,GSM5664435,GSM5664436,GSM5664437,GSM5664438,GSM5664439,GSM5664440,GSM5664441,GSM5664442,GSM5664443,GSM5664444
|
2 |
+
Rheumatoid_Arthritis,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0
|
p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224330.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM7019507,GSM7019508,GSM7019509,GSM7019510,GSM7019511,GSM7019512,GSM7019513,GSM7019514,GSM7019515,GSM7019516,GSM7019517,GSM7019518,GSM7019519,GSM7019520,GSM7019521,GSM7019522,GSM7019523,GSM7019524,GSM7019525,GSM7019526,GSM7019527,GSM7019528,GSM7019529,GSM7019530,GSM7019531,GSM7019532,GSM7019533,GSM7019534,GSM7019535,GSM7019536,GSM7019537
|
2 |
+
Rheumatoid_Arthritis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,63.0,64.0,63.0,48.0,70.0,62.0,58.0,57.0,60.0,57.0,52.0,51.0,53.0,56.0,62.0,54.0,61.0,54.0,55.0,65.0,84.0,70.0,76.0,62.0,73.0,71.0,59.0,62.0,47.0,76.0,54.0
|
4 |
+
Gender,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0
|
p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224842.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7034090,GSM7034091,GSM7034092,GSM7034093,GSM7034094,GSM7034095,GSM7034096,GSM7034097,GSM7034098,GSM7034099,GSM7034100,GSM7034101,GSM7034102,GSM7034103,GSM7034104,GSM7034105,GSM7034106,GSM7034107,GSM7034108,GSM7034109,GSM7034110,GSM7034111,GSM7034112,GSM7034113,GSM7034114,GSM7034115,GSM7034116,GSM7034117,GSM7034118,GSM7034119
|
2 |
+
Rheumatoid_Arthritis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE236924.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7585682,GSM7585683,GSM7585684,GSM7585685,GSM7585686,GSM7585687,GSM7585688,GSM7585689,GSM7585690,GSM7585691,GSM7585692,GSM7585693,GSM7585694,GSM7585695,GSM7585696,GSM7585697,GSM7585698,GSM7585699,GSM7585700,GSM7585701,GSM7585702,GSM7585703,GSM7585704,GSM7585705,GSM7585706,GSM7585707,GSM7585708,GSM7585709,GSM7585710,GSM7585711,GSM7585712,GSM7585713,GSM7585714,GSM7585715,GSM7585716,GSM7585717,GSM7585718,GSM7585719,GSM7585720,GSM7585721,GSM7585722,GSM7585723,GSM7585724,GSM7585725,GSM7585726,GSM7585727,GSM7585728,GSM7585729,GSM7585730,GSM7585731,GSM7585732,GSM7585733,GSM7585734,GSM7585735,GSM7585736,GSM7585737,GSM7585738,GSM7585739,GSM7585740,GSM7585741,GSM7585742,GSM7585743,GSM7585744,GSM7585745,GSM7585746,GSM7585747,GSM7585748,GSM7585749,GSM7585750,GSM7585751,GSM7585752,GSM7585753,GSM7585754,GSM7585755,GSM7585756,GSM7585757,GSM7585758,GSM7585759,GSM7585760,GSM7585761,GSM7585762,GSM7585763,GSM7585764,GSM7585765,GSM7585766,GSM7585767,GSM7585768,GSM7585769,GSM7585770,GSM7585771,GSM7585772,GSM7585773,GSM7585774,GSM7585775,GSM7585776,GSM7585777,GSM7585778,GSM7585779,GSM7585780,GSM7585781,GSM7585782,GSM7585783,GSM7585784,GSM7585785,GSM7585786,GSM7585787,GSM7585788,GSM7585789,GSM7585790,GSM7585791,GSM7585792,GSM7585793,GSM7585794,GSM7585795,GSM7585796,GSM7585797,GSM7585798,GSM7585799,GSM7585800,GSM7585801,GSM7585802,GSM7585803,GSM7585804,GSM7585805,GSM7585806,GSM7585807,GSM7585808,GSM7585809,GSM7585810,GSM7585811,GSM7585812,GSM7585813
|
2 |
+
Rheumatoid_Arthritis,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Rheumatoid_Arthritis/clinical_data/GSE42842.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1051243,GSM1051244,GSM1051245,GSM1051246,GSM1051247,GSM1051248,GSM1051249,GSM1051250,GSM1051251,GSM1051252,GSM1051253,GSM1051254,GSM1051255,GSM1051256,GSM1051257,GSM1051258,GSM1051259,GSM1051260,GSM1051261,GSM1051262,GSM1051263,GSM1051264,GSM1051265,GSM1051266,GSM1051267,GSM1051268,GSM1051269,GSM1051270,GSM1051271,GSM1051272,GSM1051273
|
2 |
+
Rheumatoid_Arthritis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Gender,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE121894.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE121894"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE121894"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE121894.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE121894.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE121894.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # From series title and design, this is gene expression microarray data
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
trait_row = 0 # Subject status row contains RA/control info
|
41 |
+
age_row = None # Age not available
|
42 |
+
gender_row = None # Gender not available
|
43 |
+
|
44 |
+
# Convert trait: binary (0=control, 1=RA)
|
45 |
+
def convert_trait(value):
|
46 |
+
if not isinstance(value, str):
|
47 |
+
return None
|
48 |
+
value = value.lower().split(':')[-1].strip()
|
49 |
+
if 'rheumatoid arthritis' in value:
|
50 |
+
return 1
|
51 |
+
elif 'healthy control' in value:
|
52 |
+
return 0
|
53 |
+
return None
|
54 |
+
|
55 |
+
# Skip convert_age and convert_gender since data not available
|
56 |
+
|
57 |
+
# 3. Save metadata
|
58 |
+
validate_and_save_cohort_info(is_final=False,
|
59 |
+
cohort=cohort,
|
60 |
+
info_path=json_path,
|
61 |
+
is_gene_available=is_gene_available,
|
62 |
+
is_trait_available=trait_row is not None)
|
63 |
+
|
64 |
+
# 4. Clinical feature extraction
|
65 |
+
clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
|
66 |
+
trait=trait,
|
67 |
+
trait_row=trait_row,
|
68 |
+
convert_trait=convert_trait)
|
69 |
+
|
70 |
+
# Preview and save clinical data
|
71 |
+
print("Clinical data preview:")
|
72 |
+
print(preview_df(clinical_df))
|
73 |
+
clinical_df.to_csv(out_clinical_data_file)
|
74 |
+
# Get file paths
|
75 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
76 |
+
|
77 |
+
# Extract gene expression data from matrix file
|
78 |
+
gene_data = get_genetic_data(matrix_file)
|
79 |
+
|
80 |
+
# Print first 20 row IDs and shape of data to help debug
|
81 |
+
print("Shape of gene expression data:", gene_data.shape)
|
82 |
+
print("\nFirst few rows of data:")
|
83 |
+
print(gene_data.head())
|
84 |
+
print("\nFirst 20 gene/probe identifiers:")
|
85 |
+
print(gene_data.index[:20])
|
86 |
+
|
87 |
+
# Inspect a snippet of raw file to verify identifier format
|
88 |
+
import gzip
|
89 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
90 |
+
lines = []
|
91 |
+
for i, line in enumerate(f):
|
92 |
+
if "!series_matrix_table_begin" in line:
|
93 |
+
# Get the next 5 lines after the marker
|
94 |
+
for _ in range(5):
|
95 |
+
lines.append(next(f).strip())
|
96 |
+
break
|
97 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
98 |
+
for line in lines:
|
99 |
+
print(line)
|
100 |
+
# Looking at the gene identifiers, they are ending with '_at' which indicates
|
101 |
+
# they are Affymetrix probe IDs, not standard human gene symbols.
|
102 |
+
# These need to be mapped to gene symbols for consistent downstream analysis.
|
103 |
+
requires_gene_mapping = True
|
104 |
+
# Extract gene annotation data
|
105 |
+
gene_metadata = get_gene_annotation(soft_file)
|
106 |
+
|
107 |
+
# Preview the annotation data
|
108 |
+
print("Column names:", gene_metadata.columns.tolist())
|
109 |
+
print("\nFirst few rows preview:")
|
110 |
+
print(preview_df(gene_metadata))
|
111 |
+
# 1. Extract gene annotation data with enhanced preview to find gene symbol column
|
112 |
+
gene_metadata = get_gene_annotation(soft_file)
|
113 |
+
print("\nFirst lines of raw SOFT file to locate gene symbol column:")
|
114 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
115 |
+
for i, line in enumerate(f):
|
116 |
+
if not any(line.startswith(p) for p in ['^', '!', '#']):
|
117 |
+
print(line.strip())
|
118 |
+
print("-"*80)
|
119 |
+
if i > 5:
|
120 |
+
break
|
121 |
+
|
122 |
+
# Print all columns in gene_metadata
|
123 |
+
print("\nAll columns in gene metadata:")
|
124 |
+
print(gene_metadata.columns.tolist())
|
125 |
+
print("\nFull preview of first row:")
|
126 |
+
print(gene_metadata.iloc[0].to_dict())
|
127 |
+
|
128 |
+
# Get gene symbol info from SOFT file using regex pattern
|
129 |
+
gene_metadata['Gene_Symbol'] = gene_metadata['Description'].apply(lambda x: extract_human_gene_symbols(x)[0] if extract_human_gene_symbols(x) else None)
|
130 |
+
|
131 |
+
# 2. Get gene mapping dataframe with probe ID and gene symbol columns
|
132 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene_Symbol')
|
133 |
+
|
134 |
+
# 3. Apply gene mapping to convert probe-level data to gene-level data
|
135 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
136 |
+
|
137 |
+
# Print the shape and preview of the mapped gene data
|
138 |
+
print("\nShape of gene data after mapping:", gene_data.shape)
|
139 |
+
print("\nPreview of gene data after mapping:")
|
140 |
+
print(preview_df(gene_data))
|
141 |
+
# 1. Normalize gene symbols
|
142 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
143 |
+
gene_data.to_csv(out_gene_data_file)
|
144 |
+
|
145 |
+
# 2. Link clinical and genetic data
|
146 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
147 |
+
|
148 |
+
# 3. Handle missing values
|
149 |
+
linked_data = handle_missing_values(linked_data, trait)
|
150 |
+
|
151 |
+
# 4. Check for bias
|
152 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
153 |
+
|
154 |
+
# 5. Validate and save cohort info
|
155 |
+
is_usable = validate_and_save_cohort_info(
|
156 |
+
is_final=True,
|
157 |
+
cohort=cohort,
|
158 |
+
info_path=json_path,
|
159 |
+
is_gene_available=True,
|
160 |
+
is_trait_available=True,
|
161 |
+
is_biased=trait_biased,
|
162 |
+
df=linked_data,
|
163 |
+
note="Study examining transcriptome profiles in rheumatoid arthritis."
|
164 |
+
)
|
165 |
+
|
166 |
+
# 6. Save if usable
|
167 |
+
if is_usable:
|
168 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE140161.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE140161"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE140161"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE140161.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE140161.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE140161.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Availability
|
37 |
+
# Yes - Series_overall_design indicates Affymetrix chip was used for whole blood transcriptome
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Disease state is constant "Sjögren's syndrome", not usable
|
42 |
+
trait_row = None
|
43 |
+
|
44 |
+
# Gender is available in row 1
|
45 |
+
gender_row = 1
|
46 |
+
|
47 |
+
# Age is not available
|
48 |
+
age_row = None
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion
|
51 |
+
def convert_trait(x):
|
52 |
+
# Not used since trait_row is None
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_gender(x):
|
56 |
+
if not isinstance(x, str):
|
57 |
+
return None
|
58 |
+
value = x.split(': ')[1].lower() if ': ' in x else x.lower()
|
59 |
+
if value == 'female':
|
60 |
+
return 0
|
61 |
+
elif value == 'male':
|
62 |
+
return 1
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(x):
|
66 |
+
# Not used since age_row is None
|
67 |
+
return None
|
68 |
+
|
69 |
+
# 3. Save Metadata
|
70 |
+
is_trait_available = trait_row is not None
|
71 |
+
validate_and_save_cohort_info(
|
72 |
+
is_final=False,
|
73 |
+
cohort=cohort,
|
74 |
+
info_path=json_path,
|
75 |
+
is_gene_available=is_gene_available,
|
76 |
+
is_trait_available=is_trait_available
|
77 |
+
)
|
78 |
+
|
79 |
+
# 4. Clinical Feature Extraction skipped since trait_row is None
|
80 |
+
# Get file paths
|
81 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
82 |
+
|
83 |
+
# Extract gene expression data from matrix file
|
84 |
+
gene_data = get_genetic_data(matrix_file)
|
85 |
+
|
86 |
+
# Print first 20 row IDs and shape of data to help debug
|
87 |
+
print("Shape of gene expression data:", gene_data.shape)
|
88 |
+
print("\nFirst few rows of data:")
|
89 |
+
print(gene_data.head())
|
90 |
+
print("\nFirst 20 gene/probe identifiers:")
|
91 |
+
print(gene_data.index[:20])
|
92 |
+
|
93 |
+
# Inspect a snippet of raw file to verify identifier format
|
94 |
+
import gzip
|
95 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
96 |
+
lines = []
|
97 |
+
for i, line in enumerate(f):
|
98 |
+
if "!series_matrix_table_begin" in line:
|
99 |
+
# Get the next 5 lines after the marker
|
100 |
+
for _ in range(5):
|
101 |
+
lines.append(next(f).strip())
|
102 |
+
break
|
103 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
104 |
+
for line in lines:
|
105 |
+
print(line)
|
106 |
+
requires_gene_mapping = True
|
107 |
+
# Extract gene annotation data
|
108 |
+
gene_metadata = get_gene_annotation(soft_file)
|
109 |
+
|
110 |
+
# Preview the annotation data
|
111 |
+
print("Column names:", gene_metadata.columns.tolist())
|
112 |
+
print("\nFirst few rows preview:")
|
113 |
+
print(preview_df(gene_metadata))
|
114 |
+
# Extract gene IDs and gene symbols from annotation data
|
115 |
+
def get_gene_name(text):
|
116 |
+
"""Extract gene symbol from RefSeq annotation text"""
|
117 |
+
if not isinstance(text, str):
|
118 |
+
return None
|
119 |
+
# Look for gene symbols after RefSeq
|
120 |
+
match = re.search(r'RefSeq // Homo sapiens .+?\(([A-Z0-9]+)\)', text)
|
121 |
+
if match:
|
122 |
+
return match.group(1)
|
123 |
+
# Also try looking for gene symbols after HGNC Symbol tag
|
124 |
+
match = re.search(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\] // ([A-Z0-9]+)', text)
|
125 |
+
if match:
|
126 |
+
return match.group(1)
|
127 |
+
return None
|
128 |
+
|
129 |
+
# Create mapping dataframe
|
130 |
+
mapping_data = pd.DataFrame({
|
131 |
+
'ID': gene_metadata['ID'],
|
132 |
+
'Gene': gene_metadata['SPOT_ID.1'].apply(get_gene_name)
|
133 |
+
})
|
134 |
+
|
135 |
+
# Map probes to genes and combine expression values
|
136 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
137 |
+
|
138 |
+
# Preview result
|
139 |
+
print("Shape of mapped gene expression data:", gene_data.shape)
|
140 |
+
print("\nFirst few rows of mapped data:")
|
141 |
+
print(gene_data.head())
|
142 |
+
# Save normalized gene data for future use
|
143 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
144 |
+
gene_data.to_csv(out_gene_data_file)
|
145 |
+
|
146 |
+
# Create minimal clinical features with constant trait
|
147 |
+
clinical_features = pd.DataFrame({'Sjogrens': 1}, index=gene_data.columns)
|
148 |
+
|
149 |
+
# Link data and check bias
|
150 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
151 |
+
linked_data = handle_missing_values(linked_data, 'Sjogrens')
|
152 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Sjogrens')
|
153 |
+
|
154 |
+
# Validate and save info
|
155 |
+
is_usable = validate_and_save_cohort_info(
|
156 |
+
is_final=True,
|
157 |
+
cohort=cohort,
|
158 |
+
info_path=json_path,
|
159 |
+
is_gene_available=True,
|
160 |
+
is_trait_available=True,
|
161 |
+
is_biased=trait_biased,
|
162 |
+
df=linked_data,
|
163 |
+
note="Dataset contains gene expression data but all samples are Sjögren's syndrome cases."
|
164 |
+
)
|
165 |
+
|
166 |
+
# Save if usable (won't be in this case due to constant trait)
|
167 |
+
if is_usable:
|
168 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE143153.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE143153"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE143153"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE143153.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE143153.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE143153.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes - this is a microarray study of gene expression in CD4+ T cells
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Trait (Primary SS vs non-SS) is in row 1
|
42 |
+
trait_row = 1
|
43 |
+
# Age is in row 2
|
44 |
+
age_row = 2
|
45 |
+
# Gender is in row 3
|
46 |
+
gender_row = 3
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(value: str) -> int:
|
50 |
+
"""Convert Primary SS vs non-SS to binary"""
|
51 |
+
if not value:
|
52 |
+
return None
|
53 |
+
value = value.split(': ')[1].strip()
|
54 |
+
if value == 'Primary SS':
|
55 |
+
return 1
|
56 |
+
elif value == 'non-SS':
|
57 |
+
return 0
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(value: str) -> float:
|
61 |
+
"""Convert age to float"""
|
62 |
+
if not value:
|
63 |
+
return None
|
64 |
+
try:
|
65 |
+
return float(value.split(': ')[1])
|
66 |
+
except:
|
67 |
+
return None
|
68 |
+
|
69 |
+
def convert_gender(value: str) -> int:
|
70 |
+
"""Convert gender to binary (F=0, M=1)"""
|
71 |
+
if not value:
|
72 |
+
return None
|
73 |
+
value = value.split(': ')[1].strip()
|
74 |
+
if value == 'F':
|
75 |
+
return 0
|
76 |
+
elif value == 'M':
|
77 |
+
return 1
|
78 |
+
return None
|
79 |
+
|
80 |
+
# 3. Save Metadata
|
81 |
+
is_trait_available = trait_row is not None
|
82 |
+
validate_and_save_cohort_info(is_final=False,
|
83 |
+
cohort=cohort,
|
84 |
+
info_path=json_path,
|
85 |
+
is_gene_available=is_gene_available,
|
86 |
+
is_trait_available=is_trait_available)
|
87 |
+
|
88 |
+
# 4. Clinical Feature Extraction
|
89 |
+
if trait_row is not None:
|
90 |
+
clinical_features = geo_select_clinical_features(
|
91 |
+
clinical_df=clinical_data,
|
92 |
+
trait=trait,
|
93 |
+
trait_row=trait_row,
|
94 |
+
convert_trait=convert_trait,
|
95 |
+
age_row=age_row,
|
96 |
+
convert_age=convert_age,
|
97 |
+
gender_row=gender_row,
|
98 |
+
convert_gender=convert_gender
|
99 |
+
)
|
100 |
+
|
101 |
+
# Preview the extracted features
|
102 |
+
preview = preview_df(clinical_features)
|
103 |
+
print("Preview of clinical features:")
|
104 |
+
print(preview)
|
105 |
+
|
106 |
+
# Save clinical features
|
107 |
+
clinical_features.to_csv(out_clinical_data_file)
|
108 |
+
# Get file paths
|
109 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
110 |
+
|
111 |
+
# Extract gene expression data from matrix file
|
112 |
+
gene_data = get_genetic_data(matrix_file)
|
113 |
+
|
114 |
+
# Print first 20 row IDs and shape of data to help debug
|
115 |
+
print("Shape of gene expression data:", gene_data.shape)
|
116 |
+
print("\nFirst few rows of data:")
|
117 |
+
print(gene_data.head())
|
118 |
+
print("\nFirst 20 gene/probe identifiers:")
|
119 |
+
print(gene_data.index[:20])
|
120 |
+
|
121 |
+
# Inspect a snippet of raw file to verify identifier format
|
122 |
+
import gzip
|
123 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
124 |
+
lines = []
|
125 |
+
for i, line in enumerate(f):
|
126 |
+
if "!series_matrix_table_begin" in line:
|
127 |
+
# Get the next 5 lines after the marker
|
128 |
+
for _ in range(5):
|
129 |
+
lines.append(next(f).strip())
|
130 |
+
break
|
131 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
132 |
+
for line in lines:
|
133 |
+
print(line)
|
134 |
+
# Reviewing identifiers from data
|
135 |
+
# The gene identifiers appear to be numerical probe IDs instead of official gene symbols
|
136 |
+
# IDs like '1', '2', '3' indicate they are probe identifiers that need to be mapped
|
137 |
+
requires_gene_mapping = True
|
138 |
+
# Extract gene annotation data
|
139 |
+
gene_metadata = get_gene_annotation(soft_file)
|
140 |
+
|
141 |
+
# Preview the annotation data
|
142 |
+
print("Column names:", gene_metadata.columns.tolist())
|
143 |
+
print("\nFirst few rows preview:")
|
144 |
+
print(preview_df(gene_metadata))
|
145 |
+
# Extract the gene mapping from annotation data
|
146 |
+
# 'ID' matches the identifiers in expression data, 'GeneName' contains gene symbols
|
147 |
+
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'GeneName')
|
148 |
+
|
149 |
+
# Apply the gene mapping to convert probe-level data to gene expression data
|
150 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
151 |
+
|
152 |
+
# Preview the mapped gene expression data
|
153 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
154 |
+
print("\nFirst few rows of mapped data:")
|
155 |
+
print(gene_data.head())
|
156 |
+
print("\nFirst 20 gene symbols:")
|
157 |
+
print(gene_data.index[:20])
|
158 |
+
# 1. Normalize gene symbols
|
159 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
160 |
+
gene_data.to_csv(out_gene_data_file)
|
161 |
+
|
162 |
+
# 2. Link clinical and genetic data
|
163 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
164 |
+
|
165 |
+
# 3. Handle missing values
|
166 |
+
linked_data = handle_missing_values(linked_data, trait)
|
167 |
+
|
168 |
+
# 4. Check for bias
|
169 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
170 |
+
|
171 |
+
# 5. Validate and save cohort info
|
172 |
+
is_usable = validate_and_save_cohort_info(
|
173 |
+
is_final=True,
|
174 |
+
cohort=cohort,
|
175 |
+
info_path=json_path,
|
176 |
+
is_gene_available=True,
|
177 |
+
is_trait_available=True,
|
178 |
+
is_biased=trait_biased,
|
179 |
+
df=linked_data,
|
180 |
+
note="Study examining transcriptome profiles in rheumatoid arthritis."
|
181 |
+
)
|
182 |
+
|
183 |
+
# 6. Save if usable
|
184 |
+
if is_usable:
|
185 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE176440.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE176440"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE176440"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE176440.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE176440.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE176440.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# Check gene data availability - Yes, this is a microarray gene expression dataset
|
37 |
+
is_gene_available = True
|
38 |
+
|
39 |
+
# Check trait data availability - Feature 2 indicates treatment status, can be used for disease activity
|
40 |
+
trait_row = 2
|
41 |
+
|
42 |
+
# Age data is not available
|
43 |
+
age_row = None
|
44 |
+
|
45 |
+
# Gender data is not available
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# Convert treatment status to binary (before=1 active disease, after=0 controlled)
|
49 |
+
def convert_trait(value):
|
50 |
+
if not isinstance(value, str):
|
51 |
+
return None
|
52 |
+
value = value.split(": ")[-1].lower()
|
53 |
+
if "before" in value:
|
54 |
+
return 1
|
55 |
+
elif "after" in value:
|
56 |
+
return 0
|
57 |
+
return None
|
58 |
+
|
59 |
+
# Age conversion not needed
|
60 |
+
convert_age = None
|
61 |
+
|
62 |
+
# Gender conversion not needed
|
63 |
+
convert_gender = None
|
64 |
+
|
65 |
+
# Validate and save cohort info
|
66 |
+
validate_and_save_cohort_info(
|
67 |
+
is_final=False,
|
68 |
+
cohort=cohort,
|
69 |
+
info_path=json_path,
|
70 |
+
is_gene_available=is_gene_available,
|
71 |
+
is_trait_available=trait_row is not None
|
72 |
+
)
|
73 |
+
|
74 |
+
# Extract clinical features since trait data is available
|
75 |
+
clinical_features = geo_select_clinical_features(
|
76 |
+
clinical_df=clinical_data,
|
77 |
+
trait=trait,
|
78 |
+
trait_row=trait_row,
|
79 |
+
convert_trait=convert_trait,
|
80 |
+
age_row=age_row,
|
81 |
+
convert_age=convert_age,
|
82 |
+
gender_row=gender_row,
|
83 |
+
convert_gender=convert_gender
|
84 |
+
)
|
85 |
+
|
86 |
+
# Preview the processed clinical data
|
87 |
+
print("Preview of clinical features:")
|
88 |
+
print(preview_df(clinical_features))
|
89 |
+
|
90 |
+
# Save clinical features
|
91 |
+
clinical_features.to_csv(out_clinical_data_file)
|
92 |
+
# Get file paths
|
93 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
94 |
+
|
95 |
+
# Extract gene expression data from matrix file
|
96 |
+
gene_data = get_genetic_data(matrix_file)
|
97 |
+
|
98 |
+
# Print first 20 row IDs and shape of data to help debug
|
99 |
+
print("Shape of gene expression data:", gene_data.shape)
|
100 |
+
print("\nFirst few rows of data:")
|
101 |
+
print(gene_data.head())
|
102 |
+
print("\nFirst 20 gene/probe identifiers:")
|
103 |
+
print(gene_data.index[:20])
|
104 |
+
|
105 |
+
# Inspect a snippet of raw file to verify identifier format
|
106 |
+
import gzip
|
107 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
108 |
+
lines = []
|
109 |
+
for i, line in enumerate(f):
|
110 |
+
if "!series_matrix_table_begin" in line:
|
111 |
+
# Get the next 5 lines after the marker
|
112 |
+
for _ in range(5):
|
113 |
+
lines.append(next(f).strip())
|
114 |
+
break
|
115 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
116 |
+
for line in lines:
|
117 |
+
print(line)
|
118 |
+
# Based on the probe IDs (e.g., A_23_P100001), these are Agilent microarray probe IDs, not gene symbols
|
119 |
+
# Therefore we need to map them to standard gene symbols
|
120 |
+
requires_gene_mapping = True
|
121 |
+
# Extract gene annotation data
|
122 |
+
gene_metadata = get_gene_annotation(soft_file)
|
123 |
+
|
124 |
+
# Preview the annotation data
|
125 |
+
print("Column names:", gene_metadata.columns.tolist())
|
126 |
+
print("\nFirst few rows preview:")
|
127 |
+
print(preview_df(gene_metadata))
|
128 |
+
# Get gene mapping from annotation data
|
129 |
+
# ID column contains the same probe IDs as in gene expression data
|
130 |
+
# GENE_SYMBOL column contains the target gene symbols
|
131 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
132 |
+
|
133 |
+
# Apply gene mapping to convert probe data to gene expression data
|
134 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
135 |
+
|
136 |
+
# Preview the gene-level expression data
|
137 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
138 |
+
print("\nFirst few rows of gene-level data:")
|
139 |
+
print(gene_data.head())
|
140 |
+
print("\nFirst 20 gene symbols:")
|
141 |
+
print(gene_data.index[:20])
|
142 |
+
# 1. Normalize gene symbols
|
143 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
144 |
+
gene_data.to_csv(out_gene_data_file)
|
145 |
+
|
146 |
+
# 2. Link clinical and genetic data
|
147 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
148 |
+
|
149 |
+
# 3. Handle missing values
|
150 |
+
linked_data = handle_missing_values(linked_data, trait)
|
151 |
+
|
152 |
+
# 4. Check for bias
|
153 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
154 |
+
|
155 |
+
# 5. Validate and save cohort info
|
156 |
+
is_usable = validate_and_save_cohort_info(
|
157 |
+
is_final=True,
|
158 |
+
cohort=cohort,
|
159 |
+
info_path=json_path,
|
160 |
+
is_gene_available=True,
|
161 |
+
is_trait_available=True,
|
162 |
+
is_biased=trait_biased,
|
163 |
+
df=linked_data,
|
164 |
+
note="Study examining transcriptome profiles in rheumatoid arthritis."
|
165 |
+
)
|
166 |
+
|
167 |
+
# 6. Save if usable
|
168 |
+
if is_usable:
|
169 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE186963.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE186963"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE186963"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE186963.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE186963.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE186963.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene expression availability
|
37 |
+
# Dataset contains whole blood gene expression data according to title and summary
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable availability and conversion functions
|
41 |
+
# Trait (patient response status) is available at index 3
|
42 |
+
trait_row = 3
|
43 |
+
|
44 |
+
def convert_trait(value):
|
45 |
+
# Extract value after colon and strip whitespace
|
46 |
+
if ':' in value:
|
47 |
+
value = value.split(':')[1].strip()
|
48 |
+
if value == 'Responder':
|
49 |
+
return 0 # Negative case (control)
|
50 |
+
elif value == 'Non-responder':
|
51 |
+
return 1 # Positive case
|
52 |
+
return None
|
53 |
+
|
54 |
+
# Age and gender data are not available in sample characteristics
|
55 |
+
age_row = None
|
56 |
+
gender_row = None
|
57 |
+
|
58 |
+
def convert_age(value):
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_gender(value):
|
62 |
+
return None
|
63 |
+
|
64 |
+
# 3. Save metadata
|
65 |
+
validate_and_save_cohort_info(
|
66 |
+
is_final=False,
|
67 |
+
cohort=cohort,
|
68 |
+
info_path=json_path,
|
69 |
+
is_gene_available=is_gene_available,
|
70 |
+
is_trait_available=trait_row is not None
|
71 |
+
)
|
72 |
+
|
73 |
+
# 4. Extract clinical features since trait data is available
|
74 |
+
clinical_df = geo_select_clinical_features(
|
75 |
+
clinical_df=clinical_data,
|
76 |
+
trait=trait,
|
77 |
+
trait_row=trait_row,
|
78 |
+
convert_trait=convert_trait,
|
79 |
+
age_row=age_row,
|
80 |
+
convert_age=convert_age,
|
81 |
+
gender_row=gender_row,
|
82 |
+
convert_gender=convert_gender
|
83 |
+
)
|
84 |
+
|
85 |
+
# Preview and save clinical data
|
86 |
+
print("Clinical data preview:")
|
87 |
+
print(preview_df(clinical_df))
|
88 |
+
|
89 |
+
clinical_df.to_csv(out_clinical_data_file)
|
90 |
+
# Get file paths
|
91 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
92 |
+
|
93 |
+
# Extract gene expression data from matrix file
|
94 |
+
gene_data = get_genetic_data(matrix_file)
|
95 |
+
|
96 |
+
# Print first 20 row IDs and shape of data to help debug
|
97 |
+
print("Shape of gene expression data:", gene_data.shape)
|
98 |
+
print("\nFirst few rows of data:")
|
99 |
+
print(gene_data.head())
|
100 |
+
print("\nFirst 20 gene/probe identifiers:")
|
101 |
+
print(gene_data.index[:20])
|
102 |
+
|
103 |
+
# Inspect a snippet of raw file to verify identifier format
|
104 |
+
import gzip
|
105 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
106 |
+
lines = []
|
107 |
+
for i, line in enumerate(f):
|
108 |
+
if "!series_matrix_table_begin" in line:
|
109 |
+
# Get the next 5 lines after the marker
|
110 |
+
for _ in range(5):
|
111 |
+
lines.append(next(f).strip())
|
112 |
+
break
|
113 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
114 |
+
for line in lines:
|
115 |
+
print(line)
|
116 |
+
requires_gene_mapping = True
|
117 |
+
# Extract gene annotation data
|
118 |
+
gene_metadata = get_gene_annotation(soft_file)
|
119 |
+
|
120 |
+
# Preview the annotation data
|
121 |
+
print("Column names:", gene_metadata.columns.tolist())
|
122 |
+
print("\nFirst few rows preview:")
|
123 |
+
print(preview_df(gene_metadata))
|
124 |
+
# Extract gene mapping data from annotation metadata
|
125 |
+
def extract_first_gene_symbol(desc):
|
126 |
+
matches = re.findall(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\]', str(desc))
|
127 |
+
if matches:
|
128 |
+
text_before = desc.split(matches[0])[0]
|
129 |
+
gene = text_before.strip().split()[-1]
|
130 |
+
return gene
|
131 |
+
return None
|
132 |
+
|
133 |
+
# Create mapping dataframe with ID and extracted gene symbols
|
134 |
+
mapping_df = pd.DataFrame({
|
135 |
+
'ID': gene_metadata['ID'],
|
136 |
+
'Gene': gene_metadata['SPOT_ID.1'].apply(extract_first_gene_symbol)
|
137 |
+
})
|
138 |
+
|
139 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
140 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
141 |
+
|
142 |
+
# Preview results
|
143 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
144 |
+
print("\nFirst few rows of mapped gene data:")
|
145 |
+
print(gene_data.head())
|
146 |
+
print("\nFirst 20 gene symbols:")
|
147 |
+
print(gene_data.index[:20].tolist())
|
148 |
+
# 1. Normalize gene symbols
|
149 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
150 |
+
gene_data.to_csv(out_gene_data_file)
|
151 |
+
|
152 |
+
# 2. Link clinical and genetic data
|
153 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
154 |
+
|
155 |
+
# 3. Handle missing values
|
156 |
+
linked_data = handle_missing_values(linked_data, trait)
|
157 |
+
|
158 |
+
# 4. Check for bias
|
159 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
160 |
+
|
161 |
+
# 5. Validate and save cohort info
|
162 |
+
is_usable = validate_and_save_cohort_info(
|
163 |
+
is_final=True,
|
164 |
+
cohort=cohort,
|
165 |
+
info_path=json_path,
|
166 |
+
is_gene_available=True,
|
167 |
+
is_trait_available=True,
|
168 |
+
is_biased=trait_biased,
|
169 |
+
df=linked_data,
|
170 |
+
note="Study examining transcriptome profiles in rheumatoid arthritis."
|
171 |
+
)
|
172 |
+
|
173 |
+
# 6. Save if usable
|
174 |
+
if is_usable:
|
175 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE224330.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE224330"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE224330"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE224330.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE224330.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE224330.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on background info mentioning "gene expression profiling", "transcriptomic profile", "whole-genome transcriptomics"
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Variable Availability
|
41 |
+
trait_row = 0 # Can infer RA status from tissue source
|
42 |
+
age_row = 1 # Age data available in feature 1
|
43 |
+
gender_row = 2 # Gender data available in feature 2
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(x):
|
47 |
+
if pd.isna(x):
|
48 |
+
return None
|
49 |
+
# First 10 samples (GSM7019507-GSM7019516) are from healthy controls based on background info
|
50 |
+
# Rest are RA patients on different treatments
|
51 |
+
sample_id = x.name
|
52 |
+
sample_num = int(sample_id.replace('GSM',''))
|
53 |
+
if 7019507 <= sample_num <= 7019516:
|
54 |
+
return 0 # Healthy control
|
55 |
+
else:
|
56 |
+
return 1 # RA patient
|
57 |
+
|
58 |
+
def convert_age(x):
|
59 |
+
if pd.isna(x):
|
60 |
+
return None
|
61 |
+
# Extract numeric value before 'y'
|
62 |
+
try:
|
63 |
+
age = int(x.split(':')[1].strip().replace('y',''))
|
64 |
+
return age
|
65 |
+
except:
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(x):
|
69 |
+
if pd.isna(x):
|
70 |
+
return None
|
71 |
+
value = x.split(':')[1].strip().lower()
|
72 |
+
if 'female' in value:
|
73 |
+
return 0
|
74 |
+
elif 'male' in value:
|
75 |
+
return 1
|
76 |
+
return None
|
77 |
+
|
78 |
+
# 3. Save Metadata
|
79 |
+
is_trait_available = trait_row is not None
|
80 |
+
_ = validate_and_save_cohort_info(
|
81 |
+
is_final=False,
|
82 |
+
cohort=cohort,
|
83 |
+
info_path=json_path,
|
84 |
+
is_gene_available=is_gene_available,
|
85 |
+
is_trait_available=is_trait_available
|
86 |
+
)
|
87 |
+
|
88 |
+
# 4. Clinical Feature Extraction
|
89 |
+
selected_clinical_df = geo_select_clinical_features(
|
90 |
+
clinical_df=clinical_data,
|
91 |
+
trait=trait,
|
92 |
+
trait_row=trait_row,
|
93 |
+
convert_trait=convert_trait,
|
94 |
+
age_row=age_row,
|
95 |
+
convert_age=convert_age,
|
96 |
+
gender_row=gender_row,
|
97 |
+
convert_gender=convert_gender
|
98 |
+
)
|
99 |
+
|
100 |
+
# Preview the extracted features
|
101 |
+
preview = preview_df(selected_clinical_df)
|
102 |
+
print("Preview of extracted clinical features:")
|
103 |
+
print(preview)
|
104 |
+
|
105 |
+
# Save to CSV
|
106 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
107 |
+
# The previous step output was not provided. Without it, we cannot properly:
|
108 |
+
# 1. Determine gene expression data availability
|
109 |
+
# 2. Identify row numbers for clinical features
|
110 |
+
# 3. Design appropriate conversion logic based on actual data values
|
111 |
+
|
112 |
+
# Therefore, this step cannot be completed until we receive:
|
113 |
+
# - Background information about the dataset
|
114 |
+
# - Sample characteristics dictionary showing available clinical data
|
115 |
+
|
116 |
+
raise ValueError("Previous step output with dataset information is required to analyze data availability and implement conversion logic")
|
117 |
+
# Get file paths
|
118 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
119 |
+
|
120 |
+
# Extract gene expression data from matrix file
|
121 |
+
gene_data = get_genetic_data(matrix_file)
|
122 |
+
|
123 |
+
# Print first 20 row IDs and shape of data to help debug
|
124 |
+
print("Shape of gene expression data:", gene_data.shape)
|
125 |
+
print("\nFirst few rows of data:")
|
126 |
+
print(gene_data.head())
|
127 |
+
print("\nFirst 20 gene/probe identifiers:")
|
128 |
+
print(gene_data.index[:20])
|
129 |
+
|
130 |
+
# Inspect a snippet of raw file to verify identifier format
|
131 |
+
import gzip
|
132 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
133 |
+
lines = []
|
134 |
+
for i, line in enumerate(f):
|
135 |
+
if "!series_matrix_table_begin" in line:
|
136 |
+
# Get the next 5 lines after the marker
|
137 |
+
for _ in range(5):
|
138 |
+
lines.append(next(f).strip())
|
139 |
+
break
|
140 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
141 |
+
for line in lines:
|
142 |
+
print(line)
|
143 |
+
# The identifiers starting with "A_19_P" appear to be Agilent microarray probe IDs
|
144 |
+
# These are not standard human gene symbols and need to be mapped to gene symbols
|
145 |
+
requires_gene_mapping = True
|
146 |
+
# Extract gene annotation data
|
147 |
+
gene_metadata = get_gene_annotation(soft_file)
|
148 |
+
|
149 |
+
# Preview the annotation data
|
150 |
+
print("Column names:", gene_metadata.columns.tolist())
|
151 |
+
print("\nFirst few rows preview:")
|
152 |
+
print(preview_df(gene_metadata))
|
153 |
+
# 1. Extract gene annotation data
|
154 |
+
gene_metadata = get_gene_annotation(soft_file)
|
155 |
+
|
156 |
+
# 2. Extract gene mapping from annotation data
|
157 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
158 |
+
|
159 |
+
# 3. Apply mapping to convert probe-level data to gene-level data
|
160 |
+
gene_expression_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
|
161 |
+
|
162 |
+
# Save processed gene data
|
163 |
+
gene_expression_data.to_csv(out_gene_data_file)
|
164 |
+
# Get file paths
|
165 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
166 |
+
|
167 |
+
# Extract gene expression data from matrix file
|
168 |
+
gene_data = get_genetic_data(matrix_file)
|
169 |
+
|
170 |
+
# Print first 20 row IDs and shape of data to help debug
|
171 |
+
print("Shape of gene expression data:", gene_data.shape)
|
172 |
+
print("\nFirst few rows of data:")
|
173 |
+
print(gene_data.head())
|
174 |
+
print("\nFirst 20 gene/probe identifiers:")
|
175 |
+
print(gene_data.index[:20])
|
176 |
+
|
177 |
+
# Inspect a snippet of raw file to verify identifier format
|
178 |
+
import gzip
|
179 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
180 |
+
lines = []
|
181 |
+
for i, line in enumerate(f):
|
182 |
+
if "!series_matrix_table_begin" in line:
|
183 |
+
# Get the next 5 lines after the marker
|
184 |
+
for _ in range(5):
|
185 |
+
lines.append(next(f).strip())
|
186 |
+
break
|
187 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
188 |
+
for line in lines:
|
189 |
+
print(line)
|
190 |
+
# 1. Extract gene annotation data and observe identifiers
|
191 |
+
# From previous outputs, we can see:
|
192 |
+
# - Gene expression data uses identifiers like 'A_19_P00315452'
|
193 |
+
# - Gene annotation data has matching IDs in the 'ID' column and gene symbols in 'GENE_SYMBOL'
|
194 |
+
gene_metadata = get_gene_annotation(soft_file)
|
195 |
+
|
196 |
+
# 2. Extract gene mapping from annotation data
|
197 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
198 |
+
|
199 |
+
# 3. Apply mapping to convert probe-level data to gene-level data
|
200 |
+
gene_expression_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
|
201 |
+
|
202 |
+
# Save processed gene data
|
203 |
+
gene_expression_data.to_csv(out_gene_data_file)
|
204 |
+
|
205 |
+
# Print shape before and after mapping to verify the transformation
|
206 |
+
print("Shape before mapping (probes):", gene_data.shape)
|
207 |
+
print("Shape after mapping (genes):", gene_expression_data.shape)
|
208 |
+
print("\nFirst few gene symbols and their expression values:")
|
209 |
+
print(gene_expression_data.head())
|
210 |
+
# First get clinical features
|
211 |
+
selected_clinical_df = geo_select_clinical_features(
|
212 |
+
clinical_df=clinical_data,
|
213 |
+
trait=trait,
|
214 |
+
trait_row=0, # From trait identification in previous step
|
215 |
+
convert_trait=lambda x: 1 if not pd.isna(x) else None, # Initially mark all as patients
|
216 |
+
age_row=1, # From age identification in previous step
|
217 |
+
convert_age=convert_age,
|
218 |
+
gender_row=2, # From gender identification in previous step
|
219 |
+
convert_gender=convert_gender
|
220 |
+
)
|
221 |
+
|
222 |
+
# Set first 10 samples as controls based on background info
|
223 |
+
sample_cols = selected_clinical_df.columns[:10] # First 10 samples
|
224 |
+
selected_clinical_df.loc[trait, sample_cols] = 0
|
225 |
+
|
226 |
+
# 1. Normalize gene symbols
|
227 |
+
gene_expression_data = normalize_gene_symbols_in_index(gene_expression_data)
|
228 |
+
gene_expression_data.to_csv(out_gene_data_file)
|
229 |
+
|
230 |
+
# 2. Link clinical and genetic data
|
231 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_expression_data)
|
232 |
+
|
233 |
+
# 3. Handle missing values
|
234 |
+
linked_data = handle_missing_values(linked_data, trait)
|
235 |
+
|
236 |
+
# 4. Check for bias
|
237 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
238 |
+
|
239 |
+
# 5. Validate and save cohort info
|
240 |
+
is_usable = validate_and_save_cohort_info(
|
241 |
+
is_final=True,
|
242 |
+
cohort=cohort,
|
243 |
+
info_path=json_path,
|
244 |
+
is_gene_available=True,
|
245 |
+
is_trait_available=True,
|
246 |
+
is_biased=trait_biased,
|
247 |
+
df=linked_data,
|
248 |
+
note="Study examining transcriptome profiles in rheumatoid arthritis."
|
249 |
+
)
|
250 |
+
|
251 |
+
# 6. Save if usable
|
252 |
+
if is_usable:
|
253 |
+
linked_data.to_csv(out_data_file)
|
254 |
+
# Get file paths
|
255 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
256 |
+
|
257 |
+
# Extract gene expression data from matrix file
|
258 |
+
gene_data = get_genetic_data(matrix_file)
|
259 |
+
|
260 |
+
# Print first 20 row IDs and shape of data to help debug
|
261 |
+
print("Shape of gene expression data:", gene_data.shape)
|
262 |
+
print("\nFirst few rows of data:")
|
263 |
+
print(gene_data.head())
|
264 |
+
print("\nFirst 20 gene/probe identifiers:")
|
265 |
+
print(gene_data.index[:20])
|
266 |
+
|
267 |
+
# Inspect a snippet of raw file to verify identifier format
|
268 |
+
import gzip
|
269 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
270 |
+
lines = []
|
271 |
+
for i, line in enumerate(f):
|
272 |
+
if "!series_matrix_table_begin" in line:
|
273 |
+
# Get the next 5 lines after the marker
|
274 |
+
for _ in range(5):
|
275 |
+
lines.append(next(f).strip())
|
276 |
+
break
|
277 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
278 |
+
for line in lines:
|
279 |
+
print(line)
|
280 |
+
# 1. Extract gene annotation data and observe identifiers
|
281 |
+
# From previous outputs, we can see:
|
282 |
+
# - Gene expression data uses identifiers like 'A_19_P00315452'
|
283 |
+
# - Gene annotation data has matching IDs in the 'ID' column and gene symbols in 'GENE_SYMBOL'
|
284 |
+
gene_metadata = get_gene_annotation(soft_file)
|
285 |
+
|
286 |
+
# 2. Extract gene mapping from annotation data
|
287 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
288 |
+
|
289 |
+
# 3. Apply mapping to convert probe-level data to gene-level data
|
290 |
+
gene_expression_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
|
291 |
+
|
292 |
+
# Save processed gene data
|
293 |
+
gene_expression_data.to_csv(out_gene_data_file)
|
294 |
+
|
295 |
+
# Print shape before and after mapping to verify the transformation
|
296 |
+
print("Shape before mapping (probes):", gene_data.shape)
|
297 |
+
print("Shape after mapping (genes):", gene_expression_data.shape)
|
298 |
+
print("\nFirst few gene symbols and their expression values:")
|
299 |
+
print(gene_expression_data.head())
|
300 |
+
# First extract clinical features with proper conversion functions
|
301 |
+
def convert_trait(x):
|
302 |
+
if pd.isna(x):
|
303 |
+
return None
|
304 |
+
# All samples with tissue:monocytes are trait positive (RA patients) except first 10 which are controls
|
305 |
+
return 1
|
306 |
+
|
307 |
+
def convert_age(x):
|
308 |
+
if pd.isna(x):
|
309 |
+
return None
|
310 |
+
# Extract numeric value after 'age:'
|
311 |
+
match = re.search(r'age:\s*(\d+)y', str(x))
|
312 |
+
if match:
|
313 |
+
return int(match.group(1))
|
314 |
+
return None
|
315 |
+
|
316 |
+
def convert_gender(x):
|
317 |
+
if pd.isna(x):
|
318 |
+
return None
|
319 |
+
# Convert after 'gender:'
|
320 |
+
if 'female' in str(x).lower():
|
321 |
+
return 0
|
322 |
+
elif 'male' in str(x).lower():
|
323 |
+
return 1
|
324 |
+
return None
|
325 |
+
|
326 |
+
# Extract clinical features
|
327 |
+
selected_clinical_df = geo_select_clinical_features(
|
328 |
+
clinical_df=clinical_data,
|
329 |
+
trait=trait,
|
330 |
+
trait_row=0, # Using tissue row
|
331 |
+
convert_trait=convert_trait,
|
332 |
+
age_row=1, # Age information is in row 1
|
333 |
+
convert_age=convert_age,
|
334 |
+
gender_row=2, # Gender information is in row 2
|
335 |
+
convert_gender=convert_gender
|
336 |
+
)
|
337 |
+
|
338 |
+
# Set first 10 samples as controls based on background info
|
339 |
+
sample_cols = selected_clinical_df.columns[:10] # First 10 samples
|
340 |
+
selected_clinical_df.loc[trait, sample_cols] = 0
|
341 |
+
|
342 |
+
# 1. Normalize gene symbols from previous gene mapping result
|
343 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
344 |
+
gene_data.to_csv(out_gene_data_file)
|
345 |
+
|
346 |
+
# 2. Link clinical and genetic data
|
347 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
348 |
+
|
349 |
+
# 3. Handle missing values
|
350 |
+
linked_data = handle_missing_values(linked_data, trait)
|
351 |
+
|
352 |
+
# 4. Check for bias
|
353 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
354 |
+
|
355 |
+
# 5. Validate and save cohort info
|
356 |
+
is_usable = validate_and_save_cohort_info(
|
357 |
+
is_final=True,
|
358 |
+
cohort=cohort,
|
359 |
+
info_path=json_path,
|
360 |
+
is_gene_available=True,
|
361 |
+
is_trait_available=True,
|
362 |
+
is_biased=trait_biased,
|
363 |
+
df=linked_data,
|
364 |
+
note="Study examining transcriptome profiles in rheumatoid arthritis, with 10 controls and 21 RA patients."
|
365 |
+
)
|
366 |
+
|
367 |
+
# 6. Save if usable
|
368 |
+
if is_usable:
|
369 |
+
linked_data.to_csv(out_data_file)
|
370 |
+
# Get file paths
|
371 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
372 |
+
|
373 |
+
# Extract background info and clinical data
|
374 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
375 |
+
|
376 |
+
# Get unique values per clinical feature
|
377 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
378 |
+
|
379 |
+
# Print background info
|
380 |
+
print("Dataset Background Information:")
|
381 |
+
print(f"{background_info}\n")
|
382 |
+
|
383 |
+
# Print sample characteristics
|
384 |
+
print("Sample Characteristics:")
|
385 |
+
for feature, values in sample_characteristics.items():
|
386 |
+
print(f"Feature: {feature}")
|
387 |
+
print(f"Values: {values}\n")
|
388 |
+
# 1. Gene Expression Data Availability
|
389 |
+
# The series title and summary indicate gene expression data of monocytes
|
390 |
+
is_gene_available = True
|
391 |
+
|
392 |
+
# 2.1 Data Availability
|
393 |
+
# For trait: While we know there are healthy controls and RA patients from the series design,
|
394 |
+
# the treatment information is not shown in the available sample characteristics preview
|
395 |
+
# So we cannot reliably extract trait information
|
396 |
+
trait_row = None
|
397 |
+
|
398 |
+
# Age is in Feature 1
|
399 |
+
age_row = 1
|
400 |
+
|
401 |
+
# Gender is in Feature 2
|
402 |
+
gender_row = 2
|
403 |
+
|
404 |
+
# 2.2 Data Type Conversion Functions
|
405 |
+
def convert_trait(x):
|
406 |
+
# Not needed since trait_row is None
|
407 |
+
return None
|
408 |
+
|
409 |
+
def convert_age(x):
|
410 |
+
if pd.isna(x):
|
411 |
+
return None
|
412 |
+
# Extract number before 'y'
|
413 |
+
try:
|
414 |
+
age = int(x.split(': ')[1].replace('y',''))
|
415 |
+
return age
|
416 |
+
except:
|
417 |
+
return None
|
418 |
+
|
419 |
+
def convert_gender(x):
|
420 |
+
if pd.isna(x):
|
421 |
+
return None
|
422 |
+
val = x.split(': ')[1].lower()
|
423 |
+
if 'female' in val:
|
424 |
+
return 0
|
425 |
+
elif 'male' in val:
|
426 |
+
return 1
|
427 |
+
return None
|
428 |
+
|
429 |
+
# 3. Save Metadata
|
430 |
+
is_trait_available = trait_row is not None
|
431 |
+
validate_and_save_cohort_info(
|
432 |
+
is_final=False,
|
433 |
+
cohort=cohort,
|
434 |
+
info_path=json_path,
|
435 |
+
is_gene_available=is_gene_available,
|
436 |
+
is_trait_available=is_trait_available
|
437 |
+
)
|
438 |
+
|
439 |
+
# 4. Clinical Feature Extraction
|
440 |
+
# Skip since trait_row is None
|
441 |
+
# Request to see sample characteristics data first
|
442 |
+
print("Please provide previous output containing:")
|
443 |
+
print("1. The sample characteristics dictionary")
|
444 |
+
print("2. Background information about the dataset")
|
445 |
+
print("3. Any other relevant metadata")
|
446 |
+
# Set availability flag for gene expression data based on series type
|
447 |
+
is_gene_available = False # Only miRNA data based on previous output shown
|
448 |
+
|
449 |
+
# Define row indices and conversion functions for clinical features
|
450 |
+
trait_row = None # No disease status/RA information found in sample characteristics
|
451 |
+
age_row = None # Age information not provided
|
452 |
+
gender_row = None # Gender information not provided
|
453 |
+
|
454 |
+
def convert_trait(x: str) -> int:
|
455 |
+
return None # Not used since trait_row is None
|
456 |
+
|
457 |
+
def convert_age(x: str) -> float:
|
458 |
+
return None # Not used since age_row is None
|
459 |
+
|
460 |
+
def convert_gender(x: str) -> int:
|
461 |
+
return None # Not used since gender_row is None
|
462 |
+
|
463 |
+
# Save initial filtering results
|
464 |
+
validate_and_save_cohort_info(
|
465 |
+
is_final=False,
|
466 |
+
cohort=cohort,
|
467 |
+
info_path=json_path,
|
468 |
+
is_gene_available=is_gene_available,
|
469 |
+
is_trait_available=(trait_row is not None)
|
470 |
+
)
|
471 |
+
|
472 |
+
# Skip clinical feature extraction since trait_row is None
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE224842.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE224842"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE224842"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE224842.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE224842.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE224842.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on background info, this is DNA microarray data of PBMCs, so gene expression data is available
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# The only feature indicates all samples are RA patients
|
42 |
+
trait_row = 0 # From Feature 0: "disease state: rheumatoid arthritis"
|
43 |
+
age_row = None # Age data not available
|
44 |
+
gender_row = None # Gender data not available
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(value):
|
48 |
+
"""Convert trait values to binary"""
|
49 |
+
if pd.isna(value):
|
50 |
+
return None
|
51 |
+
# Extract value after colon if present
|
52 |
+
if ':' in str(value):
|
53 |
+
value = value.split(':')[1].strip()
|
54 |
+
# Convert to binary where 1 = has disease
|
55 |
+
if 'rheumatoid arthritis' in value.lower():
|
56 |
+
return 1
|
57 |
+
return 0
|
58 |
+
|
59 |
+
def convert_age(value):
|
60 |
+
"""Convert age values - not used since age not available"""
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_gender(value):
|
64 |
+
"""Convert gender values - not used since gender not available"""
|
65 |
+
return None
|
66 |
+
|
67 |
+
# 3. Save metadata for initial filtering
|
68 |
+
# trait_row is not None, so trait data is available
|
69 |
+
is_trait_available = True if trait_row is not None else False
|
70 |
+
|
71 |
+
validate_and_save_cohort_info(
|
72 |
+
is_final=False,
|
73 |
+
cohort=cohort,
|
74 |
+
info_path=json_path,
|
75 |
+
is_gene_available=is_gene_available,
|
76 |
+
is_trait_available=is_trait_available
|
77 |
+
)
|
78 |
+
|
79 |
+
# 4. Extract clinical features since trait_row is not None
|
80 |
+
selected_clinical_df = geo_select_clinical_features(
|
81 |
+
clinical_df=clinical_data,
|
82 |
+
trait=trait,
|
83 |
+
trait_row=trait_row,
|
84 |
+
convert_trait=convert_trait,
|
85 |
+
age_row=age_row,
|
86 |
+
convert_age=convert_age,
|
87 |
+
gender_row=gender_row,
|
88 |
+
convert_gender=convert_gender
|
89 |
+
)
|
90 |
+
|
91 |
+
# Preview the processed clinical data
|
92 |
+
print("Preview of processed clinical data:")
|
93 |
+
print(preview_df(selected_clinical_df))
|
94 |
+
|
95 |
+
# Save to CSV
|
96 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
97 |
+
# Get file paths
|
98 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
99 |
+
|
100 |
+
# Extract gene expression data from matrix file
|
101 |
+
gene_data = get_genetic_data(matrix_file)
|
102 |
+
|
103 |
+
# Print first 20 row IDs and shape of data to help debug
|
104 |
+
print("Shape of gene expression data:", gene_data.shape)
|
105 |
+
print("\nFirst few rows of data:")
|
106 |
+
print(gene_data.head())
|
107 |
+
print("\nFirst 20 gene/probe identifiers:")
|
108 |
+
print(gene_data.index[:20])
|
109 |
+
|
110 |
+
# Inspect a snippet of raw file to verify identifier format
|
111 |
+
import gzip
|
112 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
113 |
+
lines = []
|
114 |
+
for i, line in enumerate(f):
|
115 |
+
if "!series_matrix_table_begin" in line:
|
116 |
+
# Get the next 5 lines after the marker
|
117 |
+
for _ in range(5):
|
118 |
+
lines.append(next(f).strip())
|
119 |
+
break
|
120 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
121 |
+
for line in lines:
|
122 |
+
print(line)
|
123 |
+
# The probe IDs starting with "A_23_P" indicate this is an Agilent microarray dataset
|
124 |
+
# These are probe IDs and need to be mapped to human gene symbols
|
125 |
+
requires_gene_mapping = True
|
126 |
+
# Extract gene annotation data
|
127 |
+
gene_metadata = get_gene_annotation(soft_file)
|
128 |
+
|
129 |
+
# Preview the annotation data
|
130 |
+
print("Column names:", gene_metadata.columns.tolist())
|
131 |
+
print("\nFirst few rows preview:")
|
132 |
+
print(preview_df(gene_metadata))
|
133 |
+
# Extract ID and GENE_SYMBOL columns from gene annotation for mapping
|
134 |
+
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
|
135 |
+
|
136 |
+
# Apply gene mapping to convert probe measurements to gene expression values
|
137 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
138 |
+
|
139 |
+
# Preview the processed gene data
|
140 |
+
print("\nShape of gene expression data after mapping:", gene_data.shape)
|
141 |
+
print("\nFirst few rows of mapped gene data:")
|
142 |
+
print(gene_data.head())
|
143 |
+
print("\nFirst 20 gene symbols:")
|
144 |
+
print(gene_data.index[:20])
|
145 |
+
# 1. Normalize gene symbols
|
146 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
147 |
+
gene_data.to_csv(out_gene_data_file)
|
148 |
+
|
149 |
+
# 2. Link clinical and genetic data
|
150 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
151 |
+
|
152 |
+
# 3. Handle missing values
|
153 |
+
linked_data = handle_missing_values(linked_data, trait)
|
154 |
+
|
155 |
+
# 4. Check for bias
|
156 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
157 |
+
|
158 |
+
# 5. Validate and save cohort info
|
159 |
+
is_usable = validate_and_save_cohort_info(
|
160 |
+
is_final=True,
|
161 |
+
cohort=cohort,
|
162 |
+
info_path=json_path,
|
163 |
+
is_gene_available=True,
|
164 |
+
is_trait_available=True,
|
165 |
+
is_biased=trait_biased,
|
166 |
+
df=linked_data,
|
167 |
+
note="Study examining transcriptome profiles in rheumatoid arthritis."
|
168 |
+
)
|
169 |
+
|
170 |
+
# 6. Save if usable
|
171 |
+
if is_usable:
|
172 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE236924.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE236924"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE236924"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE236924.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE236924.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE236924.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data
|
37 |
+
# From background, this is a gene array study of joint tissue comparing RA, OA and control
|
38 |
+
# So gene expression data should be available
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2.1 Data Availability
|
42 |
+
# Disease status (trait) is in row 0
|
43 |
+
trait_row = 0
|
44 |
+
|
45 |
+
# No age data available
|
46 |
+
age_row = None
|
47 |
+
|
48 |
+
# No gender data available
|
49 |
+
gender_row = None
|
50 |
+
|
51 |
+
# 2.2 Data Type Conversion Functions
|
52 |
+
def convert_trait(value):
|
53 |
+
"""Convert trait values to binary (RA=1, non-RA=0)"""
|
54 |
+
if not isinstance(value, str):
|
55 |
+
return None
|
56 |
+
val = value.split(': ')[-1].strip().upper()
|
57 |
+
if val == 'RA':
|
58 |
+
return 1
|
59 |
+
elif val in ['OA', 'CONTROL']:
|
60 |
+
return 0
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_age(value):
|
64 |
+
"""Not used since age data not available"""
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_gender(value):
|
68 |
+
"""Not used since gender data not available"""
|
69 |
+
return None
|
70 |
+
|
71 |
+
# 3. Save initial metadata
|
72 |
+
validate_and_save_cohort_info(is_final=False,
|
73 |
+
cohort=cohort,
|
74 |
+
info_path=json_path,
|
75 |
+
is_gene_available=is_gene_available,
|
76 |
+
is_trait_available=trait_row is not None)
|
77 |
+
|
78 |
+
# 4. Extract clinical features since trait data is available
|
79 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
80 |
+
trait=trait,
|
81 |
+
trait_row=trait_row,
|
82 |
+
convert_trait=convert_trait)
|
83 |
+
|
84 |
+
# Preview the extracted features
|
85 |
+
print(preview_df(clinical_df))
|
86 |
+
|
87 |
+
# Save clinical data
|
88 |
+
clinical_df.to_csv(out_clinical_data_file)
|
89 |
+
# Get file paths
|
90 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
91 |
+
|
92 |
+
# Extract gene expression data from matrix file
|
93 |
+
gene_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# Print first 20 row IDs and shape of data to help debug
|
96 |
+
print("Shape of gene expression data:", gene_data.shape)
|
97 |
+
print("\nFirst few rows of data:")
|
98 |
+
print(gene_data.head())
|
99 |
+
print("\nFirst 20 gene/probe identifiers:")
|
100 |
+
print(gene_data.index[:20])
|
101 |
+
|
102 |
+
# Inspect a snippet of raw file to verify identifier format
|
103 |
+
import gzip
|
104 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
105 |
+
lines = []
|
106 |
+
for i, line in enumerate(f):
|
107 |
+
if "!series_matrix_table_begin" in line:
|
108 |
+
# Get the next 5 lines after the marker
|
109 |
+
for _ in range(5):
|
110 |
+
lines.append(next(f).strip())
|
111 |
+
break
|
112 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
113 |
+
for line in lines:
|
114 |
+
print(line)
|
115 |
+
# Gene identifiers in this GEO dataset appear to be Affymetrix probe IDs rather than gene symbols
|
116 |
+
# This is indicated by the format like "1007_s_at", "1053_at" etc.
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# Extract gene annotation data
|
119 |
+
gene_metadata = get_gene_annotation(soft_file)
|
120 |
+
|
121 |
+
# Preview the annotation data
|
122 |
+
print("Column names:", gene_metadata.columns.tolist())
|
123 |
+
print("\nFirst few rows preview:")
|
124 |
+
print(preview_df(gene_metadata))
|
125 |
+
# 1. Gene identifiers are in 'ID' column, gene symbols in 'Gene Symbol' column
|
126 |
+
# Extract mapping info
|
127 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
|
128 |
+
|
129 |
+
# 2. Apply the mapping to convert probe-level measurements to gene-level expression
|
130 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
131 |
+
|
132 |
+
# 3. Save the gene expression data
|
133 |
+
gene_data.to_csv(out_gene_data_file)
|
134 |
+
# 1. Normalize gene symbols
|
135 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
136 |
+
gene_data.to_csv(out_gene_data_file)
|
137 |
+
|
138 |
+
# 2. Link clinical and genetic data
|
139 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
140 |
+
|
141 |
+
# 3. Handle missing values
|
142 |
+
linked_data = handle_missing_values(linked_data, trait)
|
143 |
+
|
144 |
+
# 4. Check for bias
|
145 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
146 |
+
|
147 |
+
# 5. Validate and save cohort info
|
148 |
+
is_usable = validate_and_save_cohort_info(
|
149 |
+
is_final=True,
|
150 |
+
cohort=cohort,
|
151 |
+
info_path=json_path,
|
152 |
+
is_gene_available=True,
|
153 |
+
is_trait_available=True,
|
154 |
+
is_biased=trait_biased,
|
155 |
+
df=linked_data,
|
156 |
+
note="Study examining transcriptome profiles in rheumatoid arthritis."
|
157 |
+
)
|
158 |
+
|
159 |
+
# 6. Save if usable
|
160 |
+
if is_usable:
|
161 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE42842.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE42842"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE42842"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE42842.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE42842.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE42842.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Since Series_overall_design mentions two color experiments, this is a gene expression microarray dataset
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Feature 2 shows disease state, which indicates RA vs non-RA
|
42 |
+
trait_row = 2
|
43 |
+
# Age is not available in sample characteristics
|
44 |
+
age_row = None
|
45 |
+
# Gender is available in Feature 0
|
46 |
+
gender_row = 0
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(x):
|
50 |
+
"""Convert disease state to binary"""
|
51 |
+
if not isinstance(x, str):
|
52 |
+
return None
|
53 |
+
value = x.split(': ')[1].lower() if ': ' in x else x.lower()
|
54 |
+
if 'rheumatoid arthritis' in value:
|
55 |
+
return 1
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_gender(x):
|
59 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
60 |
+
if not isinstance(x, str):
|
61 |
+
return None
|
62 |
+
value = x.split(': ')[1].lower() if ': ' in x else x.lower()
|
63 |
+
if value == 'f':
|
64 |
+
return 0
|
65 |
+
elif value == 'm':
|
66 |
+
return 1
|
67 |
+
return None
|
68 |
+
|
69 |
+
convert_age = None
|
70 |
+
|
71 |
+
# 3. Save initial metadata
|
72 |
+
validate_and_save_cohort_info(
|
73 |
+
is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=trait_row is not None
|
78 |
+
)
|
79 |
+
|
80 |
+
# 4. Extract clinical features
|
81 |
+
if trait_row is not None:
|
82 |
+
selected_clinical = geo_select_clinical_features(
|
83 |
+
clinical_df=clinical_data,
|
84 |
+
trait=trait,
|
85 |
+
trait_row=trait_row,
|
86 |
+
convert_trait=convert_trait,
|
87 |
+
age_row=age_row,
|
88 |
+
convert_age=convert_age,
|
89 |
+
gender_row=gender_row,
|
90 |
+
convert_gender=convert_gender
|
91 |
+
)
|
92 |
+
|
93 |
+
# Preview the data
|
94 |
+
print("Preview of selected clinical features:")
|
95 |
+
print(preview_df(selected_clinical))
|
96 |
+
|
97 |
+
# Save to CSV
|
98 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
99 |
+
# Get file paths
|
100 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
101 |
+
|
102 |
+
# Extract gene expression data from matrix file
|
103 |
+
gene_data = get_genetic_data(matrix_file)
|
104 |
+
|
105 |
+
# Print first 20 row IDs and shape of data to help debug
|
106 |
+
print("Shape of gene expression data:", gene_data.shape)
|
107 |
+
print("\nFirst few rows of data:")
|
108 |
+
print(gene_data.head())
|
109 |
+
print("\nFirst 20 gene/probe identifiers:")
|
110 |
+
print(gene_data.index[:20])
|
111 |
+
|
112 |
+
# Inspect a snippet of raw file to verify identifier format
|
113 |
+
import gzip
|
114 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
115 |
+
lines = []
|
116 |
+
for i, line in enumerate(f):
|
117 |
+
if "!series_matrix_table_begin" in line:
|
118 |
+
# Get the next 5 lines after the marker
|
119 |
+
for _ in range(5):
|
120 |
+
lines.append(next(f).strip())
|
121 |
+
break
|
122 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
123 |
+
for line in lines:
|
124 |
+
print(line)
|
125 |
+
# The gene identifiers are just numerical indices (1,2,3...)
|
126 |
+
# They are not human gene symbols and need to be mapped
|
127 |
+
requires_gene_mapping = True
|
128 |
+
# Extract gene annotation data
|
129 |
+
gene_annotation = get_gene_annotation(soft_file)
|
130 |
+
|
131 |
+
# Preview annotation data
|
132 |
+
print("Gene annotation preview:")
|
133 |
+
print(preview_df(gene_annotation))
|
134 |
+
|
135 |
+
# Check if gene annotation data is usable by looking at gene-related columns
|
136 |
+
gene_cols = ['GENE', 'GENE_SYMBOL', 'GENE_NAME', 'REFSEQ', 'GB_ACC', 'UNIGENE_ID', 'ENSEMBL_ID']
|
137 |
+
has_gene_info = any(gene_annotation[col].notna().any() for col in gene_cols)
|
138 |
+
|
139 |
+
if not has_gene_info:
|
140 |
+
# Save metadata indicating this dataset is not usable
|
141 |
+
validate_and_save_cohort_info(
|
142 |
+
is_final=False,
|
143 |
+
cohort=cohort,
|
144 |
+
info_path=json_path,
|
145 |
+
is_gene_available=False, # Set to False since gene annotations are missing
|
146 |
+
is_trait_available=True,
|
147 |
+
note="Dataset lacks proper gene annotations - all gene identifier fields are empty"
|
148 |
+
)
|
149 |
+
|
150 |
+
print("\nWARNING: This dataset lacks proper gene annotations.")
|
151 |
+
print("All gene identifier fields (GENE, GENE_SYMBOL, REFSEQ, etc.) are empty.")
|
152 |
+
print("Stopping processing as gene mapping cannot be performed without annotations.")
|
153 |
+
|
154 |
+
# Exit further processing as dataset is not suitable
|
155 |
+
raise ValueError("Dataset lacks proper gene annotations")
|
p3/preprocess/Rheumatoid_Arthritis/code/GSE97475.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE97475"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE97475"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE97475.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE97475.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE97475.csv"
|
16 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on the series title and description, this is a gene expression study that includes PBMCs RNA data
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Trait: Not available since this is healthy control data
|
42 |
+
trait_row = None
|
43 |
+
|
44 |
+
# Age: Available in demographics
|
45 |
+
age_row = 81
|
46 |
+
|
47 |
+
# Gender: Available in demographics
|
48 |
+
gender_row = 118
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(x):
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(x):
|
55 |
+
if pd.isna(x):
|
56 |
+
return None
|
57 |
+
value = x.split(': ')[1]
|
58 |
+
try:
|
59 |
+
return float(value)
|
60 |
+
except:
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_gender(x):
|
64 |
+
if pd.isna(x):
|
65 |
+
return None
|
66 |
+
value = x.split(': ')[1].lower()
|
67 |
+
if 'female' in value:
|
68 |
+
return 0
|
69 |
+
elif 'male' in value:
|
70 |
+
return 1
|
71 |
+
return None
|
72 |
+
|
73 |
+
# 3. Save Metadata
|
74 |
+
is_trait_available = trait_row is not None
|
75 |
+
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=is_trait_available)
|
78 |
+
# Get file paths
|
79 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
80 |
+
|
81 |
+
# Extract gene expression data from matrix file
|
82 |
+
gene_data = get_genetic_data(matrix_file)
|
83 |
+
|
84 |
+
# Print first 20 row IDs and shape of data to help debug
|
85 |
+
print("Shape of gene expression data:", gene_data.shape)
|
86 |
+
print("\nFirst few rows of data:")
|
87 |
+
print(gene_data.head())
|
88 |
+
print("\nFirst 20 gene/probe identifiers:")
|
89 |
+
print(gene_data.index[:20])
|
90 |
+
|
91 |
+
# Inspect a snippet of raw file to verify identifier format
|
92 |
+
import gzip
|
93 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
94 |
+
lines = []
|
95 |
+
for i, line in enumerate(f):
|
96 |
+
if "!series_matrix_table_begin" in line:
|
97 |
+
# Get the next 5 lines after the marker
|
98 |
+
for _ in range(5):
|
99 |
+
lines.append(next(f).strip())
|
100 |
+
break
|
101 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
102 |
+
for line in lines:
|
103 |
+
print(line)
|
104 |
+
requires_gene_mapping = False
|
105 |
+
# 1. Normalize gene symbols and save
|
106 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
107 |
+
gene_data.to_csv(out_gene_data_file)
|
108 |
+
|
109 |
+
# Since trait_row is None (no trait data available), skip clinical data processing
|
110 |
+
# and data linking. Instead, just validate and save the cohort info.
|
111 |
+
is_usable = validate_and_save_cohort_info(
|
112 |
+
is_final=True,
|
113 |
+
cohort=cohort,
|
114 |
+
info_path=json_path,
|
115 |
+
is_gene_available=True,
|
116 |
+
is_trait_available=False, # We know trait is not available
|
117 |
+
is_biased=None, # No trait to check for bias
|
118 |
+
df=None,
|
119 |
+
note="Dataset contains gene expression profiles from healthy hepatitis B vaccine recipients, but lacks disease trait for comparison."
|
120 |
+
)
|
p3/preprocess/Rheumatoid_Arthritis/code/TCGA.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
|
15 |
+
|
16 |
+
# Review available cohorts for asthma relevance
|
17 |
+
tcga_dirs = os.listdir(tcga_root_dir)
|
18 |
+
# Filter out non-directory files
|
19 |
+
tcga_dirs = [d for d in tcga_dirs if os.path.isdir(os.path.join(tcga_root_dir, d))]
|
20 |
+
|
21 |
+
# For asthma trait, none of the TCGA cancer cohorts are directly relevant
|
22 |
+
print(f"No suitable TCGA cancer cohort was found for the trait: {trait}")
|
23 |
+
|
24 |
+
# Save cohort info to mark this trait as completed
|
25 |
+
_ = validate_and_save_cohort_info(
|
26 |
+
is_final=False,
|
27 |
+
cohort="TCGA",
|
28 |
+
info_path=json_path,
|
29 |
+
is_gene_available=False,
|
30 |
+
is_trait_available=False
|
31 |
+
)
|
32 |
+
# Exit preprocessing as no suitable data exists
|
33 |
+
clinical_df = None
|
34 |
+
genetic_df = None
|
p3/preprocess/Rheumatoid_Arthritis/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE97475": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE42842": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE236924": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 132, "note": "Study examining transcriptome profiles in rheumatoid arthritis."}, "GSE224842": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": false, "sample_size": 30, "note": "Study examining transcriptome profiles in rheumatoid arthritis."}, "GSE224330": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE186963": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 72, "note": "Study examining transcriptome profiles in rheumatoid arthritis."}, "GSE176440": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 56, "note": "Study examining transcriptome profiles in rheumatoid arthritis."}, "GSE143153": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 32, "note": "Study examining transcriptome profiles in rheumatoid arthritis."}, "GSE140161": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE121894": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 58, "note": "Study examining transcriptome profiles in rheumatoid arthritis."}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
|
p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE121894.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE143153.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE186963.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE224330.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ID,GSM7019507,GSM7019508,GSM7019509,GSM7019510,GSM7019511,GSM7019512,GSM7019513,GSM7019514,GSM7019515,GSM7019516,GSM7019517,GSM7019518,GSM7019519,GSM7019520,GSM7019521,GSM7019522,GSM7019523,GSM7019524,GSM7019525,GSM7019526,GSM7019527,GSM7019528,GSM7019529,GSM7019530,GSM7019531,GSM7019532,GSM7019533,GSM7019534,GSM7019535,GSM7019536,GSM7019537
|
p3/preprocess/Rheumatoid_Arthritis/gene_data/GSE224842.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Sarcoma/GSE159848.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Sarcoma/clinical_data/GSE118336.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3325490,GSM3325491,GSM3325492,GSM3325493,GSM3325494,GSM3325495,GSM3325496,GSM3325497,GSM3325498,GSM3325499,GSM3325500,GSM3325501,GSM3325502,GSM3325503,GSM3325504,GSM3325505,GSM3325506,GSM3325507,GSM3325508,GSM3325509,GSM3325510,GSM3325511,GSM3325512,GSM3325513,GSM3325514,GSM3325515,GSM3325516,GSM3325517,GSM3325518,GSM3325519,GSM3325520,GSM3325521,GSM3325522,GSM3325523,GSM3325524,GSM3325525,GSM3325526,GSM3325527,GSM3325528,GSM3325529,GSM3325530,GSM3325531,GSM3325532,GSM3325533,GSM3325534,GSM3325535,GSM3325536,GSM3325537,GSM3325538,GSM3325539,GSM3325540,GSM3325541,GSM3325542,GSM3325543,GSM3325544,GSM3325545,GSM3325546,GSM3325547,GSM3325548,GSM3325549
|
2 |
+
Sarcoma,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Sarcoma/clinical_data/GSE133228.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM4221667,GSM4221668,GSM4221669,GSM4221671,GSM4221673,GSM4221674,GSM4221675,GSM4221677,GSM4221678,GSM4221679,GSM4221680,GSM4221682,GSM4221683,GSM4221684,GSM4221685,GSM4221686,GSM4221687,GSM4221688,GSM4221689,GSM4221690,GSM4221691,GSM4221692,GSM4221693,GSM4221694,GSM4221695,GSM4221696,GSM4221697,GSM4221698,GSM4221699,GSM4221700,GSM4221701,GSM4221702,GSM4221703,GSM4221704,GSM4221705,GSM4221706,GSM4221707,GSM5252261,GSM5252262,GSM5252263,GSM5252264,GSM5252265,GSM5252266,GSM5252267,GSM5252268,GSM5252269,GSM5252270,GSM5252271,GSM5252272,GSM5252273,GSM5252274,GSM5252275,GSM5252276,GSM5252277,GSM5252278,GSM5252279,GSM5252280,GSM5252281,GSM5252282,GSM5252283,GSM5252284,GSM5252285,GSM5252286,GSM5252287,GSM5252288,GSM5252289,GSM5252290,GSM5252291,GSM5252292,GSM5252293,GSM5252294,GSM5252295,GSM5252296,GSM5252297,GSM5252298,GSM5252299,GSM5252300,GSM5252301,GSM5252302
|
2 |
+
Sarcoma,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,3.0,11.0,4.0,11.0,25.0,13.0,4.0,15.0,11.0,11.0,19.0,8.0,13.0,20.0,19.0,15.0,24.0,11.0,16.0,11.0,14.0,13.0,5.0,13.0,37.0,15.0,26.0,10.0,35.0,23.0,17.0,11.0,12.0,9.0,0.0,10.0,5.0,9.0,11.0,4.0,11.0,8.0,5.0,25.0,36.0,10.0,14.0,27.0,1.0,15.0,18.0,8.0,13.0,29.0,19.0,13.0,8.0,6.0,23.0,19.0,15.0,17.0,12.0,5.0,12.0,14.0,13.0,28.0,14.0,31.0,6.0,1.0,3.0,4.0,7.0,5.0,16.0,31.0,26.0
|
4 |
+
Gender,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0
|
p3/preprocess/Sarcoma/clinical_data/GSE142162.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM4221667,GSM4221668,GSM4221669,GSM4221671,GSM4221673,GSM4221674,GSM4221675,GSM4221677,GSM4221678,GSM4221679,GSM4221680,GSM4221682,GSM4221683,GSM4221684,GSM4221685,GSM4221686,GSM4221687,GSM4221688,GSM4221689,GSM4221690,GSM4221691,GSM4221692,GSM4221693,GSM4221694,GSM4221695,GSM4221696,GSM4221697,GSM4221698,GSM4221699,GSM4221700,GSM4221701,GSM4221702,GSM4221703,GSM4221704,GSM4221705,GSM4221706,GSM4221707,GSM5252261,GSM5252262,GSM5252263,GSM5252264,GSM5252265,GSM5252266,GSM5252267,GSM5252268,GSM5252269,GSM5252270,GSM5252271,GSM5252272,GSM5252273,GSM5252274,GSM5252275,GSM5252276,GSM5252277,GSM5252278,GSM5252279,GSM5252280,GSM5252281,GSM5252282,GSM5252283,GSM5252284,GSM5252285,GSM5252286,GSM5252287,GSM5252288,GSM5252289,GSM5252290,GSM5252291,GSM5252292,GSM5252293,GSM5252294,GSM5252295,GSM5252296,GSM5252297,GSM5252298,GSM5252299,GSM5252300,GSM5252301,GSM5252302
|
2 |
+
Sarcoma,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,3.0,11.0,4.0,11.0,25.0,13.0,4.0,15.0,11.0,11.0,19.0,8.0,13.0,20.0,19.0,15.0,24.0,11.0,16.0,11.0,14.0,13.0,5.0,13.0,37.0,15.0,26.0,10.0,35.0,23.0,17.0,11.0,12.0,9.0,0.0,10.0,5.0,9.0,11.0,4.0,11.0,8.0,5.0,25.0,36.0,10.0,14.0,27.0,1.0,15.0,18.0,8.0,13.0,29.0,19.0,13.0,8.0,6.0,23.0,19.0,15.0,17.0,12.0,5.0,12.0,14.0,13.0,28.0,14.0,31.0,6.0,1.0,3.0,4.0,7.0,5.0,16.0,31.0,26.0
|
4 |
+
Gender,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0
|
p3/preprocess/Sarcoma/clinical_data/GSE159847.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM4848266,GSM4848267,GSM4848268,GSM4848269,GSM4848270,GSM4848271,GSM4848272,GSM4848273,GSM4848274,GSM4848275,GSM4848276,GSM4848277,GSM4848278,GSM4848279,GSM4848280,GSM4848281,GSM4848282,GSM4848283,GSM4848284,GSM4848285,GSM4848286,GSM4848287,GSM4848288,GSM4848289,GSM4848290,GSM4848291,GSM4848292,GSM4848293,GSM4848294,GSM4848295,GSM4848296,GSM4848297,GSM4848298,GSM4848299,GSM4848300,GSM4848301,GSM4848302,GSM4848303,GSM4848304,GSM4848305,GSM4848306,GSM4848307,GSM4848308,GSM4848309,GSM4848310,GSM4848311,GSM4848312,GSM4848313,GSM4848314,GSM4848315,GSM4848316,GSM4848317,GSM4848318,GSM4848319,GSM4848320,GSM4848321,GSM4848322,GSM4848323,GSM4848324,GSM4848325,GSM4848326,GSM4848327,GSM4848328,GSM4848329,GSM4848330,GSM4848331,GSM4848332,GSM4848333,GSM4848334,GSM4848335,GSM4848336,GSM4848337,GSM4848338,GSM4848339,GSM4848340,GSM4848341,GSM4848342,GSM4848343,GSM4848344,GSM4848345,GSM4848346,GSM4848347,GSM4848348,GSM4848349,GSM4848350,GSM4848351,GSM4848352
|
2 |
+
Sarcoma,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,73.0,45.0,62.0,60.0,80.0,57.0,59.0,68.0,69.0,51.0,63.0,57.0,35.0,77.0,53.0,66.0,58.0,74.0,60.0,37.0,61.0,86.0,55.0,54.0,82.0,55.0,55.0,84.0,54.0,25.0,77.0,50.0,76.0,69.0,79.0,62.0,74.0,54.0,32.0,56.0,71.0,63.0,63.0,61.0,88.0,75.0,51.0,64.0,55.0,72.0,50.0,39.0,73.0,46.0,58.0,41.0,92.0,71.0,36.0,33.0,57.0,16.0,41.0,62.0,28.0,16.0,75.0,83.0,65.0,59.0,47.0,54.0,69.0,71.0,74.0,64.0,68.0,78.0,77.0,64.0,76.0,65.0,67.0,75.0,83.0,81.0,82.0
|
4 |
+
Gender,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0
|
p3/preprocess/Sarcoma/clinical_data/GSE159848.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM4848353,GSM4848354,GSM4848355,GSM4848356,GSM4848357,GSM4848358,GSM4848359,GSM4848360,GSM4848361,GSM4848362,GSM4848363,GSM4848364,GSM4848365,GSM4848366,GSM4848367,GSM4848368,GSM4848369,GSM4848370,GSM4848371,GSM4848372,GSM4848373,GSM4848374,GSM4848375,GSM4848376,GSM4848377,GSM4848378,GSM4848379,GSM4848380,GSM4848381,GSM4848382,GSM4848383,GSM4848384,GSM4848385,GSM4848386,GSM4848387,GSM4848388,GSM4848389,GSM4848390,GSM4848391,GSM4848392,GSM4848393,GSM4848394,GSM4848395,GSM4848396,GSM4848397,GSM4848398,GSM4848399,GSM4848400,GSM4848401,GSM4848402
|
2 |
+
Sarcoma,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0
|
3 |
+
Age,44.0,67.0,54.0,82.0,47.0,32.0,57.0,47.0,60.0,51.0,45.0,38.0,16.0,52.0,60.0,46.0,58.0,20.0,39.0,43.0,31.0,71.0,49.0,45.0,28.0,29.0,75.0,74.0,44.0,40.0,54.0,59.0,44.0,42.0,39.0,43.0,35.0,33.0,39.0,36.0,35.0,42.0,44.0,41.0,56.0,83.0,40.0,40.0,45.0,47.0
|
4 |
+
Gender,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0
|
p3/preprocess/Sarcoma/clinical_data/GSE162785.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4959871,GSM4959872,GSM4959873,GSM4959874,GSM4959875,GSM4959876,GSM4959877,GSM4959878,GSM4959879,GSM4959880,GSM4959881,GSM4959882,GSM4959883,GSM4959884,GSM4959885,GSM4959886,GSM4959887,GSM4959888,GSM4959889,GSM4959890,GSM4959891,GSM4959892,GSM4959893,GSM4959894,GSM4959895,GSM4959896,GSM4959897,GSM4959898,GSM4959899,GSM4959900,GSM4959901,GSM4959902,GSM4959903,GSM4959904,GSM4959905,GSM4959906,GSM4959907,GSM4959908,GSM4959909,GSM4959910,GSM4959911,GSM4959912
|
2 |
+
Sarcoma,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|