Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +13 -0
- p1/preprocess/Pheochromocytoma_and_Paraganglioma/gene_data/TCGA.csv +3 -0
- p1/preprocess/Polycystic_Ovary_Syndrome/gene_data/TCGA.csv +3 -0
- p1/preprocess/Prostate_Cancer/gene_data/GSE201805.csv +3 -0
- p1/preprocess/Prostate_Cancer/gene_data/GSE209954.csv +3 -0
- p1/preprocess/Psoriatic_Arthritis/GSE57386.csv +3 -0
- p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57383.csv +3 -0
- p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57386.csv +3 -0
- p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57405.csv +3 -0
- p1/preprocess/Psoriatic_Arthritis/gene_data/GSE61281.csv +3 -0
- p1/preprocess/Rectal_Cancer/GSE123390.csv +3 -0
- p1/preprocess/Rectal_Cancer/gene_data/GSE123390.csv +3 -0
- p1/preprocess/Rectal_Cancer/gene_data/TCGA.csv +3 -0
- p1/preprocess/Retinoblastoma/GSE208143.csv +0 -0
- p1/preprocess/Retinoblastoma/code/GSE63529.py +194 -0
- p1/preprocess/Retinoblastoma/code/GSE68950.py +67 -0
- p1/preprocess/Retinoblastoma/code/TCGA.py +72 -0
- p1/preprocess/Retinoblastoma/gene_data/GSE110811.csv +1 -0
- p1/preprocess/Retinoblastoma/gene_data/GSE208143.csv +0 -0
- p1/preprocess/Retinoblastoma/gene_data/GSE58780.csv +14 -0
- p1/preprocess/Rheumatoid_Arthritis/GSE121894.csv +0 -0
- p1/preprocess/Rheumatoid_Arthritis/clinical_data/GSE121894.csv +2 -0
- p1/preprocess/Rheumatoid_Arthritis/clinical_data/GSE236924.csv +2 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE121894.py +171 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE140161.py +96 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE143153.py +167 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE176440.py +126 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE186963.py +69 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE224330.py +107 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE224842.py +157 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE236924.py +165 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE42842.py +158 -0
- p1/preprocess/Rheumatoid_Arthritis/code/GSE97475.py +159 -0
- p1/preprocess/Rheumatoid_Arthritis/code/TCGA.py +61 -0
- p1/preprocess/Rheumatoid_Arthritis/cohort_info.json +1 -0
- p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE121894.csv +0 -0
- p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE143153.csv +0 -0
- p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE176440.csv +3 -0
- p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE224842.csv +0 -0
- p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE42842.csv +0 -0
- p1/preprocess/Sarcoma/clinical_data/GSE197147.csv +2 -0
- p1/preprocess/Sarcoma/code/GSE118336.py +251 -0
- p1/preprocess/Sarcoma/code/GSE133228.py +247 -0
- p1/preprocess/Sarcoma/code/GSE142162.py +235 -0
- p1/preprocess/Sarcoma/code/GSE159847.py +237 -0
- p1/preprocess/Sarcoma/code/GSE159848.py +234 -0
- p1/preprocess/Sarcoma/code/GSE162785.py +218 -0
- p1/preprocess/Sarcoma/code/GSE162789.py +245 -0
- p1/preprocess/Sarcoma/code/GSE197147.py +244 -0
- p1/preprocess/Sarcoma/code/GSE215265.py +218 -0
.gitattributes
CHANGED
@@ -819,3 +819,16 @@ p1/preprocess/Post-Traumatic_Stress_Disorder/gene_data/GSE77164.csv filter=lfs d
|
|
819 |
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE142049.csv filter=lfs diff=lfs merge=lfs -text
|
820 |
p1/preprocess/Psoriatic_Arthritis/GSE57405.csv filter=lfs diff=lfs merge=lfs -text
|
821 |
p1/preprocess/Psoriatic_Arthritis/GSE57383.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
819 |
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE142049.csv filter=lfs diff=lfs merge=lfs -text
|
820 |
p1/preprocess/Psoriatic_Arthritis/GSE57405.csv filter=lfs diff=lfs merge=lfs -text
|
821 |
p1/preprocess/Psoriatic_Arthritis/GSE57383.csv filter=lfs diff=lfs merge=lfs -text
|
822 |
+
p1/preprocess/Pheochromocytoma_and_Paraganglioma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
823 |
+
p1/preprocess/Prostate_Cancer/gene_data/GSE201805.csv filter=lfs diff=lfs merge=lfs -text
|
824 |
+
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE61281.csv filter=lfs diff=lfs merge=lfs -text
|
825 |
+
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57383.csv filter=lfs diff=lfs merge=lfs -text
|
826 |
+
p1/preprocess/Rectal_Cancer/GSE123390.csv filter=lfs diff=lfs merge=lfs -text
|
827 |
+
p1/preprocess/Rectal_Cancer/gene_data/GSE123390.csv filter=lfs diff=lfs merge=lfs -text
|
828 |
+
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57405.csv filter=lfs diff=lfs merge=lfs -text
|
829 |
+
p1/preprocess/Psoriatic_Arthritis/GSE57386.csv filter=lfs diff=lfs merge=lfs -text
|
830 |
+
p1/preprocess/Prostate_Cancer/gene_data/GSE209954.csv filter=lfs diff=lfs merge=lfs -text
|
831 |
+
p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE176440.csv filter=lfs diff=lfs merge=lfs -text
|
832 |
+
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57386.csv filter=lfs diff=lfs merge=lfs -text
|
833 |
+
p1/preprocess/Rectal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
834 |
+
p1/preprocess/Polycystic_Ovary_Syndrome/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
p1/preprocess/Pheochromocytoma_and_Paraganglioma/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50743253caf86c00a769b96dfc543360e8b698cd87bf7a01f7003146b0905eb3
|
3 |
+
size 56096085
|
p1/preprocess/Polycystic_Ovary_Syndrome/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87c7ae68cbb62da7726269fe4222c37575196fe8d616269cc193a4fe3a221faa
|
3 |
+
size 92186237
|
p1/preprocess/Prostate_Cancer/gene_data/GSE201805.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19050cf97f73f9a2ce0ce19ddefe0bac2ba8a1748e81d90eab25f14c1820789d
|
3 |
+
size 46209433
|
p1/preprocess/Prostate_Cancer/gene_data/GSE209954.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df6182c80734d527c4b65512074fb9a8c2cefe6cc380417a4c8b03cab839f53a
|
3 |
+
size 64018950
|
p1/preprocess/Psoriatic_Arthritis/GSE57386.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9868fda17d369acce43f91d3eac7157f8f2ff4584f5b747837e615bf9b7a586
|
3 |
+
size 42400147
|
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57383.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ec05d318d22b1d3f60ee19660c904b9954642af767206cc9dfa928cd63549b7
|
3 |
+
size 18661804
|
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57386.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fc7e6c2a6f2d33555aaf0a8230da005ce80bb6674656e3b47a551c330d5c905
|
3 |
+
size 42399111
|
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57405.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5765d69f9ced754d3f6d1541dea546c8823b21bcbbbff4382fd5f4e55f67333
|
3 |
+
size 18544472
|
p1/preprocess/Psoriatic_Arthritis/gene_data/GSE61281.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1fdcb361e711da735fc7e9d1c933a95412fe72dde0d9dceeda3c0d6a2701f27
|
3 |
+
size 12822163
|
p1/preprocess/Rectal_Cancer/GSE123390.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:059ded7ae95b07075a29cd5abcfb7fe8e2795438abfea851edada3de43402185
|
3 |
+
size 14460677
|
p1/preprocess/Rectal_Cancer/gene_data/GSE123390.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4aab6460ab0f5ca4f28b8501ec1576c49c45235596a4ecce96670e556e00137
|
3 |
+
size 14460535
|
p1/preprocess/Rectal_Cancer/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:059033ea0624004c8cdcef047178ee75a37b1bbf4e3c617cd8c70a7092e394a3
|
3 |
+
size 31724401
|
p1/preprocess/Retinoblastoma/GSE208143.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Retinoblastoma/code/GSE63529.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Retinoblastoma"
|
6 |
+
cohort = "GSE63529"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Retinoblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE63529"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Retinoblastoma/GSE63529.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Retinoblastoma/gene_data/GSE63529.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Retinoblastoma/clinical_data/GSE63529.csv"
|
16 |
+
json_path = "./output/preprocess/1/Retinoblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on the background info indicating actual gene expression profiling.
|
38 |
+
|
39 |
+
# 2) Variable Availability
|
40 |
+
# From the sample characteristics dictionary, there's no indication of:
|
41 |
+
# - Retinoblastoma trait status,
|
42 |
+
# - Age,
|
43 |
+
# - Gender.
|
44 |
+
# Hence we set all row indices to None.
|
45 |
+
|
46 |
+
trait_row = None
|
47 |
+
age_row = None
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(value: str):
|
52 |
+
# No actual trait data is available, return None
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(value: str):
|
56 |
+
# No age data is available, return None
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_gender(value: str):
|
60 |
+
# No gender data is available, return None
|
61 |
+
return None
|
62 |
+
|
63 |
+
# 3) Save Metadata (Initial Filtering)
|
64 |
+
# trait data availability can be determined by trait_row
|
65 |
+
is_trait_available = (trait_row is not None)
|
66 |
+
|
67 |
+
validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=is_trait_available
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4) Clinical Feature Extraction
|
76 |
+
# Since trait_row is None, we skip this step.
|
77 |
+
# STEP3
|
78 |
+
import gzip
|
79 |
+
import pandas as pd
|
80 |
+
|
81 |
+
try:
|
82 |
+
# 1. Attempt to extract gene expression data using the library function
|
83 |
+
gene_data = get_genetic_data(matrix_file)
|
84 |
+
except KeyError:
|
85 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
86 |
+
# and rename the first column to "ID".
|
87 |
+
marker = "!series_matrix_table_begin"
|
88 |
+
skip_rows = None
|
89 |
+
|
90 |
+
# Determine how many rows to skip before the matrix data begins
|
91 |
+
with gzip.open(matrix_file, 'rt') as f:
|
92 |
+
for i, line in enumerate(f):
|
93 |
+
if marker in line:
|
94 |
+
skip_rows = i + 1
|
95 |
+
break
|
96 |
+
else:
|
97 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
98 |
+
|
99 |
+
# Read the data from the determined position
|
100 |
+
gene_data = pd.read_csv(
|
101 |
+
matrix_file,
|
102 |
+
compression='gzip',
|
103 |
+
skiprows=skip_rows,
|
104 |
+
comment='!',
|
105 |
+
delimiter='\t',
|
106 |
+
on_bad_lines='skip'
|
107 |
+
)
|
108 |
+
|
109 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
110 |
+
if 'ID_REF' in gene_data.columns:
|
111 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
112 |
+
else:
|
113 |
+
first_col = gene_data.columns[0]
|
114 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
115 |
+
|
116 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
117 |
+
gene_data.set_index('ID', inplace=True)
|
118 |
+
|
119 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
120 |
+
print(gene_data.index[:20])
|
121 |
+
print("Based on the presented identifiers (e.g. ILMN_1343291), they appear to be Illumina probe IDs.\nrequires_gene_mapping = True")
|
122 |
+
# STEP5
|
123 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
124 |
+
gene_annotation = get_gene_annotation(soft_file)
|
125 |
+
|
126 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
127 |
+
print("Gene annotation preview:")
|
128 |
+
print(preview_df(gene_annotation))
|
129 |
+
# STEP: Gene Identifier Mapping
|
130 |
+
|
131 |
+
# 1) Determine the matching columns in gene_annotation that map to the gene expression data's probe IDs ("ID")
|
132 |
+
# and the actual gene symbol ("Symbol").
|
133 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
134 |
+
|
135 |
+
# 2) Apply the mapping to convert probe-level expression data into gene-level data.
|
136 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
137 |
+
import os
|
138 |
+
import pandas as pd
|
139 |
+
|
140 |
+
# STEP 7: Data Normalization and Linking
|
141 |
+
|
142 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
143 |
+
if not os.path.exists(out_clinical_data_file):
|
144 |
+
# No trait data file => dataset is not usable for trait analysis
|
145 |
+
df_null = pd.DataFrame()
|
146 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
147 |
+
validate_and_save_cohort_info(
|
148 |
+
is_final=True,
|
149 |
+
cohort=cohort,
|
150 |
+
info_path=json_path,
|
151 |
+
is_gene_available=True,
|
152 |
+
is_trait_available=False,
|
153 |
+
is_biased=is_biased,
|
154 |
+
df=df_null,
|
155 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
156 |
+
)
|
157 |
+
|
158 |
+
else:
|
159 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
160 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
161 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
162 |
+
|
163 |
+
# 2. Load the previously extracted clinical CSV.
|
164 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
165 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
166 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
167 |
+
|
168 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
169 |
+
combined_clinical_df = selected_clinical_df
|
170 |
+
|
171 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
172 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
173 |
+
|
174 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
175 |
+
processed_data = handle_missing_values(linked_data, trait)
|
176 |
+
|
177 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
178 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
179 |
+
|
180 |
+
# 5. Final validation and metadata saving.
|
181 |
+
is_usable = validate_and_save_cohort_info(
|
182 |
+
is_final=True,
|
183 |
+
cohort=cohort,
|
184 |
+
info_path=json_path,
|
185 |
+
is_gene_available=True,
|
186 |
+
is_trait_available=True,
|
187 |
+
is_biased=trait_biased,
|
188 |
+
df=processed_data,
|
189 |
+
note="Completed trait-based preprocessing."
|
190 |
+
)
|
191 |
+
|
192 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
193 |
+
if is_usable:
|
194 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Retinoblastoma/code/GSE68950.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Retinoblastoma"
|
6 |
+
cohort = "GSE68950"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Retinoblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE68950"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Retinoblastoma/GSE68950.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Retinoblastoma/gene_data/GSE68950.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Retinoblastoma/clinical_data/GSE68950.csv"
|
16 |
+
json_path = "./output/preprocess/1/Retinoblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if the dataset likely contains gene expression data
|
37 |
+
is_gene_available = True # Based on "Assay Type: Gene Expression" and "Provider: Affymetrix"
|
38 |
+
|
39 |
+
# 2. Identify rows for trait, age, and gender in the sample characteristics dictionary
|
40 |
+
# Since "Retinoblastoma" is not found among the unique disease states, and no age/gender info is present, set them to None
|
41 |
+
trait_row = None
|
42 |
+
age_row = None
|
43 |
+
gender_row = None
|
44 |
+
|
45 |
+
# 2.2 Define data type conversion functions
|
46 |
+
def convert_trait(value: str) -> Optional[int]:
|
47 |
+
return None # Trait data is not available
|
48 |
+
|
49 |
+
def convert_age(value: str) -> Optional[float]:
|
50 |
+
return None # Age data is not available
|
51 |
+
|
52 |
+
def convert_gender(value: str) -> Optional[int]:
|
53 |
+
return None # Gender data is not available
|
54 |
+
|
55 |
+
# 3. Conduct initial filtering: trait data is considered unavailable if trait_row is None
|
56 |
+
is_trait_available = (trait_row is not None)
|
57 |
+
|
58 |
+
# Save metadata with the initial filtering
|
59 |
+
is_usable = validate_and_save_cohort_info(
|
60 |
+
is_final=False,
|
61 |
+
cohort=cohort,
|
62 |
+
info_path=json_path,
|
63 |
+
is_gene_available=is_gene_available,
|
64 |
+
is_trait_available=is_trait_available
|
65 |
+
)
|
66 |
+
|
67 |
+
# 4. Clinical feature extraction is skipped because trait_row is None
|
p1/preprocess/Retinoblastoma/code/TCGA.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Retinoblastoma"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Retinoblastoma/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Retinoblastoma/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Retinoblastoma/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Retinoblastoma/cohort_info.json"
|
15 |
+
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
# List of subdirectories provided in the instructions:
|
20 |
+
subdirectories = [
|
21 |
+
'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
|
22 |
+
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
|
23 |
+
'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
|
24 |
+
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
|
25 |
+
'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
|
26 |
+
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
|
27 |
+
'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
|
28 |
+
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
|
29 |
+
'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
|
30 |
+
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
|
31 |
+
'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
|
32 |
+
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
|
33 |
+
'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
34 |
+
]
|
35 |
+
|
36 |
+
# Synonyms for the trait "Retinoblastoma"
|
37 |
+
trait_synonyms = ["retinoblastoma", "rb"]
|
38 |
+
|
39 |
+
selected_subdirectory = None
|
40 |
+
for subdir in subdirectories:
|
41 |
+
if subdir.lower() in ['crawldata.ipynb', '.ds_store']:
|
42 |
+
continue
|
43 |
+
subdir_lower = subdir.lower()
|
44 |
+
if any(syn in subdir_lower for syn in trait_synonyms):
|
45 |
+
selected_subdirectory = subdir
|
46 |
+
break
|
47 |
+
|
48 |
+
if not selected_subdirectory:
|
49 |
+
# If no matching directory is found, mark dataset as unavailable
|
50 |
+
is_final = False
|
51 |
+
is_gene_available = False
|
52 |
+
is_trait_available = False
|
53 |
+
_ = validate_and_save_cohort_info(
|
54 |
+
is_final=is_final,
|
55 |
+
cohort="TCGA",
|
56 |
+
info_path=json_path,
|
57 |
+
is_gene_available=is_gene_available,
|
58 |
+
is_trait_available=is_trait_available
|
59 |
+
)
|
60 |
+
print(f"No suitable directory found for '{trait}'. Skipped this trait.")
|
61 |
+
else:
|
62 |
+
# Step 2: Identify clinicalMatrix file and PANCAN file
|
63 |
+
cohort_dir = os.path.join(tcga_root_dir, selected_subdirectory)
|
64 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
65 |
+
|
66 |
+
# Step 3: Load both files as dataframes
|
67 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
68 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
69 |
+
|
70 |
+
# Step 4: Print the column names of the clinical data
|
71 |
+
print("Clinical data columns:")
|
72 |
+
print(list(clinical_df.columns))
|
p1/preprocess/Retinoblastoma/gene_data/GSE110811.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM3017123,GSM3017124,GSM3017125,GSM3017126,GSM3017127,GSM3017128,GSM3017129,GSM3017130,GSM3017131,GSM3017132,GSM3017133,GSM3017134,GSM3017135,GSM3017136,GSM3017137,GSM3017138,GSM3017139,GSM3017140,GSM3017141,GSM3017142,GSM3017143,GSM3017144,GSM3017145,GSM3017146,GSM3017147,GSM3017148,GSM3017149,GSM3017150,GSM3017151,GSM3017152,GSM3017153,GSM3017154,GSM3017155,GSM3017156
|
p1/preprocess/Retinoblastoma/gene_data/GSE208143.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Retinoblastoma/gene_data/GSE58780.csv
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Gene,GSM5121283,GSM5121284,GSM5121285,GSM5121286,GSM5121287,GSM5121288,GSM5121289,GSM5121290,GSM5121291,GSM5121292,GSM5121293,GSM5121294,GSM5121295,GSM5121296,GSM5121297,GSM5121298,GSM5121299,GSM5121300,GSM5121301,GSM5121302,GSM5121303,GSM5121304,GSM5121305,GSM5121306,GSM5121307,GSM5121308,GSM5121309,GSM5121310,GSM5121311,GSM5121312,GSM5121313,GSM5121314,GSM5121315,GSM5121316,GSM5121317,GSM5121318,GSM5121319,GSM5121320,GSM5121321,GSM5121322,GSM5121323,GSM5121324,GSM5121325,GSM5121326,GSM5121327,GSM5121328,GSM5121329,GSM5121330,GSM5121331,GSM5121332,GSM5121333,GSM5121334,GSM5121335,GSM5121336,GSM5121337,GSM5121338,GSM5121339,GSM5121340,GSM5121341,GSM5121342,GSM5121343,GSM5121344,GSM5121345,GSM5121346,GSM5121347,GSM5121348
|
2 |
+
ARHGEF15,1025906.713873315,1023109.2252259746,1024373.6386256578,1020378.2370327944,1014970.9691794246,1014390.2743304346,1010455.6931112942,1015023.9302813339,1017332.6594002885,1021095.4770704381,988622.1778226101,1010671.4139549216,1013034.7844051106,1013030.0988893397,1018552.2187664254,1013272.7299761884,1017061.1567727308,1014709.4187737909,1013872.0985935971,1020584.4278257567,1016484.7514095977,1017870.0972255162,1001510.8137217306,1008423.987992751,1023334.4366303028,1015082.3160771057,1014902.0541456684,1021377.3486559405,1022789.5755228159,1025022.184284791,1017674.0899442764,1014874.6347479641,1005070.2885402058,1012340.5816675044,1026790.0076490242,1011406.7766314573,1019805.542501082,1013790.3288290916,1012376.0825854043,1004110.3981636162,1015623.9064195845,1014036.8576425635,1012744.1816977242,1023461.5084349578,1003099.2056314398,1008288.396155771,1020101.6699152112,1020388.9772969631,1019528.0382052707,1010053.8995294508,992471.3968877683,1016074.8359334255,1013018.0652540576,1010084.5577778704,1019238.3189178862,1008702.5527493778,1008961.8138545615,1024851.9178553615,1008708.7876841516,1022005.5711834631,1019309.7317011043,1020226.8203911829,1014021.8381682868,1008625.9987155675,1015168.3875514315,1013946.5887658072
|
3 |
+
CST12P,681443.4441348393,689112.7318504807,689827.0492894253,693399.6832538449,689578.2074911633,693166.8931035304,698855.1394319956,696083.7266552993,679804.4470332565,698344.2336244725,733481.2279502876,697126.9381441531,693193.8061137494,699840.9489885231,686501.4503576666,701762.1436878766,693127.7784622244,691684.0194113518,697967.5566833266,700436.7808683405,685252.8696150522,690965.802720197,721724.5741799171,699851.8027669771,697629.1448930253,697290.7762408418,706736.7109689467,697249.7070466607,703570.3521987194,704434.0107346177,701283.3140123917,696134.1878512442,737959.6909246892,695622.275114851,688818.85633882,721399.8913170596,689099.4679320363,697399.7637791559,701153.713385665,712985.7837267038,696682.5506707042,697068.217168998,697179.9357684831,696363.957220718,740871.5647445526,689107.5684895689,691330.2928544534,690647.842771759,701638.8683058689,706773.4877122373,748018.566612207,693482.8741679395,701777.3194305447,701384.1792512671,703636.6174943126,711515.9491826907,709888.6122457593,685697.4804532132,700937.3378813585,683781.448796627,688751.1127575339,693829.8934870131,686453.1013415689,722892.5989449744,707190.9844913898,712324.1857921162
|
4 |
+
ELSPBP1,18411.95292708753,18800.005268603563,18595.912294212612,18651.19021649486,18657.967026070197,18572.392696473747,18567.517169768053,18539.032365686235,18744.125559644683,18809.621474142023,18859.699697733326,18916.083156819626,18702.58923087098,18482.6950740117,18885.813722125153,18744.775915673912,18627.2837015596,18892.872214173953,18954.74955400563,18775.95647578764,18411.121640822053,18517.36607209938,18339.258515768888,18635.940091299297,18693.95986057565,18636.299106619823,18878.70584407996,18638.9713001595,18723.53421438488,18794.247326020242,18747.430392650964,18624.987696307315,18673.01515405946,18702.69621914407,18750.403107256792,18699.05904669027,18859.09878284031,18848.73468340346,18539.442930298977,18612.30248968873,18779.300313594395,18677.739967797068,18847.600097018832,18705.277158843277,18704.977212081456,18974.321609627204,18691.06102388953,18469.71813468318,18738.66074660708,18533.486851246416,18803.209214950683,18606.520378171273,18406.78088176211,18692.684687411744,18625.111032864028,18820.712492427785,18348.72082783725,18926.43950069404,18759.916241192757,18685.798739097634,18837.18446720862,18653.526018971763,18697.29769176251,17621.359517526012,18144.59826313061,18424.6900659434
|
5 |
+
ENOPH1,533.1989995453134,524.9651094667383,507.96663017924834,534.6934977597057,532.6627807476902,492.0568453017254,526.4890076007707,536.3862678673116,521.8644468462174,531.8445231205559,541.8173230440352,502.8184911132732,534.2351729403229,508.85051348029253,515.9908450256341,509.90816038213535,509.5302155791706,496.9558686330555,495.2298432157767,541.4720758553717,493.8492426684181,528.1331990693056,530.3303004844,508.4540154346236,523.7269692331428,526.0082905777585,540.8772878854447,519.0435348962918,536.3759855471154,516.038832627092,527.638197491104,519.5263654265398,560.7086868769659,491.6538333377673,530.9405917542252,513.1899470608766,530.8305203517468,514.0070288204497,534.5716961336499,529.3490379494818,517.041272092648,520.0552690575374,532.0850817773385,535.262970278376,543.6643432207392,514.5664807844107,507.104499919243,532.6733080551537,537.9245344541231,511.8283034564236,563.7037518269448,495.84005231212706,525.1978307638162,516.9288854529077,525.9124363025094,531.3269127411022,554.4846047283467,513.838974253577,521.9639584381435,519.7500817446529,518.2091432842803,534.7984345098555,499.78164360686424,529.9298229480424,522.3724017878308,523.5231881763399
|
6 |
+
ITM2C,6.61939080338306,7.02452723787926,7.13563549104521,7.05875745442216,7.34607960386286,7.38140660479965,7.36469697838536,7.13877641839159,7.24823189779408,6.9140997891074,7.44100898713198,6.60464316647491,7.59984101638769,7.15156954121268,6.99706887671565,7.49828843569601,7.19098749378852,7.12730004677713,7.23592993482833,7.37845198595607,7.02246351255558,7.18376161529531,7.07441864387126,7.59334545301519,7.41057681293054,7.11932627468689,7.53157727999521,7.28263999985065,7.44548959762857,7.17381838842653,7.75180948110908,7.26973304437563,6.97557563666546,7.79159166164481,7.27099930134802,6.24707093626877,6.86375235388075,6.8447047002776,7.0972444904878,7.54639600663745,7.40838265206005,7.46953313536038,7.44536164077082,7.31539144409077,6.20887304732801,7.46291137912592,7.50866419265201,7.33355784967847,7.62398725587169,6.56747640661527,6.33276717131548,7.0894469926882,7.52789588310066,7.31530120088155,6.68795539189936,7.04453907556236,7.99440581529867,7.28461696404646,7.59651032741053,7.39956391733708,6.92819335114164,7.03925835503225,7.10080068386073,7.45237777301619,7.75217920151084,7.72534059079228
|
7 |
+
LOC105980073,4.15832664376132,3.93172576762742,4.12995327117712,3.47558631972733,4.38382609134184,4.24376177815382,3.67539851474685,4.29268943603102,4.44617348366656,4.05272043900334,3.76096475457578,4.12218909636266,4.45614869587539,3.63141199050967,3.85913859392334,3.50163469159835,3.93133630089429,3.7186653606595,4.21348503799797,4.27333397524867,3.92285275145299,3.90222934731526,3.92976585504632,3.48756771884484,3.700819917739,3.92682897345138,3.38582546862804,5.98356460696197,4.67355864561647,4.22389077315554,3.90559931396523,5.62634747931107,4.20630291552886,3.25915178943345,4.45938798889523,3.75705723894942,4.54241615333768,3.96097637337678,3.69792076504283,4.19635383391705,4.11034195878783,3.71935591943475,5.58620931138874,4.3567688507402,4.25631611122526,3.4582395060362,4.32987410352711,4.36648012738992,3.68397113929862,4.42936003038478,3.94969387114347,3.61271791274543,3.81602781554313,3.57931993464994,4.84301704690343,4.40080632778377,5.43389327910473,4.12145568461365,3.64700360911391,4.32423469908404,3.82681473746078,4.48328132407237,5.75871236068828,3.64137993422113,3.38387921154091,3.07133390751812
|
8 |
+
LOC111674475,51902.92997254326,52641.5557861857,52163.19673939594,52006.68457879176,52148.31004323445,52092.37863343312,51960.815598068184,51869.31645491753,52721.39771879604,52401.01645030702,52394.14724424576,52256.97016961257,52461.83941883028,51910.36580991578,53035.64579984774,51677.63775361062,52280.71661245519,52417.739116814766,52716.253923191456,52662.37473822959,51485.17051561321,52040.049356220115,50982.64699982317,51668.01649823755,51904.56282296915,52275.09099668668,52298.65066116348,52083.849466471125,52218.1247367348,52578.02681612778,52509.31329984809,51967.39181788128,52481.6840104521,52045.84871302396,52552.29060043629,52374.390072588125,52723.30052354862,52694.67534895362,52237.83681542457,52215.55550501247,52473.08752390553,52175.645610853666,52626.711412883444,52605.03932026138,51811.58844275657,52753.701227993,52321.323993457954,52248.124773502976,52056.109612248554,52206.45033728833,52768.73500261776,52348.45802271654,51443.92069750561,52201.198112426435,52076.09551310285,52269.66725058927,51612.197732449255,52251.7941710042,52130.85665676087,52198.94097966977,52633.992080948665,52178.973997200046,52158.46176556035,49238.81859297344,50056.6528351431,50582.41298288423
|
9 |
+
LY6D,5.94097759296838,5.81869928054528,5.68270200620443,5.84017901915232,5.9564493821746,6.05931313834019,5.49757288419343,5.78190829035639,6.64625296428486,5.40299728568853,5.88075465322932,5.90803937922093,5.90947565457833,5.66975567696506,5.8789892431877,5.79859352302658,5.92935069307516,5.64290972326301,6.0442312799457,5.80189819968397,6.18642446173504,5.9143628638101,5.68171885168377,5.29217498480138,5.45118305820263,5.79652922070956,5.55098293223042,6.72856613673552,5.7203931119382,5.76189551889388,6.10506725073559,6.34055446040168,5.87452875493829,5.88133192366397,5.7335535984012,6.01480464830615,6.18702569145643,5.93465470932498,5.8632062463553,5.99206489428185,5.87526498440302,5.5913044978546,6.16192641087576,6.26054870897471,5.33388300689144,5.74459607299515,6.09921826564003,6.61945950521303,5.91441728623084,5.86282931167222,5.64524301087107,5.76477796789561,6.40807828263626,5.78154827610026,6.01055856828123,6.46938557018418,5.77742470824269,5.65139295155647,5.79004359992011,6.01269416814394,5.76351815793929,5.70757824575143,6.79842810124112,5.85688522336554,5.90989322321618,6.57380199612475
|
10 |
+
NPAT,7.32740562269541,6.94359121874896,6.83661268246317,7.16447686997271,7.00569599947524,7.37770800492173,6.85032634829273,7.07333400840519,6.96752335997758,7.33476624441528,7.38087655948831,7.18897300471653,6.99464156064909,7.06633890051166,7.14289085670664,6.91146220645345,7.02135483658291,7.23088674054603,7.24591991213599,7.62448358835407,6.78230088411504,6.92354429124222,7.09726917357146,7.0283573304646,7.09100763167014,6.88896281447493,7.10713385821756,6.7803895140729,7.26775445128699,7.43058634823206,7.34293513158576,7.19023593762108,7.16047213725958,7.23268179204243,7.15529789376038,7.17202637301441,7.14395048006662,7.18788397287075,7.3695861059473,7.25258231827925,6.95999681865992,7.00079578354614,7.47050877084081,7.53000179366589,7.90030996691662,6.90780701694499,7.02583421611249,7.07920801030014,7.00310751827067,7.00198140623784,7.36761106920241,7.57729698020891,6.85930038600656,6.97791814540537,7.28966585730565,7.41027205850919,7.23345204530386,7.30555606087322,7.352032177611,7.11058026590386,7.00815123133131,6.69504375128451,6.94432883202499,7.00943679085161,7.01972167668906,6.93217018449226
|
11 |
+
SLC7A5,8.77529040766214,8.34704421156807,8.54646754858315,8.3130523665008,7.0822212887011,7.98741405537213,8.15186633372392,7.81385573805795,8.17886696139584,7.49194114429263,7.61703722797579,7.4877853634492,7.75145314204853,8.41856561556562,7.98711303885678,7.29937413245912,8.54203433898931,7.20969451132113,7.74765372857031,7.58442687480655,8.48261520855654,8.31559508322295,8.16649604866574,7.17242081691205,7.37471461450417,8.07704528795935,7.92121540411704,7.81794416075458,7.33793670802383,8.66648231350417,7.38994139807579,7.48247125326064,8.75671639563228,7.0911304437878,8.62466293278217,8.07771308060017,7.89877185846019,7.6717730206747,7.0390092355372,7.36237026757143,6.67416293160526,7.81245090439972,7.45379858647408,7.48220356105416,8.01205569789181,7.70384079691921,7.65287615961861,7.22762342463114,7.87376231992397,8.24027478929336,8.20079655928187,8.40631222958979,8.31049482765841,7.90960635548209,8.74224730024388,8.00619643385188,7.38846263064291,7.87856532797453,7.98021283647178,7.22336367607348,8.46938148613508,7.83208613237719,7.57528868866193,7.92787955871138,7.9879200026541,7.83428312198316
|
12 |
+
SNORD12C,1060248.403893682,1060975.6817942814,1065986.0498764347,1065872.866847611,1064007.6746350918,1089385.9720570277,1084192.624112445,1080523.9765355247,1055499.9290135154,1073574.9950726898,1130346.5573222612,1074144.509904194,1075815.8525940257,1088274.2665400573,1058223.6419469102,1074455.7922868985,1070361.552117384,1065973.2185157717,1078383.4297536672,1079316.1838340724,1069409.820932258,1066564.159935569,1114266.25683315,1079283.2979005896,1070128.2309383017,1058656.64995418,1082965.0247263166,1080528.9451579906,1071344.876131381,1073434.1648553603,1072347.8586901776,1069166.282330421,1113598.8971509968,1072787.760922459,1063287.93030405,1100883.9654007873,1060110.5725436555,1080312.8213100773,1073818.4819616738,1102105.9882531452,1072988.3011624236,1081639.2849530682,1073964.6439994562,1071647.2275264962,1136840.7524360514,1063849.1749886046,1071846.9505381067,1056636.150143229,1072404.7701220445,1079141.5432283003,1139603.8061659245,1089672.001505608,1096867.4851715164,1084368.3352814703,1095104.1343174977,1099621.8283465793,1084701.788817658,1065215.009323645,1086358.7334209029,1053339.3385393443,1069173.990922048,1070885.6240669736,1069398.801692196,1120470.5658872672,1090379.3817945677,1086734.865692007
|
13 |
+
TCF3,7.8277912788088,8.55443783183878,7.95947701090725,8.3324569048333,8.81789266590515,8.10121066017479,7.762048543752,8.09136521135471,8.57584987176763,8.25392517591663,8.23232047578322,8.87591321682236,8.32145816405039,7.89910148284506,8.29012031711875,8.66326357009635,8.19624541987564,8.92772919773815,8.21629957035244,8.64765376752483,7.95166764053703,8.14496062090454,8.57922883084337,8.85115779015788,8.95015785612472,8.28332392913984,8.46736304677153,7.83092813771755,8.41994613290198,8.63174114986381,8.72129658943073,8.18344372227565,8.15461787611179,8.59360044238905,8.01485217000844,8.39296435339603,8.62915002505544,8.33236271654801,8.90898978953121,8.63991194979359,9.10051130567638,8.1396950085192,8.69636861192782,9.49680451601521,8.96030815861423,8.62550104909787,8.04481934922379,8.49956617348781,8.01837421192959,8.33711024123485,8.28159634909021,8.26251429080143,7.45390188242999,8.14941841357191,8.11367950158728,8.76946945502065,8.64025110688866,8.03770231567335,8.5229539180667,9.01320949906287,7.93773403702973,8.11317518903452,8.10097949233264,7.63444980855312,7.98908293044251,8.13229217119588
|
14 |
+
UBE4B,948145.7939078866,941191.5226948174,946863.4992188354,944848.8806704659,939390.1180271794,957779.5219208451,948698.8540902779,949803.8791106448,937386.4486625536,947962.155864299,949810.7396272448,941541.8946555675,945966.1758844425,952738.5461002495,938513.2778213652,942348.1084377761,944281.1865420404,940034.6450480653,944050.1628435609,949007.8836282409,946500.0193200486,944219.5323076461,953974.010097689,943142.420012345,949003.816224108,936454.6495107318,947302.8204477996,953726.0846121883,947871.7910400954,949280.7996572376,942308.0270640028,942548.5543325385,953910.8694062509,939175.4627866357,945958.9734056981,953204.0454560246,940823.0998775121,948888.5101198156,940645.3134647415,951291.8101556831,944461.398200227,946858.7391683324,940622.7887002716,946307.0757994854,966368.3726489665,936213.3393743709,949300.7256881224,939081.8067971006,943759.1448590837,943689.6987393703,959960.2257917434,958995.5724470874,959058.0765147377,946234.5854938945,957710.2563378738,950616.8474377574,945470.6656165676,948177.10978815,946162.9486688733,939077.1061358387,946094.601779387,948605.5037060333,943490.3499661385,964837.6060586423,956593.7968188861,950552.8827307707
|
p1/preprocess/Rheumatoid_Arthritis/GSE121894.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Rheumatoid_Arthritis/clinical_data/GSE121894.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM3449621,GSM3449622,GSM3449623,GSM3449624,GSM3449625,GSM3449626,GSM3449627,GSM3449628,GSM3449629,GSM3449630,GSM3449631,GSM3449632,GSM3449633,GSM3449634,GSM3449635,GSM3449636,GSM3449637,GSM3449638,GSM3449639,GSM3449640,GSM3449641,GSM3449642,GSM3449643,GSM3449644,GSM3449645,GSM3449646,GSM3449647,GSM3449648,GSM3449649,GSM3449650,GSM3449651,GSM3449652,GSM3449653,GSM3449654,GSM3449655,GSM3449656,GSM3449657,GSM3449658,GSM3449659,GSM3449660,GSM3449661,GSM3449662,GSM3449663,GSM3449664,GSM3449665,GSM3449666,GSM3449667,GSM3449668,GSM3449669,GSM3449670,GSM3449671,GSM3449672,GSM3449673,GSM3449674,GSM3449675,GSM3449676,GSM3449677,GSM3449678
|
2 |
+
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Rheumatoid_Arthritis/clinical_data/GSE236924.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM7585682,GSM7585683,GSM7585684,GSM7585685,GSM7585686,GSM7585687,GSM7585688,GSM7585689,GSM7585690,GSM7585691,GSM7585692,GSM7585693,GSM7585694,GSM7585695,GSM7585696,GSM7585697,GSM7585698,GSM7585699,GSM7585700,GSM7585701,GSM7585702,GSM7585703,GSM7585704,GSM7585705,GSM7585706,GSM7585707,GSM7585708,GSM7585709,GSM7585710,GSM7585711,GSM7585712,GSM7585713,GSM7585714,GSM7585715,GSM7585716,GSM7585717,GSM7585718,GSM7585719,GSM7585720,GSM7585721,GSM7585722,GSM7585723,GSM7585724,GSM7585725,GSM7585726,GSM7585727,GSM7585728,GSM7585729,GSM7585730,GSM7585731,GSM7585732,GSM7585733,GSM7585734,GSM7585735,GSM7585736,GSM7585737,GSM7585738,GSM7585739,GSM7585740,GSM7585741,GSM7585742,GSM7585743,GSM7585744,GSM7585745,GSM7585746,GSM7585747,GSM7585748,GSM7585749,GSM7585750,GSM7585751,GSM7585752,GSM7585753,GSM7585754,GSM7585755,GSM7585756,GSM7585757,GSM7585758,GSM7585759,GSM7585760,GSM7585761,GSM7585762,GSM7585763,GSM7585764,GSM7585765,GSM7585766,GSM7585767,GSM7585768,GSM7585769,GSM7585770,GSM7585771,GSM7585772,GSM7585773,GSM7585774,GSM7585775,GSM7585776,GSM7585777,GSM7585778,GSM7585779,GSM7585780,GSM7585781,GSM7585782,GSM7585783,GSM7585784,GSM7585785,GSM7585786,GSM7585787,GSM7585788,GSM7585789,GSM7585790,GSM7585791,GSM7585792,GSM7585793,GSM7585794,GSM7585795,GSM7585796,GSM7585797,GSM7585798,GSM7585799,GSM7585800,GSM7585801,GSM7585802,GSM7585803,GSM7585804,GSM7585805,GSM7585806,GSM7585807,GSM7585808,GSM7585809,GSM7585810,GSM7585811,GSM7585812,GSM7585813
|
2 |
+
0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE121894.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE121894"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE121894"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE121894.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE121894.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE121894.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# Step 1: Determine Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on the series description mentioning "Gene expression profile"
|
38 |
+
|
39 |
+
# Step 2: Identify Variable Availability and Define Conversion Functions
|
40 |
+
|
41 |
+
# 2.1 Identify keys for trait, age, gender
|
42 |
+
# Observing the sample characteristics, row 0 has "subject status" with two unique values.
|
43 |
+
# That matches our trait of interest (RA vs. Healthy control), so we set trait_row=0.
|
44 |
+
trait_row = 0
|
45 |
+
# There's no mention of age or gender in the sample characteristics, set them to None.
|
46 |
+
age_row = None
|
47 |
+
gender_row = None
|
48 |
+
|
49 |
+
# 2.2 Define conversion functions
|
50 |
+
|
51 |
+
def convert_trait(value: str):
|
52 |
+
"""
|
53 |
+
Convert subject status to a binary variable:
|
54 |
+
Rheumatoid arthritis -> 1
|
55 |
+
Healthy control -> 0
|
56 |
+
Unknown or Other -> None
|
57 |
+
"""
|
58 |
+
parts = value.split(":")
|
59 |
+
val_str = parts[1].strip().lower() if len(parts) > 1 else value.lower()
|
60 |
+
if "rheumatoid" in val_str:
|
61 |
+
return 1
|
62 |
+
elif "healthy" in val_str:
|
63 |
+
return 0
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_age(value: str):
|
67 |
+
"""
|
68 |
+
No age data available, return None.
|
69 |
+
"""
|
70 |
+
return None
|
71 |
+
|
72 |
+
def convert_gender(value: str):
|
73 |
+
"""
|
74 |
+
No gender data available, return None.
|
75 |
+
"""
|
76 |
+
return None
|
77 |
+
|
78 |
+
# Step 3: Initial Filtering and Metadata Saving
|
79 |
+
is_trait_available = (trait_row is not None)
|
80 |
+
is_usable = validate_and_save_cohort_info(
|
81 |
+
is_final=False,
|
82 |
+
cohort=cohort,
|
83 |
+
info_path=json_path,
|
84 |
+
is_gene_available=is_gene_available,
|
85 |
+
is_trait_available=is_trait_available
|
86 |
+
)
|
87 |
+
|
88 |
+
# Step 4: Clinical Feature Extraction (only if trait_row is not None)
|
89 |
+
if trait_row is not None:
|
90 |
+
# Assume 'clinical_data' DataFrame is available in this environment (previously loaded).
|
91 |
+
selected_clinical_df = geo_select_clinical_features(
|
92 |
+
clinical_data,
|
93 |
+
trait=trait,
|
94 |
+
trait_row=trait_row,
|
95 |
+
convert_trait=convert_trait,
|
96 |
+
age_row=age_row,
|
97 |
+
convert_age=convert_age,
|
98 |
+
gender_row=gender_row,
|
99 |
+
convert_gender=convert_gender
|
100 |
+
)
|
101 |
+
# Preview the extracted clinical features
|
102 |
+
print("Preview of selected clinical features:", preview_df(selected_clinical_df, n=5))
|
103 |
+
# Save to CSV
|
104 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
105 |
+
# STEP3
|
106 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
107 |
+
gene_data = get_genetic_data(matrix_file)
|
108 |
+
|
109 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
110 |
+
print(gene_data.index[:20])
|
111 |
+
# Observing the given identifiers (e.g., '10000_at', '10001_at', etc.), these appear to be Affymetrix probe set IDs.
|
112 |
+
# They are not standard human gene symbols, so they need to be mapped to gene symbols.
|
113 |
+
print("requires_gene_mapping = True")
|
114 |
+
# STEP5
|
115 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
116 |
+
gene_annotation = get_gene_annotation(soft_file)
|
117 |
+
|
118 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
119 |
+
print("Gene annotation preview:")
|
120 |
+
print(preview_df(gene_annotation))
|
121 |
+
# STEP: Gene Identifier Mapping
|
122 |
+
|
123 |
+
# 1. Based on the preview of the annotation, the column "ID" matches the probe IDs in our gene expression data,
|
124 |
+
# and "Description" includes the gene information (which will be further parsed to extract gene symbols).
|
125 |
+
# 2. Extract the mapping data using these two columns.
|
126 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description')
|
127 |
+
|
128 |
+
# 3. Convert probe-level measurements to gene-level measurements by applying the mapping.
|
129 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
130 |
+
|
131 |
+
# Print a small preview to verify the resulting gene_data.
|
132 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
133 |
+
print("Mapped gene_data preview:\n", gene_data.head())
|
134 |
+
# STEP 7
|
135 |
+
|
136 |
+
import pandas as pd
|
137 |
+
|
138 |
+
# 1. Normalize the gene expression data to standard gene symbols.
|
139 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
140 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
141 |
+
print("Normalized gene expression data saved to:", out_gene_data_file)
|
142 |
+
|
143 |
+
# 2. Read back the clinical data, reassign its single row index to the trait name, and link with genetic data.
|
144 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0)
|
145 |
+
selected_clinical_df.index = [trait] # Ensure the clinical row is labeled by the trait
|
146 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
147 |
+
|
148 |
+
# 3. Handle missing values systematically.
|
149 |
+
df = handle_missing_values(linked_data, trait)
|
150 |
+
|
151 |
+
# 4. Determine whether the trait or demographic features are biased; remove biased demographic features.
|
152 |
+
trait_biased, df = judge_and_remove_biased_features(df, trait)
|
153 |
+
|
154 |
+
# 5. Perform final validation with full dataset information.
|
155 |
+
is_usable = validate_and_save_cohort_info(
|
156 |
+
is_final=True,
|
157 |
+
cohort=cohort,
|
158 |
+
info_path=json_path,
|
159 |
+
is_gene_available=True,
|
160 |
+
is_trait_available=True,
|
161 |
+
is_biased=trait_biased,
|
162 |
+
df=df,
|
163 |
+
note="Final step with linking, missing-value handling, bias checks."
|
164 |
+
)
|
165 |
+
|
166 |
+
# 6. If the data is usable, save the final linked data.
|
167 |
+
if is_usable:
|
168 |
+
df.to_csv(out_data_file)
|
169 |
+
print(f"Final linked data saved to: {out_data_file}")
|
170 |
+
else:
|
171 |
+
print("Dataset is not usable or severely biased. No final data saved.")
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE140161.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE140161"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE140161"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE140161.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE140161.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE140161.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
import pandas as pd
|
37 |
+
from typing import Optional, Any
|
38 |
+
|
39 |
+
# 1. Gene Expression Data Availability
|
40 |
+
# From the background, the dataset uses an Affymetrix chip for whole blood transcriptome,
|
41 |
+
# so it likely contains gene expression data.
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2. Variable Availability and Data Type Conversion
|
45 |
+
|
46 |
+
# Sample characteristics dictionary indicates:
|
47 |
+
# 0: [ 'tissue: Whole blood' ]
|
48 |
+
# 1: [ 'Sex: female', 'Sex: male' ]
|
49 |
+
# 2: [ 'antissa status: Positive', 'antissa status: Negative' ]
|
50 |
+
# 3: [ 'antissb status: Negative', 'antissb status: Positive' ]
|
51 |
+
# 4: [ 'disease state: Sjögren’s syndrome' ]
|
52 |
+
#
|
53 |
+
# We are interested in "Rheumatoid_Arthritis" (trait), "age", and "gender":
|
54 |
+
# - Trait: Not found (all have disease state: Sjögren’s). There's only one unique value,
|
55 |
+
# so treat it as not available.
|
56 |
+
# - Age: Not found in the dictionary.
|
57 |
+
# - Gender: Found in row 1 with two unique values ("female", "male").
|
58 |
+
|
59 |
+
trait_row = None
|
60 |
+
age_row = None
|
61 |
+
gender_row = 1
|
62 |
+
|
63 |
+
def convert_trait(value: Any) -> Optional[float]:
|
64 |
+
# No trait data is actually available, so this function is just a placeholder.
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_age(value: Any) -> Optional[float]:
|
68 |
+
# Age data is not available, placeholder function.
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(value: str) -> Optional[int]:
|
72 |
+
# Extract the raw value after the colon
|
73 |
+
parts = value.split(':')
|
74 |
+
if len(parts) < 2:
|
75 |
+
return None
|
76 |
+
gender_str = parts[1].strip().lower() # e.g. "female", "male"
|
77 |
+
if gender_str == 'female':
|
78 |
+
return 0
|
79 |
+
elif gender_str == 'male':
|
80 |
+
return 1
|
81 |
+
return None
|
82 |
+
|
83 |
+
# 3. Save Metadata with initial filtering
|
84 |
+
# Trait data is not available (trait_row=None), so is_trait_available=False.
|
85 |
+
is_trait_available = False
|
86 |
+
is_usable = validate_and_save_cohort_info(
|
87 |
+
is_final=False,
|
88 |
+
cohort=cohort,
|
89 |
+
info_path=json_path,
|
90 |
+
is_gene_available=is_gene_available,
|
91 |
+
is_trait_available=is_trait_available
|
92 |
+
)
|
93 |
+
|
94 |
+
# 4. Clinical Feature Extraction
|
95 |
+
# Since trait_row is None, we skip the extraction step.
|
96 |
+
# (No code needed here for extraction, per instructions.)
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE143153.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE143153"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE143153"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE143153.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE143153.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE143153.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on the background info, this dataset uses Agilent Whole Human Genome arrays,
|
38 |
+
# so we set is_gene_available to True.
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2. Variable Availability and Data Type Conversion
|
42 |
+
|
43 |
+
# The dataset is about "Primary SS" vs "non-SS" and does not appear to provide data for "Rheumatoid_Arthritis".
|
44 |
+
# So we set the trait_row to None (trait not available).
|
45 |
+
|
46 |
+
trait_row = None
|
47 |
+
|
48 |
+
# For age, row 2 presents multiple unique age values like 'age: 56', 'age: 51', etc.
|
49 |
+
# => age is available at row 2
|
50 |
+
age_row = 2
|
51 |
+
|
52 |
+
# For gender (sex), row 3 presents 'Sex: M' and 'Sex: F'.
|
53 |
+
# => gender is available at row 3
|
54 |
+
gender_row = 3
|
55 |
+
|
56 |
+
# We define conversion functions to extract values from the string after the colon and convert to the desired type.
|
57 |
+
|
58 |
+
def convert_trait(x: str):
|
59 |
+
"""
|
60 |
+
Since we don't have RA data in this dataset, the function will return None.
|
61 |
+
Provided here just for completeness.
|
62 |
+
"""
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(x: str):
|
66 |
+
"""
|
67 |
+
Extract the substring after the colon and convert to float.
|
68 |
+
If conversion fails, return None.
|
69 |
+
"""
|
70 |
+
parts = x.split(':', 1)
|
71 |
+
if len(parts) < 2:
|
72 |
+
return None
|
73 |
+
val_str = parts[1].strip()
|
74 |
+
try:
|
75 |
+
return float(val_str)
|
76 |
+
except ValueError:
|
77 |
+
return None
|
78 |
+
|
79 |
+
def convert_gender(x: str):
|
80 |
+
"""
|
81 |
+
Extract the substring after the colon and convert to 0/1.
|
82 |
+
'F' -> 0, 'M' -> 1. Otherwise return None.
|
83 |
+
"""
|
84 |
+
parts = x.split(':', 1)
|
85 |
+
if len(parts) < 2:
|
86 |
+
return None
|
87 |
+
val_str = parts[1].strip().upper()
|
88 |
+
if val_str == 'F':
|
89 |
+
return 0
|
90 |
+
elif val_str == 'M':
|
91 |
+
return 1
|
92 |
+
else:
|
93 |
+
return None
|
94 |
+
|
95 |
+
# 3. Save Metadata
|
96 |
+
# Trait data availability is determined by whether trait_row is None.
|
97 |
+
is_trait_available = (trait_row is not None)
|
98 |
+
|
99 |
+
# Perform initial filtering and save info.
|
100 |
+
# If not is_final step, we do not need 'df' or 'is_biased'.
|
101 |
+
# This will return a boolean indicating whether the dataset passes the initial filter.
|
102 |
+
is_usable = validate_and_save_cohort_info(
|
103 |
+
is_final=False,
|
104 |
+
cohort=cohort,
|
105 |
+
info_path=json_path,
|
106 |
+
is_gene_available=is_gene_available,
|
107 |
+
is_trait_available=is_trait_available
|
108 |
+
)
|
109 |
+
|
110 |
+
# 4. Clinical Feature Extraction
|
111 |
+
# Only proceed if trait_row is not None. Here, trait_row is None, so we skip.
|
112 |
+
# STEP3
|
113 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
114 |
+
gene_data = get_genetic_data(matrix_file)
|
115 |
+
|
116 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
117 |
+
print(gene_data.index[:20])
|
118 |
+
# Observing the given gene identifiers: "1", "2", ..., "20"
|
119 |
+
# These are purely numeric and not standard gene symbols.
|
120 |
+
print("\nrequires_gene_mapping = True")
|
121 |
+
# STEP5
|
122 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
123 |
+
gene_annotation = get_gene_annotation(soft_file)
|
124 |
+
|
125 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
126 |
+
print("Gene annotation preview:")
|
127 |
+
print(preview_df(gene_annotation))
|
128 |
+
# STEP: Gene Identifier Mapping
|
129 |
+
|
130 |
+
# 1. From the annotation preview, we see that both the gene expression DataFrame and the annotation DataFrame
|
131 |
+
# share the "ID" column. The "GeneName" column appears to store gene symbols.
|
132 |
+
# 2. Get a gene mapping DataFrame using 'ID' as the probe identifier column and 'GeneName' as the gene symbol column.
|
133 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GeneName")
|
134 |
+
|
135 |
+
# 3. Convert probe-level measurements to gene-level expression data.
|
136 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
137 |
+
|
138 |
+
# For verification, we print the shape and a portion of the index.
|
139 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
140 |
+
print("First 10 gene symbols in mapped gene_data index:")
|
141 |
+
print(gene_data.index[:10].tolist())
|
142 |
+
# STEP 7
|
143 |
+
|
144 |
+
import os
|
145 |
+
import pandas as pd
|
146 |
+
|
147 |
+
# 1. Normalize the gene expression data to standard gene symbols.
|
148 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
149 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
150 |
+
print("Normalized gene expression data saved to:", out_gene_data_file)
|
151 |
+
|
152 |
+
# Since in Step 2 we found trait_row = None, we determined there is no RA trait data available.
|
153 |
+
# Without trait data, we cannot proceed with final linking or downstream analysis.
|
154 |
+
|
155 |
+
# 2. Mark the dataset as not usable at the initial stage (is_final=False),
|
156 |
+
# because it fails the trait availability check.
|
157 |
+
is_usable = validate_and_save_cohort_info(
|
158 |
+
is_final=False,
|
159 |
+
cohort=cohort,
|
160 |
+
info_path=json_path,
|
161 |
+
is_gene_available=True,
|
162 |
+
is_trait_available=False
|
163 |
+
)
|
164 |
+
|
165 |
+
# 3. Since trait data is unavailable, we cannot do any final preprocessing or save final linked data.
|
166 |
+
if not is_usable:
|
167 |
+
print("Dataset lacks trait data; cannot proceed with linking or final analysis. No final data saved.")
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE176440.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE176440"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE176440"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE176440.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE176440.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE176440.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if gene expression data is available
|
37 |
+
is_gene_available = True # Based on the Microarray indication
|
38 |
+
|
39 |
+
# 2. Determine availability of trait, age, and gender data
|
40 |
+
# Inspecting the sample characteristics dictionary, it appears that:
|
41 |
+
# - Row 1 has only one unique value: "disease state: rheumatoid arthritis patient"
|
42 |
+
# which is constant (not varying). So it is considered not available for analysis.
|
43 |
+
# - No other rows seem to contain relevant trait, age, or gender data.
|
44 |
+
trait_row = None
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# 2.2 Define data type conversion functions
|
49 |
+
def convert_trait(x: str) -> int:
|
50 |
+
# Placeholder. This function won't be used since trait_row is None
|
51 |
+
return 1 if 'rheumatoid arthritis' in x.lower() else None
|
52 |
+
|
53 |
+
def convert_age(x: str) -> float:
|
54 |
+
# Placeholder. This function won't be used since age_row is None
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_gender(x: str) -> int:
|
58 |
+
# Placeholder. This function won't be used since gender_row is None
|
59 |
+
# If data were available, we would convert female->0, male->1
|
60 |
+
return None
|
61 |
+
|
62 |
+
# 3. Conduct initial filtering and save metadata
|
63 |
+
is_trait_available = (trait_row is not None)
|
64 |
+
validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=is_trait_available
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Since trait_row is None, skip clinical feature extraction
|
73 |
+
# (No code needed for extraction as per instructions)
|
74 |
+
# STEP3
|
75 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
76 |
+
gene_data = get_genetic_data(matrix_file)
|
77 |
+
|
78 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
79 |
+
print(gene_data.index[:20])
|
80 |
+
# Based on the provided identifiers (e.g. "A_23_P100001", "A_23_P100011"), these appear to be array probe IDs rather than standard human gene symbols.
|
81 |
+
# Therefore, gene mapping to standard gene symbols is required.
|
82 |
+
|
83 |
+
requires_gene_mapping = True
|
84 |
+
# STEP5
|
85 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
86 |
+
gene_annotation = get_gene_annotation(soft_file)
|
87 |
+
|
88 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
89 |
+
print("Gene annotation preview:")
|
90 |
+
print(preview_df(gene_annotation))
|
91 |
+
# STEP: Gene Identifier Mapping
|
92 |
+
|
93 |
+
# 1 & 2. Decide which columns store the probe IDs and which store the gene symbols, and obtain the mapping dataframe.
|
94 |
+
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
95 |
+
|
96 |
+
# 3. Convert probe-level measurements to gene expression data by applying the gene mapping.
|
97 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
|
98 |
+
# STEP 7
|
99 |
+
|
100 |
+
import pandas as pd
|
101 |
+
|
102 |
+
# Since trait_row was None in a previous step, there is no trait data available.
|
103 |
+
# Hence, there's no clinical CSV to read or link. We'll finalize the dataset as not usable.
|
104 |
+
is_trait_available = False
|
105 |
+
|
106 |
+
# We do have gene data, so is_gene_available is True.
|
107 |
+
# With no trait data, the dataset is not usable for our analysis.
|
108 |
+
|
109 |
+
from tools.preprocess import validate_and_save_cohort_info
|
110 |
+
import os
|
111 |
+
|
112 |
+
# Final validation: mark dataset as unavailable for trait-based analysis.
|
113 |
+
# We pass an empty DataFrame for df just to complete the function's parameters.
|
114 |
+
# We must provide a boolean for is_biased when is_final=True:
|
115 |
+
is_usable = validate_and_save_cohort_info(
|
116 |
+
is_final=True,
|
117 |
+
cohort=cohort,
|
118 |
+
info_path=json_path,
|
119 |
+
is_gene_available=True,
|
120 |
+
is_trait_available=is_trait_available,
|
121 |
+
is_biased=False,
|
122 |
+
df=pd.DataFrame(),
|
123 |
+
note="No trait data available to support further analysis."
|
124 |
+
)
|
125 |
+
|
126 |
+
print("Dataset is not usable due to missing trait data. No final data saved.")
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE186963.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE186963"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE186963"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE186963.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE186963.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE186963.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# Step 1: Determine if gene expression data is available
|
37 |
+
# "Whole blood gene expression" suggests this dataset indeed contains gene expression data.
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# Step 2: Determine data availability for trait, age, and gender
|
41 |
+
# The dataset is about Crohn's disease, not Rheumatoid_Arthritis. There's no mention of age or gender.
|
42 |
+
# Hence, all these rows are unavailable because they do not match our trait of interest
|
43 |
+
# ("Rheumatoid_Arthritis"), nor do we see valid age or gender columns.
|
44 |
+
trait_row = None
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# Define the data conversion functions
|
49 |
+
# Since the dataset does not provide corresponding fields, these functions will return None.
|
50 |
+
def convert_trait(value: str):
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_age(value: str):
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_gender(value: str):
|
57 |
+
return None
|
58 |
+
|
59 |
+
# Step 3: Conduct initial filtering and save metadata
|
60 |
+
is_trait_available = (trait_row is not None)
|
61 |
+
is_usable = validate_and_save_cohort_info(
|
62 |
+
is_final=False,
|
63 |
+
cohort=cohort,
|
64 |
+
info_path=json_path,
|
65 |
+
is_gene_available=is_gene_available,
|
66 |
+
is_trait_available=is_trait_available
|
67 |
+
)
|
68 |
+
|
69 |
+
# Step 4: Skip clinical feature extraction because trait_row is None
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE224330.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE224330"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE224330"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE224330.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE224330.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE224330.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Background info indicates "Gene expression" data.
|
38 |
+
|
39 |
+
# 2. Variable Availability and Conversion Setup
|
40 |
+
# 2.1 Identify rows for trait, age, gender
|
41 |
+
trait_row = None # No row with explicit or inferable RA/healthy data.
|
42 |
+
age_row = 1 # Row 1 contains multiple distinct age values.
|
43 |
+
gender_row = 2 # Row 2 contains female/male info.
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversions
|
46 |
+
def convert_age(value: str) -> Optional[float]:
|
47 |
+
# Example string: "age: 63y"
|
48 |
+
try:
|
49 |
+
# Split at ":", take second part, strip, remove trailing 'y'
|
50 |
+
val = value.split(":", 1)[1].strip().replace("y", "")
|
51 |
+
return float(val)
|
52 |
+
except:
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_gender(value: str) -> Optional[int]:
|
56 |
+
# Example string: "gender: female" or "gender: male"
|
57 |
+
try:
|
58 |
+
val = value.split(":", 1)[1].strip().lower()
|
59 |
+
if val == "female":
|
60 |
+
return 0
|
61 |
+
elif val == "male":
|
62 |
+
return 1
|
63 |
+
else:
|
64 |
+
return None
|
65 |
+
except:
|
66 |
+
return None
|
67 |
+
|
68 |
+
# 3. Save Metadata (initial filtering)
|
69 |
+
is_trait_available = (trait_row is not None)
|
70 |
+
is_usable = validate_and_save_cohort_info(
|
71 |
+
is_final=False,
|
72 |
+
cohort=cohort,
|
73 |
+
info_path=json_path,
|
74 |
+
is_gene_available=is_gene_available,
|
75 |
+
is_trait_available=is_trait_available
|
76 |
+
)
|
77 |
+
|
78 |
+
# 4. Clinical Feature Extraction (skip if trait_row is None)
|
79 |
+
# Since trait_row is None, we do not extract or save clinical data.
|
80 |
+
# STEP3
|
81 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
82 |
+
gene_data = get_genetic_data(matrix_file)
|
83 |
+
|
84 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
85 |
+
print(gene_data.index[:20])
|
86 |
+
# These IDs appear to be microarray probe identifiers (e.g., Agilent probes), not standard human gene symbols.
|
87 |
+
# Hence, gene mapping is required.
|
88 |
+
|
89 |
+
print("These identifiers are microarray probe IDs that need to be mapped to gene symbols.")
|
90 |
+
print("requires_gene_mapping = True")
|
91 |
+
# STEP5
|
92 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
93 |
+
gene_annotation = get_gene_annotation(soft_file)
|
94 |
+
|
95 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
96 |
+
print("Gene annotation preview:")
|
97 |
+
print(preview_df(gene_annotation))
|
98 |
+
# STEP: Gene Identifier Mapping
|
99 |
+
|
100 |
+
# 1. In the gene annotation, the "ID" column corresponds to the probe identifiers,
|
101 |
+
# and the "GENE_SYMBOL" column stores human gene symbols.
|
102 |
+
|
103 |
+
# 2. Extract the gene mapping dataframe from gene_annotation
|
104 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
105 |
+
|
106 |
+
# 3. Convert the probe-level data in gene_data to gene-level data
|
107 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE224842.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE224842"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE224842"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE224842.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE224842.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE224842.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# From the series title and summary, it indicates "DNA microarray analyses" for gene expression in PBMCs.
|
38 |
+
# Thus, we consider gene expression data is available.
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2. Variable Availability and Data Type Conversion
|
42 |
+
|
43 |
+
# From the sample characteristics dictionary:
|
44 |
+
# {0: ['disease state: rheumatoid arthritis'], 1: ['cell type: PBMC']}
|
45 |
+
# There is no variation for "disease state" (all are rheumatoid arthritis); age and gender are not provided.
|
46 |
+
# Hence, we treat all three as not available.
|
47 |
+
trait_row = None
|
48 |
+
age_row = None
|
49 |
+
gender_row = None
|
50 |
+
|
51 |
+
# Define conversion functions (though they won't be used here because all rows are None).
|
52 |
+
def convert_trait(value: str):
|
53 |
+
"""
|
54 |
+
Convert trait string to binary/continuous value.
|
55 |
+
This function splits at the colon (if present) and tries to interpret the resulting value.
|
56 |
+
Unknown or non-matching values are converted to None.
|
57 |
+
"""
|
58 |
+
parts = value.split(':', 1)
|
59 |
+
extracted = parts[1].strip().lower() if len(parts) > 1 else value.strip().lower()
|
60 |
+
|
61 |
+
if 'rheumatoid arthritis' in extracted:
|
62 |
+
return 1
|
63 |
+
elif 'healthy' in extracted:
|
64 |
+
return 0
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_age(value: str):
|
68 |
+
"""
|
69 |
+
Convert age string to a continuous value (float).
|
70 |
+
Splits at the colon, then tries to parse as float. Unknown values => None.
|
71 |
+
"""
|
72 |
+
parts = value.split(':', 1)
|
73 |
+
extracted = parts[1].strip() if len(parts) > 1 else value.strip()
|
74 |
+
try:
|
75 |
+
return float(extracted)
|
76 |
+
except ValueError:
|
77 |
+
return None
|
78 |
+
|
79 |
+
def convert_gender(value: str):
|
80 |
+
"""
|
81 |
+
Convert gender string to binary (female=0, male=1).
|
82 |
+
Splits at the colon, interprets the result, unknown => None.
|
83 |
+
"""
|
84 |
+
parts = value.split(':', 1)
|
85 |
+
extracted = parts[1].strip().lower() if len(parts) > 1 else value.strip().lower()
|
86 |
+
if extracted in ['female', 'f']:
|
87 |
+
return 0
|
88 |
+
elif extracted in ['male', 'm']:
|
89 |
+
return 1
|
90 |
+
return None
|
91 |
+
|
92 |
+
# 3. Save Metadata (initial filtering)
|
93 |
+
is_trait_available = (trait_row is not None)
|
94 |
+
validate_and_save_cohort_info(
|
95 |
+
is_final=False,
|
96 |
+
cohort=cohort, # "GSE224842"
|
97 |
+
info_path=json_path, # "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
98 |
+
is_gene_available=is_gene_available,
|
99 |
+
is_trait_available=is_trait_available
|
100 |
+
)
|
101 |
+
|
102 |
+
# 4. Clinical Feature Extraction
|
103 |
+
# Since trait_row is None, skip extracting clinical features.
|
104 |
+
# STEP3
|
105 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
106 |
+
gene_data = get_genetic_data(matrix_file)
|
107 |
+
|
108 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
109 |
+
print(gene_data.index[:20])
|
110 |
+
# Based on the observed identifiers (e.g., A_23_P100001), they appear to be microarray probe IDs (not standard gene symbols).
|
111 |
+
# Hence, gene mapping to standardized gene symbols is required.
|
112 |
+
|
113 |
+
print("requires_gene_mapping = True")
|
114 |
+
# STEP5
|
115 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
116 |
+
gene_annotation = get_gene_annotation(soft_file)
|
117 |
+
|
118 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
119 |
+
print("Gene annotation preview:")
|
120 |
+
print(preview_df(gene_annotation))
|
121 |
+
# STEP: Gene Identifier Mapping
|
122 |
+
|
123 |
+
# 1. Identify the columns in the gene annotation that correspond to the probe ID and the gene symbol
|
124 |
+
# From the preview, "ID" matches the probe identifiers in gene_data, and "GENE_SYMBOL" is the gene symbol.
|
125 |
+
|
126 |
+
# 2. Create a mapping dataframe from "ID" to "GENE_SYMBOL"
|
127 |
+
gene_mapping = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
|
128 |
+
|
129 |
+
# 3. Apply the mapping to convert probe-level data to gene-level expression
|
130 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping)
|
131 |
+
|
132 |
+
# Quick check of the new gene_data structure
|
133 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
134 |
+
print("First 5 gene symbols:", gene_data.index[:5])
|
135 |
+
# STEP 7
|
136 |
+
|
137 |
+
import os
|
138 |
+
import pandas as pd
|
139 |
+
|
140 |
+
# 1. Normalize the gene expression data to standard gene symbols.
|
141 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
142 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
143 |
+
print("Normalized gene expression data saved to:", out_gene_data_file)
|
144 |
+
|
145 |
+
# Since trait_row was determined to be None in Step 2 (indicating no clinical trait data),
|
146 |
+
# we cannot produce a final linked DataFrame or perform a final validation that requires df and is_biased.
|
147 |
+
# Instead, we perform partial validation to record that trait data is unavailable.
|
148 |
+
|
149 |
+
validate_and_save_cohort_info(
|
150 |
+
is_final=False,
|
151 |
+
cohort=cohort,
|
152 |
+
info_path=json_path,
|
153 |
+
is_gene_available=True, # We do have gene expression data
|
154 |
+
is_trait_available=False # No trait data
|
155 |
+
)
|
156 |
+
|
157 |
+
print("No trait data available. Skipping linking, missing-value handling, and final validation.")
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE236924.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE236924"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE236924"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE236924.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE236924.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE236924.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# Step 1: Gene expression data availability
|
37 |
+
is_gene_available = True # Based on "array" in the series title and summary, it's likely gene expression
|
38 |
+
|
39 |
+
# Step 2.1: Variable availability
|
40 |
+
# According to the sample characteristics dictionary,
|
41 |
+
# {0: ['disease: OA', 'disease: Control', 'disease: RA']}
|
42 |
+
# we see that row 0 records disease states, including RA. So that can be used for the trait.
|
43 |
+
trait_row = 0
|
44 |
+
|
45 |
+
# No information about age or gender is provided, so they are not available
|
46 |
+
age_row = None
|
47 |
+
gender_row = None
|
48 |
+
|
49 |
+
# Step 2.2: Data type conversion
|
50 |
+
def convert_trait(x: str):
|
51 |
+
# Extract the substring after the colon
|
52 |
+
parts = x.split(":")
|
53 |
+
val = parts[-1].strip().lower() if len(parts) > 1 else None
|
54 |
+
if val is None:
|
55 |
+
return None
|
56 |
+
|
57 |
+
# Convert "ra" to 1, else 0 (for OA or Control)
|
58 |
+
if val == 'ra':
|
59 |
+
return 1
|
60 |
+
elif val in ['oa', 'control']:
|
61 |
+
return 0
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_age(x: str):
|
65 |
+
# No age data is available. Return None for all inputs.
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(x: str):
|
69 |
+
# No gender data is available. Return None for all inputs.
|
70 |
+
return None
|
71 |
+
|
72 |
+
# Step 3: Save metadata (initial filtering)
|
73 |
+
is_trait_available = (trait_row is not None)
|
74 |
+
validate_and_save_cohort_info(
|
75 |
+
is_final=False,
|
76 |
+
cohort=cohort,
|
77 |
+
info_path=json_path,
|
78 |
+
is_gene_available=is_gene_available,
|
79 |
+
is_trait_available=is_trait_available
|
80 |
+
)
|
81 |
+
|
82 |
+
# Step 4: Clinical feature extraction (only if trait_row is not None)
|
83 |
+
if trait_row is not None:
|
84 |
+
clinical_features_df = geo_select_clinical_features(
|
85 |
+
clinical_data,
|
86 |
+
trait=trait,
|
87 |
+
trait_row=trait_row,
|
88 |
+
convert_trait=convert_trait,
|
89 |
+
age_row=age_row,
|
90 |
+
convert_age=convert_age,
|
91 |
+
gender_row=gender_row,
|
92 |
+
convert_gender=convert_gender
|
93 |
+
)
|
94 |
+
|
95 |
+
# Preview the extracted clinical features
|
96 |
+
preview_data = preview_df(clinical_features_df)
|
97 |
+
print("Preview of clinical features:", preview_data)
|
98 |
+
|
99 |
+
# Save the clinical data
|
100 |
+
clinical_features_df.to_csv(out_clinical_data_file, index=False)
|
101 |
+
# STEP3
|
102 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
103 |
+
gene_data = get_genetic_data(matrix_file)
|
104 |
+
|
105 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
106 |
+
print(gene_data.index[:20])
|
107 |
+
# Observing the gene identifiers in the expression data, they appear to be Affymetrix probe set IDs.
|
108 |
+
# Hence, they are not standard gene symbols and require mapping.
|
109 |
+
requires_gene_mapping = True
|
110 |
+
# STEP5
|
111 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
112 |
+
gene_annotation = get_gene_annotation(soft_file)
|
113 |
+
|
114 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
115 |
+
print("Gene annotation preview:")
|
116 |
+
print(preview_df(gene_annotation))
|
117 |
+
# STEP: Gene Identifier Mapping
|
118 |
+
|
119 |
+
# 1. Identify the columns that match the gene expression identifiers and the gene symbols respectively.
|
120 |
+
# From the annotation preview, the "ID" column matches the probe identifiers in gene_data.
|
121 |
+
# And the "Gene Symbol" column stores the gene symbols.
|
122 |
+
|
123 |
+
# 2. Extract the mapping dataframe using the get_gene_mapping method.
|
124 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
|
125 |
+
|
126 |
+
# 3. Convert probe-level data to gene-level data by applying the mapping.
|
127 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
128 |
+
# STEP 7
|
129 |
+
|
130 |
+
import pandas as pd
|
131 |
+
|
132 |
+
# 1. Normalize the gene expression data to standard gene symbols.
|
133 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
134 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
135 |
+
print("Normalized gene expression data saved to:", out_gene_data_file)
|
136 |
+
|
137 |
+
# 2. Read back the clinical data, reassign its single row index to the trait name, and link with genetic data.
|
138 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0)
|
139 |
+
selected_clinical_df.index = [trait] # Ensure the clinical row is labeled by the trait
|
140 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
141 |
+
|
142 |
+
# 3. Handle missing values systematically.
|
143 |
+
df = handle_missing_values(linked_data, trait)
|
144 |
+
|
145 |
+
# 4. Determine whether the trait or demographic features are biased; remove biased demographic features.
|
146 |
+
trait_biased, df = judge_and_remove_biased_features(df, trait)
|
147 |
+
|
148 |
+
# 5. Perform final validation with full dataset information.
|
149 |
+
is_usable = validate_and_save_cohort_info(
|
150 |
+
is_final=True,
|
151 |
+
cohort=cohort,
|
152 |
+
info_path=json_path,
|
153 |
+
is_gene_available=True,
|
154 |
+
is_trait_available=True,
|
155 |
+
is_biased=trait_biased,
|
156 |
+
df=df,
|
157 |
+
note="Final step with linking, missing-value handling, bias checks."
|
158 |
+
)
|
159 |
+
|
160 |
+
# 6. If the data is usable, save the final linked data.
|
161 |
+
if is_usable:
|
162 |
+
df.to_csv(out_data_file)
|
163 |
+
print(f"Final linked data saved to: {out_data_file}")
|
164 |
+
else:
|
165 |
+
print("Dataset is not usable or severely biased. No final data saved.")
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE42842.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE42842"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE42842"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE42842.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE42842.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE42842.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Determine if gene expression data is available
|
37 |
+
is_gene_available = True # Based on the background info, this dataset does use gene expression arrays.
|
38 |
+
|
39 |
+
# 2) Identify rows for trait, age, and gender in the sample characteristics
|
40 |
+
# and define their data-conversion functions.
|
41 |
+
|
42 |
+
# From the provided dictionary:
|
43 |
+
# 0 -> ['gender: M', 'gender: F']
|
44 |
+
# 1 -> ['cell type: PBMC']
|
45 |
+
# 2 -> ['disease state: rheumatoid arthritis']
|
46 |
+
# 3 -> ['treatment: methotrexate + adalimumab', 'treatment: methotrexate + etanercept']
|
47 |
+
# 4 -> ['efficacy: moderate response', 'efficacy: response']
|
48 |
+
|
49 |
+
# The "trait" here is rheumatoid arthritis, but the dictionary has only one unique value in row 2.
|
50 |
+
# This is not useful for association analysis, so we mark trait_row as None (not available).
|
51 |
+
trait_row = None
|
52 |
+
|
53 |
+
# No age data is found, so age_row is None.
|
54 |
+
age_row = None
|
55 |
+
|
56 |
+
# We do have gender data (M/F) in row 0, which varies, so gender_row = 0.
|
57 |
+
gender_row = 0
|
58 |
+
|
59 |
+
# Define conversion functions. Even if trait or age are not available, we still define them to keep consistent signatures.
|
60 |
+
def convert_trait(raw_value: str):
|
61 |
+
"""
|
62 |
+
This function would convert RA data if we had it.
|
63 |
+
But trait_row = None, so this is unused here.
|
64 |
+
"""
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_age(raw_value: str):
|
68 |
+
"""
|
69 |
+
Age not found in the dataset, so no actual conversion.
|
70 |
+
"""
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_gender(raw_value: str):
|
74 |
+
"""
|
75 |
+
Convert 'gender' values to a binary variable: F -> 0, M -> 1.
|
76 |
+
If unknown, return None.
|
77 |
+
"""
|
78 |
+
# Split at the colon, take the latter part, strip spaces.
|
79 |
+
parts = raw_value.split(':')
|
80 |
+
if len(parts) > 1:
|
81 |
+
val = parts[1].strip().upper()
|
82 |
+
if val in ['F', 'FEMALE']:
|
83 |
+
return 0
|
84 |
+
elif val in ['M', 'MALE']:
|
85 |
+
return 1
|
86 |
+
return None
|
87 |
+
|
88 |
+
# 3) Conduct initial filtering and save metadata using validate_and_save_cohort_info
|
89 |
+
# Trait availability depends on whether trait_row is None.
|
90 |
+
is_trait_available = (trait_row is not None)
|
91 |
+
|
92 |
+
is_usable = validate_and_save_cohort_info(
|
93 |
+
is_final=False,
|
94 |
+
cohort=cohort,
|
95 |
+
info_path=json_path,
|
96 |
+
is_gene_available=is_gene_available,
|
97 |
+
is_trait_available=is_trait_available
|
98 |
+
)
|
99 |
+
|
100 |
+
# 4) Because trait_row is None, we skip the clinical feature extraction step.
|
101 |
+
# (No code needed here, as there is no available trait data.)
|
102 |
+
# STEP3
|
103 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
104 |
+
gene_data = get_genetic_data(matrix_file)
|
105 |
+
|
106 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
107 |
+
print(gene_data.index[:20])
|
108 |
+
print("These gene identifiers are numeric, so they are not standard human gene symbols.")
|
109 |
+
print("requires_gene_mapping = True")
|
110 |
+
# STEP5
|
111 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
112 |
+
gene_annotation = get_gene_annotation(soft_file)
|
113 |
+
|
114 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
115 |
+
print("Gene annotation preview:")
|
116 |
+
print(preview_df(gene_annotation))
|
117 |
+
# STEP: Gene Identifier Mapping
|
118 |
+
|
119 |
+
# 1. We identified that the "ID" column in the gene annotation DataFrame corresponds to the numerically labeled
|
120 |
+
# probes in our gene_data, and "GENE_SYMBOL" holds the actual gene symbols (though not visible in the
|
121 |
+
# first few rows).
|
122 |
+
|
123 |
+
# 2. Extract the relevant columns for gene mapping
|
124 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
|
125 |
+
|
126 |
+
# 3. Convert probe-level measurements to gene-level expression
|
127 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
128 |
+
# STEP 7
|
129 |
+
|
130 |
+
import pandas as pd
|
131 |
+
|
132 |
+
# 1. Normalize the gene expression data to standard gene symbols.
|
133 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
134 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
135 |
+
print("Normalized gene expression data saved to:", out_gene_data_file)
|
136 |
+
|
137 |
+
# 2) Since the trait is not available (trait_row is None from Step 2),
|
138 |
+
# we skip linking or trait-based processing. However, we still need to
|
139 |
+
# finalize metadata to accurately record dataset status.
|
140 |
+
print("Trait data is not available. Skipping clinical linking, missing-value handling, and bias checks.")
|
141 |
+
|
142 |
+
# Prepare an empty placeholder DataFrame for final validation (required arguments).
|
143 |
+
dummy_df = pd.DataFrame()
|
144 |
+
|
145 |
+
# Final validation to mark that trait data is not available
|
146 |
+
is_biased = False # Arbitrarily set; won't matter since trait is unavailable
|
147 |
+
validate_and_save_cohort_info(
|
148 |
+
is_final=True,
|
149 |
+
cohort=cohort,
|
150 |
+
info_path=json_path,
|
151 |
+
is_gene_available=True,
|
152 |
+
is_trait_available=False,
|
153 |
+
is_biased=is_biased,
|
154 |
+
df=dummy_df,
|
155 |
+
note="No trait data available for this cohort."
|
156 |
+
)
|
157 |
+
|
158 |
+
print("Dataset status recorded. No final merged data saved due to missing trait.")
|
p1/preprocess/Rheumatoid_Arthritis/code/GSE97475.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
cohort = "GSE97475"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE97475"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/GSE97475.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/GSE97475.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/GSE97475.csv"
|
16 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # The series summary explicitly mentions microarray (transcriptomic) data
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
|
41 |
+
# After reviewing the sample characteristics dictionary, there is no row
|
42 |
+
# indicating distinct Rheumatoid Arthritis vs. control status. Hence trait is unavailable.
|
43 |
+
trait_row = None
|
44 |
+
|
45 |
+
# For age, row 81 provides multiple distinct numeric entries.
|
46 |
+
age_row = 81
|
47 |
+
|
48 |
+
# For gender, row 118 provides 'Male' and 'Female'.
|
49 |
+
gender_row = 118
|
50 |
+
|
51 |
+
# 2.2 Define conversion functions
|
52 |
+
|
53 |
+
def convert_trait(x: str) -> int:
|
54 |
+
"""
|
55 |
+
Since trait data is not found in this dataset,
|
56 |
+
this function is defined but won't be used.
|
57 |
+
"""
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(x: str) -> float:
|
61 |
+
"""
|
62 |
+
Convert age string like 'subjects.demographics.age: 60' -> float(60).
|
63 |
+
If it fails, return None.
|
64 |
+
"""
|
65 |
+
parts = x.split(':')
|
66 |
+
if len(parts) < 2:
|
67 |
+
return None
|
68 |
+
try:
|
69 |
+
return float(parts[1].strip())
|
70 |
+
except ValueError:
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_gender(x: str) -> int:
|
74 |
+
"""
|
75 |
+
Convert gender string like 'subjects.demographics.sex: Male' -> 1
|
76 |
+
and 'subjects.demographics.sex: Female' -> 0.
|
77 |
+
If it fails, return None.
|
78 |
+
"""
|
79 |
+
parts = x.split(':')
|
80 |
+
if len(parts) < 2:
|
81 |
+
return None
|
82 |
+
val = parts[1].strip().lower()
|
83 |
+
if val == 'male':
|
84 |
+
return 1
|
85 |
+
elif val == 'female':
|
86 |
+
return 0
|
87 |
+
return None
|
88 |
+
|
89 |
+
# 3. Initial Filtering and Saving Metadata
|
90 |
+
# trait data availability depends on whether trait_row is None
|
91 |
+
is_trait_available = (trait_row is not None)
|
92 |
+
|
93 |
+
is_usable = validate_and_save_cohort_info(
|
94 |
+
is_final=False,
|
95 |
+
cohort=cohort,
|
96 |
+
info_path=json_path,
|
97 |
+
is_gene_available=is_gene_available,
|
98 |
+
is_trait_available=is_trait_available
|
99 |
+
)
|
100 |
+
|
101 |
+
# 4. Clinical Feature Extraction
|
102 |
+
# Since trait_row is None, we skip clinical feature extraction.
|
103 |
+
# STEP3
|
104 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
105 |
+
gene_data = get_genetic_data(matrix_file)
|
106 |
+
|
107 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
108 |
+
print(gene_data.index[:20])
|
109 |
+
print("The gene identifiers appear to be standard human gene symbols.")
|
110 |
+
print("requires_gene_mapping = False")
|
111 |
+
# STEP 5
|
112 |
+
|
113 |
+
import pandas as pd
|
114 |
+
|
115 |
+
# 1. Normalize the gene expression data to standard gene symbols.
|
116 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
117 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
118 |
+
print("Normalized gene expression data saved to:", out_gene_data_file)
|
119 |
+
|
120 |
+
# Since we determined trait_row is None earlier, trait data is unavailable (is_trait_available=False).
|
121 |
+
# We cannot do a final validation that requires df and is_biased.
|
122 |
+
# Instead, we record that the dataset fails due to missing trait data, and skip linking/analysis.
|
123 |
+
|
124 |
+
is_trait_available = False
|
125 |
+
|
126 |
+
if not is_trait_available:
|
127 |
+
# Record that the dataset is missing trait data without doing final validation.
|
128 |
+
validate_and_save_cohort_info(
|
129 |
+
is_final=False,
|
130 |
+
cohort=cohort,
|
131 |
+
info_path=json_path,
|
132 |
+
is_gene_available=True,
|
133 |
+
is_trait_available=False
|
134 |
+
)
|
135 |
+
print("Trait data not available => dataset not suitable for trait-based analysis. No final data saved.")
|
136 |
+
else:
|
137 |
+
# If, hypothetically, trait data existed, we'd link and finalize. Skipped here.
|
138 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
139 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
140 |
+
|
141 |
+
df = handle_missing_values(linked_data, trait)
|
142 |
+
trait_biased, df = judge_and_remove_biased_features(df, trait)
|
143 |
+
|
144 |
+
is_usable = validate_and_save_cohort_info(
|
145 |
+
is_final=True,
|
146 |
+
cohort=cohort,
|
147 |
+
info_path=json_path,
|
148 |
+
is_gene_available=True,
|
149 |
+
is_trait_available=True,
|
150 |
+
is_biased=trait_biased,
|
151 |
+
df=df,
|
152 |
+
note="Final step with linking, missing-value handling, bias checks."
|
153 |
+
)
|
154 |
+
|
155 |
+
if is_usable:
|
156 |
+
df.to_csv(out_data_file)
|
157 |
+
print(f"Final linked data saved to: {out_data_file}")
|
158 |
+
else:
|
159 |
+
print("Dataset is not usable or is severely biased. No final data saved.")
|
p1/preprocess/Rheumatoid_Arthritis/code/TCGA.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Rheumatoid_Arthritis"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Rheumatoid_Arthritis/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Rheumatoid_Arthritis/cohort_info.json"
|
15 |
+
|
16 |
+
import os
|
17 |
+
|
18 |
+
# Step 1: Identify subdirectory that might relate to our trait "Rheumatoid_Arthritis"
|
19 |
+
subdirs = [
|
20 |
+
'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
|
21 |
+
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
|
22 |
+
'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
|
23 |
+
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
|
24 |
+
'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
|
25 |
+
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
|
26 |
+
'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
|
27 |
+
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
|
28 |
+
'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
|
29 |
+
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
|
30 |
+
'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
|
31 |
+
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
|
32 |
+
'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
33 |
+
]
|
34 |
+
|
35 |
+
suitable_subdir = None
|
36 |
+
|
37 |
+
# Look for "rheumatoid" in subdirectories
|
38 |
+
for sd in subdirs:
|
39 |
+
if "rheumatoid" in sd.lower():
|
40 |
+
suitable_subdir = sd
|
41 |
+
break
|
42 |
+
|
43 |
+
if not suitable_subdir:
|
44 |
+
print("No suitable subdirectory found for trait 'Rheumatoid_Arthritis'. Skipping this trait.")
|
45 |
+
validate_and_save_cohort_info(
|
46 |
+
is_final=False,
|
47 |
+
cohort="TCGA",
|
48 |
+
info_path=json_path,
|
49 |
+
is_gene_available=False,
|
50 |
+
is_trait_available=False
|
51 |
+
)
|
52 |
+
else:
|
53 |
+
# Step 2: Identify clinical and genetic file paths
|
54 |
+
clinical_path, genetic_path = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, suitable_subdir))
|
55 |
+
|
56 |
+
# Step 3: Load data into dataframes
|
57 |
+
clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t')
|
58 |
+
genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t')
|
59 |
+
|
60 |
+
# Step 4: Print clinical data columns
|
61 |
+
print("Clinical Data Columns:", clinical_df.columns.tolist())
|
p1/preprocess/Rheumatoid_Arthritis/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE97475": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE42842": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data available for this cohort."}, "GSE236924": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 132, "note": "Final step with linking, missing-value handling, bias checks."}, "GSE224842": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE224330": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE186963": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE176440": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data available to support further analysis."}, "GSE143153": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE140161": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE121894": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 58, "note": "Final step with linking, missing-value handling, bias checks."}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
|
p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE121894.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE143153.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE176440.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3f50961527552fc1068262f086379dad753130d10b73cd5496018ede9f9fbc0
|
3 |
+
size 12288669
|
p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE224842.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE42842.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Sarcoma/clinical_data/GSE197147.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM5910186,GSM5910187,GSM5910188,GSM5910189,GSM5910190,GSM5910191,GSM5910192,GSM5910193,GSM5910194,GSM5910195,GSM5910196,GSM5910197,GSM5910198,GSM5910199,GSM5910200,GSM5910201,GSM5910202,GSM5910203,GSM5910204,GSM5910205,GSM5910206,GSM5910207,GSM5910208,GSM5910209,GSM5910210,GSM5910211,GSM5910212,GSM5910213,GSM5910214,GSM5910215,GSM5910216,GSM5910217,GSM5910218,GSM5910219,GSM5910220,GSM5910221,GSM5910222,GSM5910223,GSM5910224,GSM5910225,GSM5910226,GSM5910227,GSM5910228,GSM5910229,GSM5910230,GSM5910231,GSM5910232,GSM5910233,GSM5910234,GSM5910235,GSM5910236,GSM5910237,GSM5910238,GSM5910239,GSM5910240,GSM5910241,GSM5910242,GSM5910243,GSM5910244,GSM5910245,GSM5910246,GSM5910247,GSM5910248,GSM5910249,GSM5910250,GSM5910251,GSM5910252,GSM5910253,GSM5910254,GSM5910255,GSM5910256,GSM5910257,GSM5910258,GSM5910259,GSM5910260,GSM5910261,GSM5910262,GSM5910263,GSM5910264
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Sarcoma/code/GSE118336.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Sarcoma"
|
6 |
+
cohort = "GSE118336"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Sarcoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE118336"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Sarcoma/GSE118336.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE118336.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE118336.csv"
|
16 |
+
json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# Step: Dataset Analysis and Clinical Feature Extraction
|
37 |
+
|
38 |
+
# 1. Gene Expression Data Availability
|
39 |
+
# The Series title indicates "HTA2.0 (human transcriptome array) analysis", which suggests
|
40 |
+
# actual gene expression data is available (and not simply miRNA or methylation data).
|
41 |
+
is_gene_available = True
|
42 |
+
|
43 |
+
# 2. Variable Availability and Data Type Conversion
|
44 |
+
|
45 |
+
# 2.1 Identify keys in the sample characteristics for each variable:
|
46 |
+
trait_row = None # No mention of 'Sarcoma' or a relevant disease key in the dictionary.
|
47 |
+
age_row = None # No age information found.
|
48 |
+
gender_row = None # No gender information found.
|
49 |
+
|
50 |
+
# 2.2 Define data-type conversion functions. Even though data is not available,
|
51 |
+
# we provide them as placeholders.
|
52 |
+
|
53 |
+
def convert_trait(x: str) -> int:
|
54 |
+
# Not used because trait_row is None, but here's a placeholder function.
|
55 |
+
# Convert to 'binary' if used, or return None for unknown.
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(x: str) -> float:
|
59 |
+
# Not used because age_row is None, placeholder function
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_gender(x: str) -> int:
|
63 |
+
# Not used because gender_row is None, placeholder function
|
64 |
+
return None
|
65 |
+
|
66 |
+
# 3. Save Metadata (initial filtering).
|
67 |
+
# Trait data availability depends on trait_row. Since trait_row is None, is_trait_available=False.
|
68 |
+
is_trait_available = False
|
69 |
+
|
70 |
+
is_usable = validate_and_save_cohort_info(
|
71 |
+
is_final=False,
|
72 |
+
cohort=cohort,
|
73 |
+
info_path=json_path,
|
74 |
+
is_gene_available=is_gene_available,
|
75 |
+
is_trait_available=is_trait_available
|
76 |
+
)
|
77 |
+
|
78 |
+
# 4. Since trait_row is None, we skip clinical feature extraction and do not call geo_select_clinical_features.
|
79 |
+
# STEP3
|
80 |
+
import gzip
|
81 |
+
import pandas as pd
|
82 |
+
|
83 |
+
try:
|
84 |
+
# 1. Attempt to extract gene expression data using the library function
|
85 |
+
gene_data = get_genetic_data(matrix_file)
|
86 |
+
except KeyError:
|
87 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
88 |
+
# and rename the first column to "ID".
|
89 |
+
marker = "!series_matrix_table_begin"
|
90 |
+
skip_rows = None
|
91 |
+
|
92 |
+
# Determine how many rows to skip before the matrix data begins
|
93 |
+
with gzip.open(matrix_file, 'rt') as f:
|
94 |
+
for i, line in enumerate(f):
|
95 |
+
if marker in line:
|
96 |
+
skip_rows = i + 1
|
97 |
+
break
|
98 |
+
else:
|
99 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
100 |
+
|
101 |
+
# Read the data from the determined position
|
102 |
+
gene_data = pd.read_csv(
|
103 |
+
matrix_file,
|
104 |
+
compression='gzip',
|
105 |
+
skiprows=skip_rows,
|
106 |
+
comment='!',
|
107 |
+
delimiter='\t',
|
108 |
+
on_bad_lines='skip'
|
109 |
+
)
|
110 |
+
|
111 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
112 |
+
if 'ID_REF' in gene_data.columns:
|
113 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
114 |
+
else:
|
115 |
+
first_col = gene_data.columns[0]
|
116 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
117 |
+
|
118 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
119 |
+
gene_data.set_index('ID', inplace=True)
|
120 |
+
|
121 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
122 |
+
print(gene_data.index[:20])
|
123 |
+
requires_gene_mapping = True
|
124 |
+
# STEP5
|
125 |
+
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
|
126 |
+
if soft_file is None:
|
127 |
+
print("No SOFT file found. Skipping gene annotation extraction.")
|
128 |
+
gene_annotation = pd.DataFrame()
|
129 |
+
else:
|
130 |
+
try:
|
131 |
+
# Attempt to extract gene annotation with the default method
|
132 |
+
gene_annotation = get_gene_annotation(soft_file)
|
133 |
+
except UnicodeDecodeError:
|
134 |
+
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
|
135 |
+
import gzip
|
136 |
+
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
|
137 |
+
content = f.read()
|
138 |
+
gene_annotation = filter_content_by_prefix(
|
139 |
+
content,
|
140 |
+
prefixes_a=['^','!','#'],
|
141 |
+
unselect=True,
|
142 |
+
source_type='string',
|
143 |
+
return_df_a=True
|
144 |
+
)[0]
|
145 |
+
|
146 |
+
print("Gene annotation preview:")
|
147 |
+
print(preview_df(gene_annotation))
|
148 |
+
# STEP 6: Gene Identifier Mapping
|
149 |
+
|
150 |
+
# We'll attempt to map the probe-level data to gene symbols only if there's a genuine overlap
|
151 |
+
# between the expression data indices and the annotation IDs.
|
152 |
+
|
153 |
+
probe_column_candidates = ["ID", "probeset_id"]
|
154 |
+
gene_symbol_column_candidates = ["gene_assignment", "mrna_assignment"]
|
155 |
+
|
156 |
+
chosen_probe_col = None
|
157 |
+
chosen_symbol_col = None
|
158 |
+
|
159 |
+
# 1. Find a probe column with overlap
|
160 |
+
for col in probe_column_candidates:
|
161 |
+
if col in gene_annotation.columns:
|
162 |
+
overlap = set(gene_annotation[col]) & set(gene_data.index)
|
163 |
+
if len(overlap) > 0:
|
164 |
+
chosen_probe_col = col
|
165 |
+
break
|
166 |
+
|
167 |
+
# 2. Pick a gene symbol column
|
168 |
+
for col in gene_symbol_column_candidates:
|
169 |
+
if col in gene_annotation.columns:
|
170 |
+
chosen_symbol_col = col
|
171 |
+
break
|
172 |
+
|
173 |
+
# If none found, skip mapping
|
174 |
+
if not chosen_probe_col or not chosen_symbol_col:
|
175 |
+
print("No suitable probe or gene symbol columns found in the annotation. Skipping mapping.")
|
176 |
+
else:
|
177 |
+
# Build a preliminary mapping DataFrame
|
178 |
+
mapping_df = get_gene_mapping(
|
179 |
+
gene_annotation,
|
180 |
+
prob_col=chosen_probe_col,
|
181 |
+
gene_col=chosen_symbol_col
|
182 |
+
)
|
183 |
+
|
184 |
+
# 3. Check for genuine overlap after dropping invalid entries
|
185 |
+
mapped_ids = set(mapping_df["ID"].unique()) & set(gene_data.index)
|
186 |
+
if len(mapped_ids) == 0:
|
187 |
+
print("No overlapping probe IDs after cleaning. Skipping mapping.")
|
188 |
+
else:
|
189 |
+
# Proceed with the mapping since there is an actual overlap
|
190 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
191 |
+
print("Gene-level mapping performed successfully.")
|
192 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
193 |
+
print("First few gene symbols after mapping:", gene_data.index[:10].tolist())
|
194 |
+
import os
|
195 |
+
import pandas as pd
|
196 |
+
|
197 |
+
# STEP 7: Data Normalization and Linking
|
198 |
+
|
199 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
200 |
+
if not os.path.exists(out_clinical_data_file):
|
201 |
+
# No trait data file => dataset is not usable for trait analysis
|
202 |
+
df_null = pd.DataFrame()
|
203 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
204 |
+
validate_and_save_cohort_info(
|
205 |
+
is_final=True,
|
206 |
+
cohort=cohort,
|
207 |
+
info_path=json_path,
|
208 |
+
is_gene_available=True,
|
209 |
+
is_trait_available=False,
|
210 |
+
is_biased=is_biased,
|
211 |
+
df=df_null,
|
212 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
213 |
+
)
|
214 |
+
|
215 |
+
else:
|
216 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
217 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
218 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
219 |
+
|
220 |
+
# 2. Load the previously extracted clinical CSV.
|
221 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
222 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
223 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
224 |
+
|
225 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
226 |
+
combined_clinical_df = selected_clinical_df
|
227 |
+
|
228 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
229 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
230 |
+
|
231 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
232 |
+
processed_data = handle_missing_values(linked_data, trait)
|
233 |
+
|
234 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
235 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
236 |
+
|
237 |
+
# 5. Final validation and metadata saving.
|
238 |
+
is_usable = validate_and_save_cohort_info(
|
239 |
+
is_final=True,
|
240 |
+
cohort=cohort,
|
241 |
+
info_path=json_path,
|
242 |
+
is_gene_available=True,
|
243 |
+
is_trait_available=True,
|
244 |
+
is_biased=trait_biased,
|
245 |
+
df=processed_data,
|
246 |
+
note="Completed trait-based preprocessing."
|
247 |
+
)
|
248 |
+
|
249 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
250 |
+
if is_usable:
|
251 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Sarcoma/code/GSE133228.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Sarcoma"
|
6 |
+
cohort = "GSE133228"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Sarcoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE133228"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Sarcoma/GSE133228.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE133228.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE133228.csv"
|
16 |
+
json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on background info, we assume these data measure gene expression
|
38 |
+
|
39 |
+
# 2) Variable Availability and Data Type Conversion
|
40 |
+
|
41 |
+
# From the sample characteristics:
|
42 |
+
# 0 -> ['gender: Male', 'gender: Female']
|
43 |
+
# 1 -> ['age: 3', 'age: 11', 'age: 4', 'age: 25', ...] (multiple distinct ages)
|
44 |
+
# 2 -> ['tumor type: primary tumor'] (only one value)
|
45 |
+
|
46 |
+
# The trait "Sarcoma" is not explicitly found in any row, and row 2 has only one unique value.
|
47 |
+
# Hence, trait_row = None (not useful for a variation-based analysis).
|
48 |
+
trait_row = None
|
49 |
+
|
50 |
+
# Age data is in row=1 with multiple distinct values
|
51 |
+
age_row = 1
|
52 |
+
|
53 |
+
# Gender data is in row=0 with multiple distinct values
|
54 |
+
gender_row = 0
|
55 |
+
|
56 |
+
# 2.2) Define data type converters
|
57 |
+
|
58 |
+
def convert_trait(value: str) -> int:
|
59 |
+
# Not used because trait_row is None, but define for consistency.
|
60 |
+
# If we had data, we might extract part after the colon and map accordingly.
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_age(value: str) -> float:
|
64 |
+
# Typical pattern: "age: 25"
|
65 |
+
# Split by colon and take the numeric part
|
66 |
+
parts = value.split(':')
|
67 |
+
if len(parts) == 2:
|
68 |
+
try:
|
69 |
+
return float(parts[1].strip())
|
70 |
+
except ValueError:
|
71 |
+
return None
|
72 |
+
return None
|
73 |
+
|
74 |
+
def convert_gender(value: str) -> int:
|
75 |
+
# Typical pattern: "gender: Male"/"gender: Female"
|
76 |
+
# Convert Female->0, Male->1, otherwise None
|
77 |
+
parts = value.split(':')
|
78 |
+
if len(parts) == 2:
|
79 |
+
g = parts[1].strip().lower()
|
80 |
+
if g == 'male':
|
81 |
+
return 1
|
82 |
+
elif g == 'female':
|
83 |
+
return 0
|
84 |
+
return None
|
85 |
+
|
86 |
+
# 3) Save Metadata (initial filtering)
|
87 |
+
# Trait data availability depends on whether trait_row is None
|
88 |
+
is_trait_available = (trait_row is not None)
|
89 |
+
|
90 |
+
is_usable = validate_and_save_cohort_info(
|
91 |
+
is_final=False,
|
92 |
+
cohort=cohort,
|
93 |
+
info_path=json_path,
|
94 |
+
is_gene_available=is_gene_available,
|
95 |
+
is_trait_available=is_trait_available
|
96 |
+
)
|
97 |
+
|
98 |
+
# 4) Clinical Feature Extraction
|
99 |
+
# Since trait_row is None, we skip extracting clinical features
|
100 |
+
# STEP3
|
101 |
+
import gzip
|
102 |
+
import pandas as pd
|
103 |
+
|
104 |
+
try:
|
105 |
+
# 1. Attempt to extract gene expression data using the library function
|
106 |
+
gene_data = get_genetic_data(matrix_file)
|
107 |
+
except KeyError:
|
108 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
109 |
+
# and rename the first column to "ID".
|
110 |
+
marker = "!series_matrix_table_begin"
|
111 |
+
skip_rows = None
|
112 |
+
|
113 |
+
# Determine how many rows to skip before the matrix data begins
|
114 |
+
with gzip.open(matrix_file, 'rt') as f:
|
115 |
+
for i, line in enumerate(f):
|
116 |
+
if marker in line:
|
117 |
+
skip_rows = i + 1
|
118 |
+
break
|
119 |
+
else:
|
120 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
121 |
+
|
122 |
+
# Read the data from the determined position
|
123 |
+
gene_data = pd.read_csv(
|
124 |
+
matrix_file,
|
125 |
+
compression='gzip',
|
126 |
+
skiprows=skip_rows,
|
127 |
+
comment='!',
|
128 |
+
delimiter='\t',
|
129 |
+
on_bad_lines='skip'
|
130 |
+
)
|
131 |
+
|
132 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
133 |
+
if 'ID_REF' in gene_data.columns:
|
134 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
135 |
+
else:
|
136 |
+
first_col = gene_data.columns[0]
|
137 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
138 |
+
|
139 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
140 |
+
gene_data.set_index('ID', inplace=True)
|
141 |
+
|
142 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
143 |
+
print(gene_data.index[:20])
|
144 |
+
# These identifiers (e.g., "100009676_at", "10000_at") appear to be microarray probe IDs, not standard human gene symbols.
|
145 |
+
# Typically, such probe IDs need to be mapped to the corresponding gene symbols.
|
146 |
+
|
147 |
+
print("requires_gene_mapping = True")
|
148 |
+
# STEP5
|
149 |
+
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
|
150 |
+
if soft_file is None:
|
151 |
+
print("No SOFT file found. Skipping gene annotation extraction.")
|
152 |
+
gene_annotation = pd.DataFrame()
|
153 |
+
else:
|
154 |
+
try:
|
155 |
+
# Attempt to extract gene annotation with the default method
|
156 |
+
gene_annotation = get_gene_annotation(soft_file)
|
157 |
+
except UnicodeDecodeError:
|
158 |
+
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
|
159 |
+
import gzip
|
160 |
+
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
|
161 |
+
content = f.read()
|
162 |
+
gene_annotation = filter_content_by_prefix(
|
163 |
+
content,
|
164 |
+
prefixes_a=['^','!','#'],
|
165 |
+
unselect=True,
|
166 |
+
source_type='string',
|
167 |
+
return_df_a=True
|
168 |
+
)[0]
|
169 |
+
|
170 |
+
print("Gene annotation preview:")
|
171 |
+
print(preview_df(gene_annotation))
|
172 |
+
# STEP: Gene Identifier Mapping
|
173 |
+
|
174 |
+
# 1) Decide which key in the gene annotation dataframe corresponds to the probe IDs
|
175 |
+
# (same as those in the gene expression data) and which key corresponds to the gene symbol.
|
176 |
+
# From our preview, "ID" in the annotation matches the probe IDs in the gene expression data,
|
177 |
+
# while "Description" appears to hold gene names/symbols (albeit as descriptive text).
|
178 |
+
|
179 |
+
prob_col = "ID"
|
180 |
+
gene_col = "Description"
|
181 |
+
|
182 |
+
# 2) Get a gene mapping dataframe using these columns.
|
183 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
184 |
+
|
185 |
+
# 3) Convert probe-level measurements to gene-level data.
|
186 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
187 |
+
|
188 |
+
# Optional: Inspect the resulting gene_data shape
|
189 |
+
print("Mapped gene expression data shape:", gene_data.shape)
|
190 |
+
import os
|
191 |
+
import pandas as pd
|
192 |
+
|
193 |
+
# STEP 7: Data Normalization and Linking
|
194 |
+
|
195 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
196 |
+
if not os.path.exists(out_clinical_data_file):
|
197 |
+
# No trait data file => dataset is not usable for trait analysis
|
198 |
+
df_null = pd.DataFrame()
|
199 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
200 |
+
validate_and_save_cohort_info(
|
201 |
+
is_final=True,
|
202 |
+
cohort=cohort,
|
203 |
+
info_path=json_path,
|
204 |
+
is_gene_available=True,
|
205 |
+
is_trait_available=False,
|
206 |
+
is_biased=is_biased,
|
207 |
+
df=df_null,
|
208 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
209 |
+
)
|
210 |
+
|
211 |
+
else:
|
212 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
213 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
214 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
215 |
+
|
216 |
+
# 2. Load the previously extracted clinical CSV.
|
217 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
218 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
219 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
220 |
+
|
221 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
222 |
+
combined_clinical_df = selected_clinical_df
|
223 |
+
|
224 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
225 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
226 |
+
|
227 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
228 |
+
processed_data = handle_missing_values(linked_data, trait)
|
229 |
+
|
230 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
231 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
232 |
+
|
233 |
+
# 5. Final validation and metadata saving.
|
234 |
+
is_usable = validate_and_save_cohort_info(
|
235 |
+
is_final=True,
|
236 |
+
cohort=cohort,
|
237 |
+
info_path=json_path,
|
238 |
+
is_gene_available=True,
|
239 |
+
is_trait_available=True,
|
240 |
+
is_biased=trait_biased,
|
241 |
+
df=processed_data,
|
242 |
+
note="Completed trait-based preprocessing."
|
243 |
+
)
|
244 |
+
|
245 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
246 |
+
if is_usable:
|
247 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Sarcoma/code/GSE142162.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Sarcoma"
|
6 |
+
cohort = "GSE142162"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Sarcoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE142162"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Sarcoma/GSE142162.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE142162.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE142162.csv"
|
16 |
+
json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Determine gene expression availability
|
37 |
+
is_gene_available = True # Based on Affymetrix hgu133Plus2 arrays and "Expression profiling" indication
|
38 |
+
|
39 |
+
# 2) Identify data availability (rows) and define conversion functions
|
40 |
+
|
41 |
+
# For this dataset, the trait is effectively constant ("tumor type: primary tumor"), so it's not useful
|
42 |
+
# for an association study. Hence, trait_row is None.
|
43 |
+
trait_row = None
|
44 |
+
|
45 |
+
# Age is variable under key 1
|
46 |
+
age_row = 1
|
47 |
+
|
48 |
+
# Gender is variable under key 0
|
49 |
+
gender_row = 0
|
50 |
+
|
51 |
+
# 2.2) Data type conversion functions
|
52 |
+
|
53 |
+
def convert_trait(value: str):
|
54 |
+
"""
|
55 |
+
This dataset does not contain meaningful variation for the primary trait 'Sarcoma'.
|
56 |
+
We'll return None for all inputs.
|
57 |
+
"""
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(value: str):
|
61 |
+
"""
|
62 |
+
Converts age values after the colon to a continuous numeric type.
|
63 |
+
Unknown values are returned as None.
|
64 |
+
Example input: "age: 25"
|
65 |
+
"""
|
66 |
+
parts = value.split(':')
|
67 |
+
if len(parts) < 2:
|
68 |
+
return None
|
69 |
+
raw_val = parts[1].strip()
|
70 |
+
if not raw_val.isdigit():
|
71 |
+
return None
|
72 |
+
return float(raw_val)
|
73 |
+
|
74 |
+
def convert_gender(value: str):
|
75 |
+
"""
|
76 |
+
Converts gender to a binary variable:
|
77 |
+
Female -> 0
|
78 |
+
Male -> 1
|
79 |
+
Unknown values are returned as None.
|
80 |
+
Example input: "gender: Male"
|
81 |
+
"""
|
82 |
+
parts = value.split(':')
|
83 |
+
if len(parts) < 2:
|
84 |
+
return None
|
85 |
+
raw_val = parts[1].strip().lower()
|
86 |
+
if raw_val == 'male':
|
87 |
+
return 1
|
88 |
+
elif raw_val == 'female':
|
89 |
+
return 0
|
90 |
+
return None
|
91 |
+
|
92 |
+
# 3) Conduct initial dataset filtering and save metadata
|
93 |
+
is_trait_available = (trait_row is not None)
|
94 |
+
is_usable = validate_and_save_cohort_info(
|
95 |
+
is_final=False,
|
96 |
+
cohort=cohort,
|
97 |
+
info_path=json_path,
|
98 |
+
is_gene_available=is_gene_available,
|
99 |
+
is_trait_available=is_trait_available
|
100 |
+
)
|
101 |
+
|
102 |
+
# 4) Since trait_row is None, we skip clinical feature extraction.
|
103 |
+
# STEP3
|
104 |
+
import gzip
|
105 |
+
import pandas as pd
|
106 |
+
|
107 |
+
try:
|
108 |
+
# 1. Attempt to extract gene expression data using the library function
|
109 |
+
gene_data = get_genetic_data(matrix_file)
|
110 |
+
except KeyError:
|
111 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
112 |
+
# and rename the first column to "ID".
|
113 |
+
marker = "!series_matrix_table_begin"
|
114 |
+
skip_rows = None
|
115 |
+
|
116 |
+
# Determine how many rows to skip before the matrix data begins
|
117 |
+
with gzip.open(matrix_file, 'rt') as f:
|
118 |
+
for i, line in enumerate(f):
|
119 |
+
if marker in line:
|
120 |
+
skip_rows = i + 1
|
121 |
+
break
|
122 |
+
else:
|
123 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
124 |
+
|
125 |
+
# Read the data from the determined position
|
126 |
+
gene_data = pd.read_csv(
|
127 |
+
matrix_file,
|
128 |
+
compression='gzip',
|
129 |
+
skiprows=skip_rows,
|
130 |
+
comment='!',
|
131 |
+
delimiter='\t',
|
132 |
+
on_bad_lines='skip'
|
133 |
+
)
|
134 |
+
|
135 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
136 |
+
if 'ID_REF' in gene_data.columns:
|
137 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
138 |
+
else:
|
139 |
+
first_col = gene_data.columns[0]
|
140 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
141 |
+
|
142 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
143 |
+
gene_data.set_index('ID', inplace=True)
|
144 |
+
|
145 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
146 |
+
print(gene_data.index[:20])
|
147 |
+
print("requires_gene_mapping = True")
|
148 |
+
# STEP5
|
149 |
+
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
|
150 |
+
if soft_file is None:
|
151 |
+
print("No SOFT file found. Skipping gene annotation extraction.")
|
152 |
+
gene_annotation = pd.DataFrame()
|
153 |
+
else:
|
154 |
+
try:
|
155 |
+
# Attempt to extract gene annotation with the default method
|
156 |
+
gene_annotation = get_gene_annotation(soft_file)
|
157 |
+
except UnicodeDecodeError:
|
158 |
+
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
|
159 |
+
import gzip
|
160 |
+
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
|
161 |
+
content = f.read()
|
162 |
+
gene_annotation = filter_content_by_prefix(
|
163 |
+
content,
|
164 |
+
prefixes_a=['^','!','#'],
|
165 |
+
unselect=True,
|
166 |
+
source_type='string',
|
167 |
+
return_df_a=True
|
168 |
+
)[0]
|
169 |
+
|
170 |
+
print("Gene annotation preview:")
|
171 |
+
print(preview_df(gene_annotation))
|
172 |
+
# Gene Identifier Mapping
|
173 |
+
probe_col = "ID" # column in gene_annotation that matches the probe IDs in gene_data
|
174 |
+
gene_symbol_col = "Description" # column in gene_annotation containing the gene symbol or descriptive info
|
175 |
+
|
176 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)
|
177 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
178 |
+
import os
|
179 |
+
import pandas as pd
|
180 |
+
|
181 |
+
# STEP 7: Data Normalization and Linking
|
182 |
+
|
183 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
184 |
+
if not os.path.exists(out_clinical_data_file):
|
185 |
+
# No trait data file => dataset is not usable for trait analysis
|
186 |
+
df_null = pd.DataFrame()
|
187 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
188 |
+
validate_and_save_cohort_info(
|
189 |
+
is_final=True,
|
190 |
+
cohort=cohort,
|
191 |
+
info_path=json_path,
|
192 |
+
is_gene_available=True,
|
193 |
+
is_trait_available=False,
|
194 |
+
is_biased=is_biased,
|
195 |
+
df=df_null,
|
196 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
197 |
+
)
|
198 |
+
|
199 |
+
else:
|
200 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
201 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
202 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
203 |
+
|
204 |
+
# 2. Load the previously extracted clinical CSV.
|
205 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
206 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
207 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
208 |
+
|
209 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
210 |
+
combined_clinical_df = selected_clinical_df
|
211 |
+
|
212 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
213 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
214 |
+
|
215 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
216 |
+
processed_data = handle_missing_values(linked_data, trait)
|
217 |
+
|
218 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
219 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
220 |
+
|
221 |
+
# 5. Final validation and metadata saving.
|
222 |
+
is_usable = validate_and_save_cohort_info(
|
223 |
+
is_final=True,
|
224 |
+
cohort=cohort,
|
225 |
+
info_path=json_path,
|
226 |
+
is_gene_available=True,
|
227 |
+
is_trait_available=True,
|
228 |
+
is_biased=trait_biased,
|
229 |
+
df=processed_data,
|
230 |
+
note="Completed trait-based preprocessing."
|
231 |
+
)
|
232 |
+
|
233 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
234 |
+
if is_usable:
|
235 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Sarcoma/code/GSE159847.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Sarcoma"
|
6 |
+
cohort = "GSE159847"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Sarcoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE159847"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Sarcoma/GSE159847.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE159847.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE159847.csv"
|
16 |
+
json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # This dataset likely contains gene expression data (Affymetrix/Agilent transcriptome).
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
|
41 |
+
# Since all samples are "complex sarcomas" (one trait), there's effectively no variation in the trait.
|
42 |
+
trait_row = None
|
43 |
+
|
44 |
+
# We do see multiple ages under key=1, so age is available.
|
45 |
+
age_row = 1
|
46 |
+
|
47 |
+
# We see males and females under key=0, so gender is available.
|
48 |
+
gender_row = 0
|
49 |
+
|
50 |
+
# Conversion functions
|
51 |
+
def convert_trait(value: str):
|
52 |
+
# Not used since trait_row is None, but defined as per instructions
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(value: str):
|
56 |
+
# Example value: "age: 73"
|
57 |
+
try:
|
58 |
+
val = value.split(":", 1)[1].strip()
|
59 |
+
return float(val)
|
60 |
+
except:
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_gender(value: str):
|
64 |
+
# Example value: "Sex: M" or "Sex: F"
|
65 |
+
val = value.split(":", 1)[1].strip().lower()
|
66 |
+
if val == "m":
|
67 |
+
return 1
|
68 |
+
elif val == "f":
|
69 |
+
return 0
|
70 |
+
return None
|
71 |
+
|
72 |
+
# 3. Save Metadata (initial filtering)
|
73 |
+
is_trait_available = (trait_row is not None)
|
74 |
+
validate_and_save_cohort_info(
|
75 |
+
is_final=False,
|
76 |
+
cohort=cohort,
|
77 |
+
info_path=json_path,
|
78 |
+
is_gene_available=is_gene_available,
|
79 |
+
is_trait_available=is_trait_available
|
80 |
+
)
|
81 |
+
|
82 |
+
# 4. Clinical Feature Extraction
|
83 |
+
# Skip this step if trait_row is None
|
84 |
+
if trait_row is not None:
|
85 |
+
selected_clinical_df = geo_select_clinical_features(
|
86 |
+
clinical_df=clinical_data,
|
87 |
+
trait="Sarcoma",
|
88 |
+
trait_row=trait_row,
|
89 |
+
convert_trait=convert_trait,
|
90 |
+
age_row=age_row,
|
91 |
+
convert_age=convert_age,
|
92 |
+
gender_row=gender_row,
|
93 |
+
convert_gender=convert_gender
|
94 |
+
)
|
95 |
+
print("Preview of selected clinical features:", preview_df(selected_clinical_df))
|
96 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
97 |
+
# STEP3
|
98 |
+
import gzip
|
99 |
+
import pandas as pd
|
100 |
+
|
101 |
+
try:
|
102 |
+
# 1. Attempt to extract gene expression data using the library function
|
103 |
+
gene_data = get_genetic_data(matrix_file)
|
104 |
+
except KeyError:
|
105 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
106 |
+
# and rename the first column to "ID".
|
107 |
+
marker = "!series_matrix_table_begin"
|
108 |
+
skip_rows = None
|
109 |
+
|
110 |
+
# Determine how many rows to skip before the matrix data begins
|
111 |
+
with gzip.open(matrix_file, 'rt') as f:
|
112 |
+
for i, line in enumerate(f):
|
113 |
+
if marker in line:
|
114 |
+
skip_rows = i + 1
|
115 |
+
break
|
116 |
+
else:
|
117 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
118 |
+
|
119 |
+
# Read the data from the determined position
|
120 |
+
gene_data = pd.read_csv(
|
121 |
+
matrix_file,
|
122 |
+
compression='gzip',
|
123 |
+
skiprows=skip_rows,
|
124 |
+
comment='!',
|
125 |
+
delimiter='\t',
|
126 |
+
on_bad_lines='skip'
|
127 |
+
)
|
128 |
+
|
129 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
130 |
+
if 'ID_REF' in gene_data.columns:
|
131 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
132 |
+
else:
|
133 |
+
first_col = gene_data.columns[0]
|
134 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
135 |
+
|
136 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
137 |
+
gene_data.set_index('ID', inplace=True)
|
138 |
+
|
139 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
140 |
+
print(gene_data.index[:20])
|
141 |
+
# These appear to be microarray probe IDs that are not standard human gene symbols.
|
142 |
+
print("requires_gene_mapping = True")
|
143 |
+
# STEP5
|
144 |
+
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
|
145 |
+
if soft_file is None:
|
146 |
+
print("No SOFT file found. Skipping gene annotation extraction.")
|
147 |
+
gene_annotation = pd.DataFrame()
|
148 |
+
else:
|
149 |
+
try:
|
150 |
+
# Attempt to extract gene annotation with the default method
|
151 |
+
gene_annotation = get_gene_annotation(soft_file)
|
152 |
+
except UnicodeDecodeError:
|
153 |
+
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
|
154 |
+
import gzip
|
155 |
+
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
|
156 |
+
content = f.read()
|
157 |
+
gene_annotation = filter_content_by_prefix(
|
158 |
+
content,
|
159 |
+
prefixes_a=['^','!','#'],
|
160 |
+
unselect=True,
|
161 |
+
source_type='string',
|
162 |
+
return_df_a=True
|
163 |
+
)[0]
|
164 |
+
|
165 |
+
print("Gene annotation preview:")
|
166 |
+
print(preview_df(gene_annotation))
|
167 |
+
# STEP6: Gene Identifier Mapping
|
168 |
+
|
169 |
+
# 1. Identify the matching columns in gene_annotation for probe ID and gene symbol
|
170 |
+
# Based on the preview, 'ID' corresponds to the probe IDs (e.g., A_23_P1000xx),
|
171 |
+
# and 'GENE_SYMBOL' holds the gene symbol.
|
172 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
173 |
+
|
174 |
+
# 2. Apply the mapping to convert probe-level data into gene-level data
|
175 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
176 |
+
|
177 |
+
# 3. Check a small part of the resulting gene_data
|
178 |
+
print("Mapped gene expression data shape:", gene_data.shape)
|
179 |
+
print("First 5 genes in gene_data index:", gene_data.index[:5].tolist())
|
180 |
+
import os
|
181 |
+
import pandas as pd
|
182 |
+
|
183 |
+
# STEP 7: Data Normalization and Linking
|
184 |
+
|
185 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
186 |
+
if not os.path.exists(out_clinical_data_file):
|
187 |
+
# No trait data file => dataset is not usable for trait analysis
|
188 |
+
df_null = pd.DataFrame()
|
189 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
190 |
+
validate_and_save_cohort_info(
|
191 |
+
is_final=True,
|
192 |
+
cohort=cohort,
|
193 |
+
info_path=json_path,
|
194 |
+
is_gene_available=True,
|
195 |
+
is_trait_available=False,
|
196 |
+
is_biased=is_biased,
|
197 |
+
df=df_null,
|
198 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
199 |
+
)
|
200 |
+
|
201 |
+
else:
|
202 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
203 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
204 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
205 |
+
|
206 |
+
# 2. Load the previously extracted clinical CSV.
|
207 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
208 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
209 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
210 |
+
|
211 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
212 |
+
combined_clinical_df = selected_clinical_df
|
213 |
+
|
214 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
215 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
216 |
+
|
217 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
218 |
+
processed_data = handle_missing_values(linked_data, trait)
|
219 |
+
|
220 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
221 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
222 |
+
|
223 |
+
# 5. Final validation and metadata saving.
|
224 |
+
is_usable = validate_and_save_cohort_info(
|
225 |
+
is_final=True,
|
226 |
+
cohort=cohort,
|
227 |
+
info_path=json_path,
|
228 |
+
is_gene_available=True,
|
229 |
+
is_trait_available=True,
|
230 |
+
is_biased=trait_biased,
|
231 |
+
df=processed_data,
|
232 |
+
note="Completed trait-based preprocessing."
|
233 |
+
)
|
234 |
+
|
235 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
236 |
+
if is_usable:
|
237 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Sarcoma/code/GSE159848.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Sarcoma"
|
6 |
+
cohort = "GSE159848"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Sarcoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE159848"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Sarcoma/GSE159848.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE159848.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE159848.csv"
|
16 |
+
json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if gene expression data is available
|
37 |
+
is_gene_available = True # The dataset is described as "Expression data from 50 mixoid liposarcomas"
|
38 |
+
|
39 |
+
# 2. Identify availability of variables and define their data-conversion functions
|
40 |
+
# According to the dictionary, row 0 has sex: M/F, and row 1 has age
|
41 |
+
# For the trait "Sarcoma," the dataset is entirely mixoid liposarcomas (no variation), so we consider it unavailable.
|
42 |
+
trait_row = None
|
43 |
+
age_row = 1
|
44 |
+
gender_row = 0
|
45 |
+
|
46 |
+
def convert_trait(value: str):
|
47 |
+
"""
|
48 |
+
Since trait is not available/variable in this dataset, always return None.
|
49 |
+
"""
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_age(value: str):
|
53 |
+
"""
|
54 |
+
Extract the age value after the colon, converting it to float if possible.
|
55 |
+
Return None for invalid or unknown values.
|
56 |
+
"""
|
57 |
+
val = value.split(':')[-1].strip()
|
58 |
+
try:
|
59 |
+
return float(val)
|
60 |
+
except ValueError:
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_gender(value: str):
|
64 |
+
"""
|
65 |
+
Extract the gender value (M or F) after the colon and convert to binary:
|
66 |
+
M or male -> 1
|
67 |
+
F or female -> 0
|
68 |
+
Others -> None
|
69 |
+
"""
|
70 |
+
val = value.split(':')[-1].strip().lower()
|
71 |
+
if val in ['m', 'male']:
|
72 |
+
return 1
|
73 |
+
elif val in ['f', 'female']:
|
74 |
+
return 0
|
75 |
+
else:
|
76 |
+
return None
|
77 |
+
|
78 |
+
# 3. Save metadata with initial filtering
|
79 |
+
is_trait_available = (trait_row is not None)
|
80 |
+
is_usable = validate_and_save_cohort_info(
|
81 |
+
is_final=False,
|
82 |
+
cohort=cohort,
|
83 |
+
info_path=json_path,
|
84 |
+
is_gene_available=is_gene_available,
|
85 |
+
is_trait_available=is_trait_available
|
86 |
+
)
|
87 |
+
|
88 |
+
# 4. Since trait_row is None, skip extraction of clinical features
|
89 |
+
# STEP3
|
90 |
+
import gzip
|
91 |
+
import pandas as pd
|
92 |
+
|
93 |
+
try:
|
94 |
+
# 1. Attempt to extract gene expression data using the library function
|
95 |
+
gene_data = get_genetic_data(matrix_file)
|
96 |
+
except KeyError:
|
97 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
98 |
+
# and rename the first column to "ID".
|
99 |
+
marker = "!series_matrix_table_begin"
|
100 |
+
skip_rows = None
|
101 |
+
|
102 |
+
# Determine how many rows to skip before the matrix data begins
|
103 |
+
with gzip.open(matrix_file, 'rt') as f:
|
104 |
+
for i, line in enumerate(f):
|
105 |
+
if marker in line:
|
106 |
+
skip_rows = i + 1
|
107 |
+
break
|
108 |
+
else:
|
109 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
110 |
+
|
111 |
+
# Read the data from the determined position
|
112 |
+
gene_data = pd.read_csv(
|
113 |
+
matrix_file,
|
114 |
+
compression='gzip',
|
115 |
+
skiprows=skip_rows,
|
116 |
+
comment='!',
|
117 |
+
delimiter='\t',
|
118 |
+
on_bad_lines='skip'
|
119 |
+
)
|
120 |
+
|
121 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
122 |
+
if 'ID_REF' in gene_data.columns:
|
123 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
124 |
+
else:
|
125 |
+
first_col = gene_data.columns[0]
|
126 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
127 |
+
|
128 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
129 |
+
gene_data.set_index('ID', inplace=True)
|
130 |
+
|
131 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
132 |
+
print(gene_data.index[:20])
|
133 |
+
# Based on the observed probe IDs (e.g., "A_23_P100001"), these are not standard human gene symbols.
|
134 |
+
# Thus, gene-to-symbol mapping is required.
|
135 |
+
|
136 |
+
print("requires_gene_mapping = True")
|
137 |
+
# STEP5
|
138 |
+
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
|
139 |
+
if soft_file is None:
|
140 |
+
print("No SOFT file found. Skipping gene annotation extraction.")
|
141 |
+
gene_annotation = pd.DataFrame()
|
142 |
+
else:
|
143 |
+
try:
|
144 |
+
# Attempt to extract gene annotation with the default method
|
145 |
+
gene_annotation = get_gene_annotation(soft_file)
|
146 |
+
except UnicodeDecodeError:
|
147 |
+
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
|
148 |
+
import gzip
|
149 |
+
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
|
150 |
+
content = f.read()
|
151 |
+
gene_annotation = filter_content_by_prefix(
|
152 |
+
content,
|
153 |
+
prefixes_a=['^','!','#'],
|
154 |
+
unselect=True,
|
155 |
+
source_type='string',
|
156 |
+
return_df_a=True
|
157 |
+
)[0]
|
158 |
+
|
159 |
+
print("Gene annotation preview:")
|
160 |
+
print(preview_df(gene_annotation))
|
161 |
+
# STEP6: Gene Identifier Mapping
|
162 |
+
|
163 |
+
# 1. Identify the matching columns in the gene annotation dataframe.
|
164 |
+
# From the preview, the probe identifiers are under "ID" and the gene symbols are under "GENE_SYMBOL".
|
165 |
+
probe_col = "ID"
|
166 |
+
symbol_col = "GENE_SYMBOL"
|
167 |
+
|
168 |
+
# 2. Create the mapping dataframe from probe to gene symbol.
|
169 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
|
170 |
+
|
171 |
+
# 3. Convert probe-level measurements into gene expression data using the mapping dataframe.
|
172 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
173 |
+
|
174 |
+
# (Optional) Print the shape and a small index preview to verify successful mapping
|
175 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
176 |
+
print("First 20 gene symbols in mapped gene_data:", list(gene_data.index[:20]))
|
177 |
+
import os
|
178 |
+
import pandas as pd
|
179 |
+
|
180 |
+
# STEP 7: Data Normalization and Linking
|
181 |
+
|
182 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
183 |
+
if not os.path.exists(out_clinical_data_file):
|
184 |
+
# No trait data file => dataset is not usable for trait analysis
|
185 |
+
df_null = pd.DataFrame()
|
186 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
187 |
+
validate_and_save_cohort_info(
|
188 |
+
is_final=True,
|
189 |
+
cohort=cohort,
|
190 |
+
info_path=json_path,
|
191 |
+
is_gene_available=True,
|
192 |
+
is_trait_available=False,
|
193 |
+
is_biased=is_biased,
|
194 |
+
df=df_null,
|
195 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
196 |
+
)
|
197 |
+
|
198 |
+
else:
|
199 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
200 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
201 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
202 |
+
|
203 |
+
# 2. Load the previously extracted clinical CSV.
|
204 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
205 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
206 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
207 |
+
|
208 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
209 |
+
combined_clinical_df = selected_clinical_df
|
210 |
+
|
211 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
212 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
213 |
+
|
214 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
215 |
+
processed_data = handle_missing_values(linked_data, trait)
|
216 |
+
|
217 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
218 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
219 |
+
|
220 |
+
# 5. Final validation and metadata saving.
|
221 |
+
is_usable = validate_and_save_cohort_info(
|
222 |
+
is_final=True,
|
223 |
+
cohort=cohort,
|
224 |
+
info_path=json_path,
|
225 |
+
is_gene_available=True,
|
226 |
+
is_trait_available=True,
|
227 |
+
is_biased=trait_biased,
|
228 |
+
df=processed_data,
|
229 |
+
note="Completed trait-based preprocessing."
|
230 |
+
)
|
231 |
+
|
232 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
233 |
+
if is_usable:
|
234 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Sarcoma/code/GSE162785.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Sarcoma"
|
6 |
+
cohort = "GSE162785"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Sarcoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162785"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Sarcoma/GSE162785.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE162785.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE162785.csv"
|
16 |
+
json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Determine gene expression data availability
|
37 |
+
is_gene_available = True # Microarray analysis suggests gene expression data is available
|
38 |
+
|
39 |
+
# 2) Variable availability and data type conversion
|
40 |
+
|
41 |
+
# From the sample characteristics dictionary:
|
42 |
+
# {0: ['cell line: A673', 'cell line: CHLA-10', 'cell line: EW7', 'cell line: SK-N-MC']}
|
43 |
+
# There is only one key (0), whose values all refer to Ewing sarcoma cell lines. For our trait of interest ("Sarcoma"),
|
44 |
+
# this dataset effectively has just one value for all samples (i.e., all are Ewing Sarcoma), so it is considered constant
|
45 |
+
# and therefore not available for association analysis.
|
46 |
+
trait_row = None # No variability in the trait
|
47 |
+
age_row = None # No age data available
|
48 |
+
gender_row = None # No gender data available
|
49 |
+
|
50 |
+
# Although the rows are None, we still define the conversion functions as requested.
|
51 |
+
def convert_trait(value: str):
|
52 |
+
# Not used here because trait_row is None
|
53 |
+
# Typically, we would parse the string after the colon and convert, but there's no relevant data to parse.
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(value: str):
|
57 |
+
# Not used here because age_row is None
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(value: str):
|
61 |
+
# Not used here because gender_row is None
|
62 |
+
return None
|
63 |
+
|
64 |
+
# 3) Save metadata (initial filtering)
|
65 |
+
# Trait data is considered unavailable since trait_row is None.
|
66 |
+
is_trait_available = False
|
67 |
+
is_usable = validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=is_trait_available
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4) Clinical feature extraction is skipped because trait_row is None (no clinical data for trait).
|
76 |
+
# STEP3
|
77 |
+
import gzip
|
78 |
+
import pandas as pd
|
79 |
+
|
80 |
+
try:
|
81 |
+
# 1. Attempt to extract gene expression data using the library function
|
82 |
+
gene_data = get_genetic_data(matrix_file)
|
83 |
+
except KeyError:
|
84 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
85 |
+
# and rename the first column to "ID".
|
86 |
+
marker = "!series_matrix_table_begin"
|
87 |
+
skip_rows = None
|
88 |
+
|
89 |
+
# Determine how many rows to skip before the matrix data begins
|
90 |
+
with gzip.open(matrix_file, 'rt') as f:
|
91 |
+
for i, line in enumerate(f):
|
92 |
+
if marker in line:
|
93 |
+
skip_rows = i + 1
|
94 |
+
break
|
95 |
+
else:
|
96 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
97 |
+
|
98 |
+
# Read the data from the determined position
|
99 |
+
gene_data = pd.read_csv(
|
100 |
+
matrix_file,
|
101 |
+
compression='gzip',
|
102 |
+
skiprows=skip_rows,
|
103 |
+
comment='!',
|
104 |
+
delimiter='\t',
|
105 |
+
on_bad_lines='skip'
|
106 |
+
)
|
107 |
+
|
108 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
109 |
+
if 'ID_REF' in gene_data.columns:
|
110 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
111 |
+
else:
|
112 |
+
first_col = gene_data.columns[0]
|
113 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
114 |
+
|
115 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
116 |
+
gene_data.set_index('ID', inplace=True)
|
117 |
+
|
118 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
119 |
+
print(gene_data.index[:20])
|
120 |
+
print("requires_gene_mapping = True")
|
121 |
+
# STEP5
|
122 |
+
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
|
123 |
+
if soft_file is None:
|
124 |
+
print("No SOFT file found. Skipping gene annotation extraction.")
|
125 |
+
gene_annotation = pd.DataFrame()
|
126 |
+
else:
|
127 |
+
try:
|
128 |
+
# Attempt to extract gene annotation with the default method
|
129 |
+
gene_annotation = get_gene_annotation(soft_file)
|
130 |
+
except UnicodeDecodeError:
|
131 |
+
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
|
132 |
+
import gzip
|
133 |
+
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
|
134 |
+
content = f.read()
|
135 |
+
gene_annotation = filter_content_by_prefix(
|
136 |
+
content,
|
137 |
+
prefixes_a=['^','!','#'],
|
138 |
+
unselect=True,
|
139 |
+
source_type='string',
|
140 |
+
return_df_a=True
|
141 |
+
)[0]
|
142 |
+
|
143 |
+
print("Gene annotation preview:")
|
144 |
+
print(preview_df(gene_annotation))
|
145 |
+
# STEP: Gene Identifier Mapping
|
146 |
+
|
147 |
+
# 1. Identify the columns in the annotation dataframe that match our probe IDs and contain gene symbols.
|
148 |
+
# From the preview, the "ID" column matches the numerical probe identifiers, and "gene_assignment" contains gene symbols.
|
149 |
+
prob_col = "ID"
|
150 |
+
gene_col = "gene_assignment"
|
151 |
+
|
152 |
+
# 2. Create a mapping dataframe with these two columns.
|
153 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
|
154 |
+
|
155 |
+
# 3. Convert the probe-level expression data to gene-level expression data using this mapping.
|
156 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
157 |
+
|
158 |
+
# (Optional) Print shape and a small preview of the resulting mapped data
|
159 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
160 |
+
print("Mapped gene_data preview:\n", gene_data.head())
|
161 |
+
import os
|
162 |
+
import pandas as pd
|
163 |
+
|
164 |
+
# STEP 7: Data Normalization and Linking
|
165 |
+
|
166 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
167 |
+
if not os.path.exists(out_clinical_data_file):
|
168 |
+
# No trait data file => dataset is not usable for trait analysis
|
169 |
+
df_null = pd.DataFrame()
|
170 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
171 |
+
validate_and_save_cohort_info(
|
172 |
+
is_final=True,
|
173 |
+
cohort=cohort,
|
174 |
+
info_path=json_path,
|
175 |
+
is_gene_available=True,
|
176 |
+
is_trait_available=False,
|
177 |
+
is_biased=is_biased,
|
178 |
+
df=df_null,
|
179 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
180 |
+
)
|
181 |
+
|
182 |
+
else:
|
183 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
184 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
185 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
186 |
+
|
187 |
+
# 2. Load the previously extracted clinical CSV.
|
188 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
189 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
190 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
191 |
+
|
192 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
193 |
+
combined_clinical_df = selected_clinical_df
|
194 |
+
|
195 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
196 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
197 |
+
|
198 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
199 |
+
processed_data = handle_missing_values(linked_data, trait)
|
200 |
+
|
201 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
202 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
203 |
+
|
204 |
+
# 5. Final validation and metadata saving.
|
205 |
+
is_usable = validate_and_save_cohort_info(
|
206 |
+
is_final=True,
|
207 |
+
cohort=cohort,
|
208 |
+
info_path=json_path,
|
209 |
+
is_gene_available=True,
|
210 |
+
is_trait_available=True,
|
211 |
+
is_biased=trait_biased,
|
212 |
+
df=processed_data,
|
213 |
+
note="Completed trait-based preprocessing."
|
214 |
+
)
|
215 |
+
|
216 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
217 |
+
if is_usable:
|
218 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Sarcoma/code/GSE162789.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Sarcoma"
|
6 |
+
cohort = "GSE162789"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Sarcoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162789"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Sarcoma/GSE162789.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE162789.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE162789.csv"
|
16 |
+
json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Determine if gene expression data is available
|
37 |
+
is_gene_available = True # Based on the dataset description focusing on Ewing sarcoma pathogenesis via HDAC
|
38 |
+
|
39 |
+
# 2) Identify and set availability of trait, age, and gender
|
40 |
+
# Inspecting the sample characteristics, we see only one key (0).
|
41 |
+
# All samples appear to have the same trait (Ewing sarcoma), so there's no variation -> trait not available
|
42 |
+
trait_row = None
|
43 |
+
|
44 |
+
# Age is available for 2 samples (14, 20). The other 4 do not mention age but we will treat them as missing
|
45 |
+
age_row = 0
|
46 |
+
|
47 |
+
# Gender is only explicitly "female" for 2 samples and unknown for the rest, so there's effectively only one unique known value
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# 2) Define converters for trait, age, and gender
|
51 |
+
def convert_trait(x: str) -> int:
|
52 |
+
"""
|
53 |
+
Convert the trait from string to a binary or categorical label.
|
54 |
+
Not used here because trait_row is None, but defined for completeness.
|
55 |
+
"""
|
56 |
+
# Example logic (convert to 1 if "Ewing sarcoma" appears, else None):
|
57 |
+
parts = x.split(":")
|
58 |
+
if len(parts) > 1:
|
59 |
+
val = parts[1].strip().lower()
|
60 |
+
if "ewing sarcoma" in val:
|
61 |
+
return 1
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_age(x: str) -> float:
|
65 |
+
"""
|
66 |
+
Convert the age from string to a continuous float.
|
67 |
+
If no age information is present, return None.
|
68 |
+
"""
|
69 |
+
# Example logic to parse "14 year old"
|
70 |
+
match = re.search(r'(\d+)\s*year\s*old', x.lower())
|
71 |
+
if match:
|
72 |
+
return float(match.group(1))
|
73 |
+
return None
|
74 |
+
|
75 |
+
def convert_gender(x: str) -> int:
|
76 |
+
"""
|
77 |
+
Convert the gender from string to binary (female -> 0, male -> 1).
|
78 |
+
If unknown, return None.
|
79 |
+
"""
|
80 |
+
parts = x.split(":")
|
81 |
+
val = parts[-1].strip().lower() if len(parts) > 1 else x.lower()
|
82 |
+
if "female" in val:
|
83 |
+
return 0
|
84 |
+
elif "male" in val:
|
85 |
+
return 1
|
86 |
+
return None
|
87 |
+
|
88 |
+
# 3) Save metadata using initial filtering
|
89 |
+
is_trait_available = (trait_row is not None)
|
90 |
+
|
91 |
+
# Since this is just the initial filtering, set is_final=False
|
92 |
+
_ = validate_and_save_cohort_info(
|
93 |
+
is_final=False,
|
94 |
+
cohort=cohort,
|
95 |
+
info_path=json_path,
|
96 |
+
is_gene_available=is_gene_available,
|
97 |
+
is_trait_available=is_trait_available
|
98 |
+
)
|
99 |
+
|
100 |
+
# 4) Because trait_row is None, we skip clinical feature extraction
|
101 |
+
# (No further steps for clinical data since the trait is considered not available.)
|
102 |
+
# STEP3
|
103 |
+
import gzip
|
104 |
+
import pandas as pd
|
105 |
+
|
106 |
+
try:
|
107 |
+
# 1. Attempt to extract gene expression data using the library function
|
108 |
+
gene_data = get_genetic_data(matrix_file)
|
109 |
+
except KeyError:
|
110 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
111 |
+
# and rename the first column to "ID".
|
112 |
+
marker = "!series_matrix_table_begin"
|
113 |
+
skip_rows = None
|
114 |
+
|
115 |
+
# Determine how many rows to skip before the matrix data begins
|
116 |
+
with gzip.open(matrix_file, 'rt') as f:
|
117 |
+
for i, line in enumerate(f):
|
118 |
+
if marker in line:
|
119 |
+
skip_rows = i + 1
|
120 |
+
break
|
121 |
+
else:
|
122 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
123 |
+
|
124 |
+
# Read the data from the determined position
|
125 |
+
gene_data = pd.read_csv(
|
126 |
+
matrix_file,
|
127 |
+
compression='gzip',
|
128 |
+
skiprows=skip_rows,
|
129 |
+
comment='!',
|
130 |
+
delimiter='\t',
|
131 |
+
on_bad_lines='skip'
|
132 |
+
)
|
133 |
+
|
134 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
135 |
+
if 'ID_REF' in gene_data.columns:
|
136 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
137 |
+
else:
|
138 |
+
first_col = gene_data.columns[0]
|
139 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
140 |
+
|
141 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
142 |
+
gene_data.set_index('ID', inplace=True)
|
143 |
+
|
144 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
145 |
+
print(gene_data.index[:20])
|
146 |
+
# Based on the numeric identifiers (e.g., 7892501, 7892502, etc.), these look like probe IDs rather than official gene symbols.
|
147 |
+
# Therefore, they need to be mapped to standard human gene symbols.
|
148 |
+
print("requires_gene_mapping = True")
|
149 |
+
# STEP5
|
150 |
+
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
|
151 |
+
if soft_file is None:
|
152 |
+
print("No SOFT file found. Skipping gene annotation extraction.")
|
153 |
+
gene_annotation = pd.DataFrame()
|
154 |
+
else:
|
155 |
+
try:
|
156 |
+
# Attempt to extract gene annotation with the default method
|
157 |
+
gene_annotation = get_gene_annotation(soft_file)
|
158 |
+
except UnicodeDecodeError:
|
159 |
+
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
|
160 |
+
import gzip
|
161 |
+
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
|
162 |
+
content = f.read()
|
163 |
+
gene_annotation = filter_content_by_prefix(
|
164 |
+
content,
|
165 |
+
prefixes_a=['^','!','#'],
|
166 |
+
unselect=True,
|
167 |
+
source_type='string',
|
168 |
+
return_df_a=True
|
169 |
+
)[0]
|
170 |
+
|
171 |
+
print("Gene annotation preview:")
|
172 |
+
print(preview_df(gene_annotation))
|
173 |
+
# STEP 6: Gene Identifier Mapping
|
174 |
+
|
175 |
+
# 1. Identify the annotation columns that match the expression data IDs and the gene symbols.
|
176 |
+
# From inspection, "ID" corresponds to the probe ID (same format as gene_data.index),
|
177 |
+
# and "mrna_assignment" appears to have clearer references to actual gene symbols (e.g. "OR4F4", "SEPT14").
|
178 |
+
|
179 |
+
# 2. Get the gene mapping DataFrame using "mrna_assignment" as the gene symbol source
|
180 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="mrna_assignment")
|
181 |
+
|
182 |
+
# 3. Convert probe-level measurements to gene-level expression
|
183 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
184 |
+
|
185 |
+
# Let's see the result
|
186 |
+
print("Gene data shape after mapping:", gene_data.shape)
|
187 |
+
print("First 5 gene indices after mapping:", gene_data.index[:5].tolist())
|
188 |
+
import os
|
189 |
+
import pandas as pd
|
190 |
+
|
191 |
+
# STEP 7: Data Normalization and Linking
|
192 |
+
|
193 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
194 |
+
if not os.path.exists(out_clinical_data_file):
|
195 |
+
# No trait data file => dataset is not usable for trait analysis
|
196 |
+
df_null = pd.DataFrame()
|
197 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
198 |
+
validate_and_save_cohort_info(
|
199 |
+
is_final=True,
|
200 |
+
cohort=cohort,
|
201 |
+
info_path=json_path,
|
202 |
+
is_gene_available=True,
|
203 |
+
is_trait_available=False,
|
204 |
+
is_biased=is_biased,
|
205 |
+
df=df_null,
|
206 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
207 |
+
)
|
208 |
+
|
209 |
+
else:
|
210 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
211 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
212 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
213 |
+
|
214 |
+
# 2. Load the previously extracted clinical CSV.
|
215 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
216 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
217 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
218 |
+
|
219 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
220 |
+
combined_clinical_df = selected_clinical_df
|
221 |
+
|
222 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
223 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
224 |
+
|
225 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
226 |
+
processed_data = handle_missing_values(linked_data, trait)
|
227 |
+
|
228 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
229 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
230 |
+
|
231 |
+
# 5. Final validation and metadata saving.
|
232 |
+
is_usable = validate_and_save_cohort_info(
|
233 |
+
is_final=True,
|
234 |
+
cohort=cohort,
|
235 |
+
info_path=json_path,
|
236 |
+
is_gene_available=True,
|
237 |
+
is_trait_available=True,
|
238 |
+
is_biased=trait_biased,
|
239 |
+
df=processed_data,
|
240 |
+
note="Completed trait-based preprocessing."
|
241 |
+
)
|
242 |
+
|
243 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
244 |
+
if is_usable:
|
245 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Sarcoma/code/GSE197147.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Sarcoma"
|
6 |
+
cohort = "GSE197147"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Sarcoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE197147"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Sarcoma/GSE197147.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE197147.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE197147.csv"
|
16 |
+
json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if the dataset contains gene expression data
|
37 |
+
is_gene_available = True # The series description explicitly mentions "Gene expression profiling"
|
38 |
+
|
39 |
+
# 2. Identify variable availability and define row indices
|
40 |
+
# Only one key (0) is present with multiple histotypes ("HB","NB","RMS","WT").
|
41 |
+
# We'll map "RMS" to the trait of interest (Sarcoma=1) and others to 0.
|
42 |
+
trait_row = 0 # We can infer the Sarcoma trait from 'histotype: RMS' vs others
|
43 |
+
age_row = None # No age information in the sample dictionary
|
44 |
+
gender_row = None # No gender information in the sample dictionary
|
45 |
+
|
46 |
+
# 2.2 Define conversion functions
|
47 |
+
def convert_trait(value: str):
|
48 |
+
# Extract the part after the colon.
|
49 |
+
val = value.split(':')[-1].strip().lower()
|
50 |
+
# Map RMS => 1 (Sarcoma), others => 0
|
51 |
+
if val == 'rms':
|
52 |
+
return 1
|
53 |
+
elif val in ['hb', 'nb', 'wt']:
|
54 |
+
return 0
|
55 |
+
return None # For any unexpected values
|
56 |
+
|
57 |
+
def convert_age(value: str):
|
58 |
+
# No rows found for age, so no real conversion logic needed
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_gender(value: str):
|
62 |
+
# No rows found for gender, so no real conversion logic needed
|
63 |
+
return None
|
64 |
+
|
65 |
+
# 2.1 Check if the trait data is available
|
66 |
+
is_trait_available = (trait_row is not None)
|
67 |
+
|
68 |
+
# 3. Save metadata with initial filtering
|
69 |
+
validate_and_save_cohort_info(
|
70 |
+
is_final=False,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=is_gene_available,
|
74 |
+
is_trait_available=is_trait_available
|
75 |
+
)
|
76 |
+
|
77 |
+
# 4. If trait data is available (trait_row != None), extract clinical features
|
78 |
+
if trait_row is not None:
|
79 |
+
selected_clinical = geo_select_clinical_features(
|
80 |
+
clinical_data,
|
81 |
+
trait=trait,
|
82 |
+
trait_row=trait_row,
|
83 |
+
convert_trait=convert_trait,
|
84 |
+
age_row=age_row,
|
85 |
+
convert_age=convert_age,
|
86 |
+
gender_row=gender_row,
|
87 |
+
convert_gender=convert_gender
|
88 |
+
)
|
89 |
+
# Preview the extracted clinical features
|
90 |
+
print(preview_df(selected_clinical, n=5))
|
91 |
+
# Save to CSV
|
92 |
+
selected_clinical.to_csv(out_clinical_data_file, index=False)
|
93 |
+
# STEP3
|
94 |
+
import gzip
|
95 |
+
import pandas as pd
|
96 |
+
|
97 |
+
try:
|
98 |
+
# 1. Attempt to extract gene expression data using the library function
|
99 |
+
gene_data = get_genetic_data(matrix_file)
|
100 |
+
except KeyError:
|
101 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
102 |
+
# and rename the first column to "ID".
|
103 |
+
marker = "!series_matrix_table_begin"
|
104 |
+
skip_rows = None
|
105 |
+
|
106 |
+
# Determine how many rows to skip before the matrix data begins
|
107 |
+
with gzip.open(matrix_file, 'rt') as f:
|
108 |
+
for i, line in enumerate(f):
|
109 |
+
if marker in line:
|
110 |
+
skip_rows = i + 1
|
111 |
+
break
|
112 |
+
else:
|
113 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
114 |
+
|
115 |
+
# Read the data from the determined position
|
116 |
+
gene_data = pd.read_csv(
|
117 |
+
matrix_file,
|
118 |
+
compression='gzip',
|
119 |
+
skiprows=skip_rows,
|
120 |
+
comment='!',
|
121 |
+
delimiter='\t',
|
122 |
+
on_bad_lines='skip'
|
123 |
+
)
|
124 |
+
|
125 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
126 |
+
if 'ID_REF' in gene_data.columns:
|
127 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
128 |
+
else:
|
129 |
+
first_col = gene_data.columns[0]
|
130 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
131 |
+
|
132 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
133 |
+
gene_data.set_index('ID', inplace=True)
|
134 |
+
|
135 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
136 |
+
print(gene_data.index[:20])
|
137 |
+
# Based on the provided gene expression data index (e.g., 'TC0100006437.hg.1'),
|
138 |
+
# these appear to be probe or platform-specific identifiers rather than standard human gene symbols.
|
139 |
+
# Therefore, we conclude that these IDs must be mapped to standard gene symbols for proper analysis.
|
140 |
+
|
141 |
+
print("requires_gene_mapping = True")
|
142 |
+
# STEP5
|
143 |
+
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
|
144 |
+
if soft_file is None:
|
145 |
+
print("No SOFT file found. Skipping gene annotation extraction.")
|
146 |
+
gene_annotation = pd.DataFrame()
|
147 |
+
else:
|
148 |
+
try:
|
149 |
+
# Attempt to extract gene annotation with the default method
|
150 |
+
gene_annotation = get_gene_annotation(soft_file)
|
151 |
+
except UnicodeDecodeError:
|
152 |
+
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
|
153 |
+
import gzip
|
154 |
+
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
|
155 |
+
content = f.read()
|
156 |
+
gene_annotation = filter_content_by_prefix(
|
157 |
+
content,
|
158 |
+
prefixes_a=['^','!','#'],
|
159 |
+
unselect=True,
|
160 |
+
source_type='string',
|
161 |
+
return_df_a=True
|
162 |
+
)[0]
|
163 |
+
|
164 |
+
print("Gene annotation preview:")
|
165 |
+
print(preview_df(gene_annotation))
|
166 |
+
# STEP: Gene Identifier Mapping
|
167 |
+
|
168 |
+
# 1. Identify which annotation columns store the gene IDs and gene symbol references.
|
169 |
+
# From the preview, it appears the column "ID" matches the row index of our gene expression data,
|
170 |
+
# and the column "SPOT_ID.1" contains gene symbol references.
|
171 |
+
probe_id_col = "ID"
|
172 |
+
gene_symbol_col = "SPOT_ID.1"
|
173 |
+
|
174 |
+
# 2. Get a gene mapping dataframe from the annotation dataframe.
|
175 |
+
mapping_df = get_gene_mapping(
|
176 |
+
annotation=gene_annotation,
|
177 |
+
prob_col=probe_id_col,
|
178 |
+
gene_col=gene_symbol_col
|
179 |
+
)
|
180 |
+
|
181 |
+
# 3. Convert probe-level measurements into gene-level expression.
|
182 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
183 |
+
|
184 |
+
# Print a small preview to confirm the result
|
185 |
+
print("Mapped gene expression data preview:")
|
186 |
+
print(gene_data.head())
|
187 |
+
import os
|
188 |
+
import pandas as pd
|
189 |
+
|
190 |
+
# STEP 7: Data Normalization and Linking
|
191 |
+
|
192 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
193 |
+
if not os.path.exists(out_clinical_data_file):
|
194 |
+
# No trait data file => dataset is not usable for trait analysis
|
195 |
+
df_null = pd.DataFrame()
|
196 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
197 |
+
validate_and_save_cohort_info(
|
198 |
+
is_final=True,
|
199 |
+
cohort=cohort,
|
200 |
+
info_path=json_path,
|
201 |
+
is_gene_available=True,
|
202 |
+
is_trait_available=False,
|
203 |
+
is_biased=is_biased,
|
204 |
+
df=df_null,
|
205 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
206 |
+
)
|
207 |
+
|
208 |
+
else:
|
209 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
210 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
211 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
212 |
+
|
213 |
+
# 2. Load the previously extracted clinical CSV.
|
214 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
215 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
216 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
217 |
+
|
218 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
219 |
+
combined_clinical_df = selected_clinical_df
|
220 |
+
|
221 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
222 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
223 |
+
|
224 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
225 |
+
processed_data = handle_missing_values(linked_data, trait)
|
226 |
+
|
227 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
228 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
229 |
+
|
230 |
+
# 5. Final validation and metadata saving.
|
231 |
+
is_usable = validate_and_save_cohort_info(
|
232 |
+
is_final=True,
|
233 |
+
cohort=cohort,
|
234 |
+
info_path=json_path,
|
235 |
+
is_gene_available=True,
|
236 |
+
is_trait_available=True,
|
237 |
+
is_biased=trait_biased,
|
238 |
+
df=processed_data,
|
239 |
+
note="Completed trait-based preprocessing."
|
240 |
+
)
|
241 |
+
|
242 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
243 |
+
if is_usable:
|
244 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Sarcoma/code/GSE215265.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Sarcoma"
|
6 |
+
cohort = "GSE215265"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Sarcoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE215265"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Sarcoma/GSE215265.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE215265.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE215265.csv"
|
16 |
+
json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# Step 1: Determine gene expression data availability
|
37 |
+
is_gene_available = True # Based on the background info, we assume it's gene expression, not miRNA/methylation.
|
38 |
+
|
39 |
+
# Step 2: Determine availability of variables (trait, age, gender) and define conversion functions
|
40 |
+
# From the sample characteristics dictionary, all samples have the same cell type "Alveolar soft part sarcoma",
|
41 |
+
# which is essentially constant. Therefore, trait_row is considered not available for our analysis.
|
42 |
+
trait_row = None
|
43 |
+
age_row = None
|
44 |
+
gender_row = None
|
45 |
+
|
46 |
+
def convert_trait(value: str) -> int:
|
47 |
+
# Not used because trait_row is None, but we define it as requested.
|
48 |
+
# Typically, you would parse out the portion after ':' and map to a numerical category.
|
49 |
+
return None
|
50 |
+
|
51 |
+
def convert_age(value: str) -> float:
|
52 |
+
# Not used because age_row is None, but we define it as requested.
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_gender(value: str) -> int:
|
56 |
+
# Not used because gender_row is None, but we define it as requested.
|
57 |
+
return None
|
58 |
+
|
59 |
+
# Step 3: Initial filtering and save metadata
|
60 |
+
is_trait_available = (trait_row is not None)
|
61 |
+
is_usable = validate_and_save_cohort_info(
|
62 |
+
is_final=False,
|
63 |
+
cohort=cohort,
|
64 |
+
info_path=json_path,
|
65 |
+
is_gene_available=is_gene_available,
|
66 |
+
is_trait_available=is_trait_available
|
67 |
+
)
|
68 |
+
|
69 |
+
# Step 4: Since trait_row is None, we skip clinical feature extraction.
|
70 |
+
# STEP3
|
71 |
+
import gzip
|
72 |
+
import pandas as pd
|
73 |
+
|
74 |
+
try:
|
75 |
+
# 1. Attempt to extract gene expression data using the library function
|
76 |
+
gene_data = get_genetic_data(matrix_file)
|
77 |
+
except KeyError:
|
78 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
79 |
+
# and rename the first column to "ID".
|
80 |
+
marker = "!series_matrix_table_begin"
|
81 |
+
skip_rows = None
|
82 |
+
|
83 |
+
# Determine how many rows to skip before the matrix data begins
|
84 |
+
with gzip.open(matrix_file, 'rt') as f:
|
85 |
+
for i, line in enumerate(f):
|
86 |
+
if marker in line:
|
87 |
+
skip_rows = i + 1
|
88 |
+
break
|
89 |
+
else:
|
90 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
91 |
+
|
92 |
+
# Read the data from the determined position
|
93 |
+
gene_data = pd.read_csv(
|
94 |
+
matrix_file,
|
95 |
+
compression='gzip',
|
96 |
+
skiprows=skip_rows,
|
97 |
+
comment='!',
|
98 |
+
delimiter='\t',
|
99 |
+
on_bad_lines='skip'
|
100 |
+
)
|
101 |
+
|
102 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
103 |
+
if 'ID_REF' in gene_data.columns:
|
104 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
105 |
+
else:
|
106 |
+
first_col = gene_data.columns[0]
|
107 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
108 |
+
|
109 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
110 |
+
gene_data.set_index('ID', inplace=True)
|
111 |
+
|
112 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
113 |
+
print(gene_data.index[:20])
|
114 |
+
# The provided IDs appear to be Affymetrix probe set identifiers (e.g., "1007_PM_s_at"),
|
115 |
+
# which are not standard human gene symbols.
|
116 |
+
# Hence, they require mapping to gene symbols.
|
117 |
+
|
118 |
+
requires_gene_mapping = True
|
119 |
+
# STEP5
|
120 |
+
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
|
121 |
+
if soft_file is None:
|
122 |
+
print("No SOFT file found. Skipping gene annotation extraction.")
|
123 |
+
gene_annotation = pd.DataFrame()
|
124 |
+
else:
|
125 |
+
try:
|
126 |
+
# Attempt to extract gene annotation with the default method
|
127 |
+
gene_annotation = get_gene_annotation(soft_file)
|
128 |
+
except UnicodeDecodeError:
|
129 |
+
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
|
130 |
+
import gzip
|
131 |
+
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
|
132 |
+
content = f.read()
|
133 |
+
gene_annotation = filter_content_by_prefix(
|
134 |
+
content,
|
135 |
+
prefixes_a=['^','!','#'],
|
136 |
+
unselect=True,
|
137 |
+
source_type='string',
|
138 |
+
return_df_a=True
|
139 |
+
)[0]
|
140 |
+
|
141 |
+
print("Gene annotation preview:")
|
142 |
+
print(preview_df(gene_annotation))
|
143 |
+
# STEP: Gene Identifier Mapping
|
144 |
+
|
145 |
+
# 1. Identify the columns for gene identifier and gene symbol
|
146 |
+
# Based on the preview, "ID" matches our probe IDs (e.g., "1415670_PM_at"),
|
147 |
+
# and "Gene Symbol" contains the corresponding gene symbols.
|
148 |
+
|
149 |
+
probe_identifier_col = "ID"
|
150 |
+
gene_symbol_col = "Gene Symbol"
|
151 |
+
|
152 |
+
# 2. Extract gene mapping information
|
153 |
+
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_identifier_col, gene_col=gene_symbol_col)
|
154 |
+
|
155 |
+
# 3. Convert probe-level measurements to gene expression data
|
156 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
|
157 |
+
|
158 |
+
# Optionally show a small preview of the resulting gene_data
|
159 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
160 |
+
print("Mapped gene_data index sample:", gene_data.index[:10])
|
161 |
+
import os
|
162 |
+
import pandas as pd
|
163 |
+
|
164 |
+
# STEP 7: Data Normalization and Linking
|
165 |
+
|
166 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
167 |
+
if not os.path.exists(out_clinical_data_file):
|
168 |
+
# No trait data file => dataset is not usable for trait analysis
|
169 |
+
df_null = pd.DataFrame()
|
170 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
171 |
+
validate_and_save_cohort_info(
|
172 |
+
is_final=True,
|
173 |
+
cohort=cohort,
|
174 |
+
info_path=json_path,
|
175 |
+
is_gene_available=True,
|
176 |
+
is_trait_available=False,
|
177 |
+
is_biased=is_biased,
|
178 |
+
df=df_null,
|
179 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
180 |
+
)
|
181 |
+
|
182 |
+
else:
|
183 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
184 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
185 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
186 |
+
|
187 |
+
# 2. Load the previously extracted clinical CSV.
|
188 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
189 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
190 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
191 |
+
|
192 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
193 |
+
combined_clinical_df = selected_clinical_df
|
194 |
+
|
195 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
196 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
197 |
+
|
198 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
199 |
+
processed_data = handle_missing_values(linked_data, trait)
|
200 |
+
|
201 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
202 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
203 |
+
|
204 |
+
# 5. Final validation and metadata saving.
|
205 |
+
is_usable = validate_and_save_cohort_info(
|
206 |
+
is_final=True,
|
207 |
+
cohort=cohort,
|
208 |
+
info_path=json_path,
|
209 |
+
is_gene_available=True,
|
210 |
+
is_trait_available=True,
|
211 |
+
is_biased=trait_biased,
|
212 |
+
df=processed_data,
|
213 |
+
note="Completed trait-based preprocessing."
|
214 |
+
)
|
215 |
+
|
216 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
217 |
+
if is_usable:
|
218 |
+
processed_data.to_csv(out_data_file)
|