# Path Configuration from tools.preprocess import * # Processing context trait = "Age-Related_Macular_Degeneration" cohort = "GSE67899" # Input paths in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration" in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE67899" # Output paths out_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/GSE67899.csv" out_gene_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/gene_data/GSE67899.csv" out_clinical_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/clinical_data/GSE67899.csv" json_path = "./output/preprocess/1/Age-Related_Macular_Degeneration/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if gene expression data is available # Based on the background info mentioning TGF-beta inhibitors and typical gene regulatory factors, # we assume this dataset likely contains gene expression data. Hence: is_gene_available = True # Step 2: Identify rows for trait, age, and gender. # The sample characteristics dictionary does not mention AMD status, age, or gender. # Therefore, we set them to None. trait_row = None age_row = None gender_row = None # Define data type conversion functions. # Although the data is unavailable, we still provide these to # maintain the required function signatures. def convert_trait(value: str): """ Convert trait (AMD) values to binary (0 or 1). For this study, AMD = 1 and Non-AMD = 0. But since trait data is not found in the dictionary, we will return None. """ return None def convert_age(value: str): """ Convert age values to continuous. Extract numerical part if possible. Since age data is not found in this dataset, always return None. """ return None def convert_gender(value: str): """ Convert gender values to binary (female=0, male=1). Since gender data is not found in this dataset, always return None. """ return None # Step 3: Conduct initial filtering and save metadata. # Trait data availability is based on whether trait_row is None. is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: We skip clinical feature extraction because trait_row is None (no trait data available). # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on observation, these numeric IDs are not standard human gene symbols and likely require mapping. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # 1. Decide which columns store the consistent ID and gene symbol. # From the annotation preview and the gene_data index, we identify: # - "ID" as the probe identifier column # - "GENE_SYMBOL" as the gene symbol column # 2. Get a gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL") # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # Optional: Print shape for verification print("Gene expression data shape after mapping:", gene_data.shape) # STEP 7: Data Normalization and Linking # In this dataset, we determined in Step 2 that trait data is not available (trait_row = None). # Therefore, we cannot link clinical and genetic data or perform trait-based processing. # Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation. # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) # 2. Since trait data is missing, skip linking clinical and genetic data, # skip missing-value handling and bias detection for the trait. # 3. Conduct final validation and record info. # Since trait data is unavailable, set is_trait_available=False, # pass a dummy/empty DataFrame and is_biased=False (it won't be used). dummy_df = pd.DataFrame() is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, df=dummy_df, note="No trait data found; skipped clinical-linking steps." ) # 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data. if is_usable: dummy_df.to_csv(out_data_file, index=True)