{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "d593c7c0", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Cystic_Fibrosis\"\n", "cohort = \"GSE76347\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Cystic_Fibrosis\"\n", "in_cohort_dir = \"../../input/GEO/Cystic_Fibrosis/GSE76347\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Cystic_Fibrosis/GSE76347.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Cystic_Fibrosis/gene_data/GSE76347.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Cystic_Fibrosis/clinical_data/GSE76347.csv\"\n", "json_path = \"../../output/preprocess/Cystic_Fibrosis/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "47df863c", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "c4301e45", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "1c4345ba", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "53d0032a", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import re\n", "import os\n", "from typing import Optional, Callable, Dict, Any\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset contains nasal epithelial cell samples analyzed for microarray\n", "# analysis, which suggests gene expression data, not just miRNA or methylation data.\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "\n", "# For trait (Cystic Fibrosis):\n", "# From sample characteristics, all patients have CF (row 0: 'disease state: CF')\n", "# Since everyone has CF, we can't do a case-control study within this dataset alone\n", "# But we can still use this dataset for gene expression analysis related to CF\n", "trait_row = 0 # Everyone has CF, so this is a constant feature but we still record it\n", "\n", "# For age:\n", "# No age information is available in the sample characteristics\n", "age_row = None # Age data not available\n", "\n", "# For gender:\n", "# No gender information is available in the sample characteristics\n", "gender_row = None # Gender data not available\n", "\n", "# 2.2 Data Type Conversion Functions\n", "\n", "def convert_trait(value):\n", " \"\"\"Convert trait data to binary format (1 for CF, 0 for non-CF).\"\"\"\n", " if value is None:\n", " return None\n", " # Extract the value after colon if present\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " # If the value indicates CF, return 1 (all patients in this study have CF)\n", " if value.lower() == \"cf\":\n", " return 1\n", " return None # For any other value, return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age data to continuous format.\"\"\"\n", " # This function is included for completeness but won't be used since age_row is None\n", " if value is None:\n", " return None\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " try:\n", " return float(value)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n", " # This function is included for completeness but won't be used since gender_row is None\n", " if value is None:\n", " return None\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " if value.lower() in [\"female\", \"f\"]:\n", " return 0\n", " elif value.lower() in [\"male\", \"m\"]:\n", " return 1\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait data availability (all have CF, so trait data is available)\n", "is_trait_available = trait_row is not None\n", "\n", "# Conduct initial filtering on dataset usability\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Create a properly structured clinical data DataFrame\n", "# We need to create a DataFrame where each row corresponds to a clinical feature\n", "# and each column corresponds to a sample\n", "\n", "# First, get the sample characteristics dictionary\n", "sample_characteristics_dict = {\n", " 0: ['disease state: CF'], \n", " 1: ['individual: patient # 001', 'individual: patient # 002', 'individual: patient # 004', 'individual: patient # 006', \n", " 'individual: patient # 009', 'individual: patient # 013', 'individual: patient # 015', 'individual: patient # 017', \n", " 'individual: patient # 019', 'individual: patient # 020', 'individual: patient # 021', 'individual: patient # 024', \n", " 'individual: patient # 025', 'individual: patient # 028', 'individual: patient # 030', 'individual: patient # 031', \n", " 'individual: patient # 003', 'individual: patient # 005', 'individual: patient # 010', 'individual: patient # 014', \n", " 'individual: patient # 018', 'individual: patient # 022', 'individual: patient # 027'],\n", " 2: ['treatment: digitoxin', 'treatment: placebo'],\n", " 3: ['dosage: 50 micro gram/daily', 'dosage: 100 micro gram/daily'],\n", " 4: ['time: post treatment', 'time: pre treatment'],\n", " 5: ['cell type: nasal epithelial cells']\n", "}\n", "\n", "# Create a DataFrame that represents the structure expected by geo_select_clinical_features\n", "# The function expects rows as features, not directly from the sample characteristics dict\n", "clinical_data = pd.DataFrame()\n", "for row_idx, values in sample_characteristics_dict.items():\n", " clinical_data.loc[row_idx, 0] = values[0] if values else None\n", "\n", "# Since trait_row is not None, we extract the clinical features\n", "if trait_row is not None:\n", " # Extract clinical features using the library function\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the data\n", " preview = preview_df(selected_clinical_df)\n", " print(\"Preview of selected clinical features:\")\n", " print(preview)\n", " \n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " \n", " # Save the clinical data\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "85c6479a", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "e4c692cf", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. First, let's examine the structure of the matrix file to understand its format\n", "import gzip\n", "\n", "# Peek at the first few lines of the file to understand its structure\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Read first 100 lines to find the header structure\n", " for i, line in enumerate(file):\n", " if '!series_matrix_table_begin' in line:\n", " print(f\"Found data marker at line {i}\")\n", " # Read the next line which should be the header\n", " header_line = next(file)\n", " print(f\"Header line: {header_line.strip()}\")\n", " # And the first data line\n", " first_data_line = next(file)\n", " print(f\"First data line: {first_data_line.strip()}\")\n", " break\n", " if i > 100: # Limit search to first 100 lines\n", " print(\"Matrix table marker not found in first 100 lines\")\n", " break\n", "\n", "# 3. Now try to get the genetic data with better error handling\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(gene_data.index[:20])\n", "except KeyError as e:\n", " print(f\"KeyError: {e}\")\n", " \n", " # Alternative approach: manually extract the data\n", " print(\"\\nTrying alternative approach to read the gene data:\")\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Find the start of the data\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Read the headers and data\n", " import pandas as pd\n", " df = pd.read_csv(file, sep='\\t', index_col=0)\n", " print(f\"Column names: {df.columns[:5]}\")\n", " print(f\"First 20 row IDs: {df.index[:20]}\")\n", " gene_data = df\n" ] }, { "cell_type": "markdown", "id": "49e2380f", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "b36ffa6e", "metadata": {}, "outputs": [], "source": [ "# Examine the identifiers in the first few rows of the gene expression data\n", "# The IDs like '2315100' appear to be numeric identifiers that are not standard gene symbols\n", "# These are likely probe IDs from a microarray platform that need to be mapped to gene symbols\n", "\n", "# Standard human gene symbols follow patterns like BRCA1, TP53, etc.\n", "# The numeric identifiers seen in this dataset (2315100, 2315106, etc.) are not recognizable gene symbols\n", "\n", "# Since these are numeric identifiers rather than human gene symbols, \n", "# they will require mapping to standard gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "fe84f699", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "154aad2b", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "7b5e1f51", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "579c2004", "metadata": {}, "outputs": [], "source": [ "# 1. Identify columns for mapping\n", "# From the previous output, we can see:\n", "# - 'ID' column contains the probe identifiers (matching the format in gene_data index)\n", "# - 'gene_assignment' column contains information about gene symbols\n", "\n", "# Create a gene mapping dataframe directly using the get_gene_mapping function\n", "# The 'ID' column contains the probe identifiers and the 'gene_assignment' column contains gene symbol information\n", "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n", "\n", "# Preview the mapping dataframe\n", "print(\"Gene mapping preview:\")\n", "print(mapping_df.head())\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n", "# Use the apply_gene_mapping function from the library\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "# Print information about the resulting gene expression data\n", "print(f\"\\nGene expression data shape after mapping: {gene_data.shape}\")\n", "print(\"\\nFirst few gene symbols:\")\n", "print(gene_data.index[:5])\n", "\n", "# Normalize gene symbols to ensure consistency\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"\\nGene expression data shape after normalization: {gene_data.shape}\")\n", "print(\"\\nFirst few normalized gene symbols:\")\n", "print(gene_data.index[:5])\n", "\n", "# Create directory if it doesn't exist\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "\n", "# Save the gene expression data\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "928d905e", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "031eb6a7", "metadata": {}, "outputs": [], "source": [ "# 1. For step 1, we'll skip normalizing gene symbols again since it was already done in the previous step\n", "# and the normalized gene data is already saved\n", "\n", "# 2. Load the saved clinical data instead of reprocessing it\n", "clinical_data_path = out_clinical_data_file\n", "if os.path.exists(clinical_data_path):\n", " selected_clinical_df = pd.read_csv(clinical_data_path)\n", " print(f\"Loaded clinical data from {clinical_data_path}\")\n", " print(\"Clinical data preview:\")\n", " print(preview_df(selected_clinical_df))\n", "else:\n", " # If the file doesn't exist for some reason, extract clinical features as a fallback\n", " soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", " background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_data, \n", " trait=trait, # Use the trait variable from setup\n", " trait_row=trait_row, \n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", " print(\"Clinical data preview:\")\n", " print(preview_df(selected_clinical_df))\n", "\n", "# Load the normalized gene data \n", "gene_data_path = out_gene_data_file\n", "if os.path.exists(gene_data_path):\n", " normalized_gene_data = pd.read_csv(gene_data_path, index_col=0)\n", " print(f\"Loaded normalized gene data from {gene_data_path}\")\n", " print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n", "else:\n", " print(\"Error: Normalized gene data file not found\")\n", " \n", "# 3. Link the clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n", "print(f\"Linked data shape (before handling missing values): {linked_data.shape}\")\n", "\n", "# 4. Handle missing values in the linked data\n", "# Determine the actual column name for the trait\n", "trait_column = '0' # Based on the clinical data preview\n", "linked_data = handle_missing_values(linked_data, trait_column)\n", "print(f\"Data after handling missing values: {linked_data.shape}\")\n", "\n", "# 5. Determine whether the trait and demographic features are biased\n", "# Check if trait is biased\n", "if len(linked_data[trait_column].unique()) == 2: # binary trait\n", " is_trait_biased = judge_binary_variable_biased(linked_data, trait_column)\n", "else: # continuous trait\n", " is_trait_biased = judge_continuous_variable_biased(linked_data, trait_column)\n", "\n", "# We don't need to do any further processing for demographic variables since none exist in this dataset\n", "unbiased_linked_data = linked_data # No biased features to remove\n", "\n", "# 6. Conduct final quality validation and save cohort information\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=f\"Dataset contains gene expression data from nasal epithelial cells of cystic fibrosis patients in a study examining the effects of digitoxin on airway inflammation.\"\n", ")\n", "\n", "# 7. If the linked data is usable, save it\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable and was not saved\")\n" ] }, { "cell_type": "markdown", "id": "fcdefea6", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "d66ffc27", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n", "print(\"First few genes with their expression values after normalization:\")\n", "print(normalized_gene_data.head())\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Extract clinical features using the functions defined in step 2\n", "# First, let's load the clinical data again to ensure we have the latest version\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n", "\n", "# Extract clinical features using melanoma vs normal tissue as the binary trait\n", "selected_clinical_df = geo_select_clinical_features(\n", " clinical_data, \n", " trait=\"Melanoma\", \n", " trait_row=trait_row, \n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", ")\n", "\n", "# Save the clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "selected_clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "print(\"Clinical data preview:\")\n", "print(preview_df(selected_clinical_df))\n", "\n", "# 3. Link the clinical and genetic data\n", "# Transpose normalized gene data for linking\n", "gene_data_t = normalized_gene_data.T\n", "\n", "# Link the clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n", "print(f\"Linked data shape (before handling missing values): {linked_data.shape}\")\n", "\n", "# 4. Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, \"Melanoma\")\n", "print(f\"Data after handling missing values: {linked_data.shape}\")\n", "\n", "# 5. Determine whether the trait and demographic features are biased\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, \"Melanoma\")\n", "\n", "# 6. Conduct final quality validation and save cohort information\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"Dataset contains gene expression data comparing melanoma (primary and metastatic) with normal tissue/nevi.\"\n", ")\n", "\n", "# 7. If the linked data is usable, save it\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable and was not saved\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }