{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "cbc04477", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Atherosclerosis\"\n", "cohort = \"GSE123086\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Atherosclerosis\"\n", "in_cohort_dir = \"../../input/GEO/Atherosclerosis/GSE123086\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Atherosclerosis/GSE123086.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Atherosclerosis/gene_data/GSE123086.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Atherosclerosis/clinical_data/GSE123086.csv\"\n", "json_path = \"../../output/preprocess/Atherosclerosis/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "3b92ac01", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "0185cd70", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "b0622854", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "2f2570cd", "metadata": {}, "outputs": [], "source": [ "# 1. Gene Expression Data Availability\n", "# Looking at the background info: mentions microarrays and RNA extraction, suggesting gene expression data is available\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "\n", "# Trait: For atherosclerosis, primary diagnosis is in row 1\n", "trait_row = 1\n", "\n", "# Age: Available in rows 3 and 4\n", "age_row = 3\n", "\n", "# Gender: Available in row 2 (and also some values appear in row 3)\n", "gender_row = 2\n", "\n", "# 2.2 Data Type Conversion\n", "\n", "def convert_trait(value):\n", " \"\"\"Convert trait value to binary format.\"\"\"\n", " if value is None or pd.isna(value):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # For Atherosclerosis trait\n", " if \"ATHEROSCLEROSIS\" in value:\n", " return 1\n", " else:\n", " return 0\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age value to continuous format.\"\"\"\n", " if value is None or pd.isna(value):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender value to binary format (0=female, 1=male).\"\"\"\n", " if value is None or pd.isna(value):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " if value.upper() == \"MALE\":\n", " return 1\n", " elif value.upper() == \"FEMALE\":\n", " return 0\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait data availability\n", "is_trait_available = trait_row is not None\n", "\n", "# Conduct initial filtering and save metadata\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Create output directories if they don't exist\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " \n", " # Use the function from the library to extract clinical features\n", " clinical_features_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the dataframe\n", " preview = preview_df(clinical_features_df)\n", " print(\"Clinical features preview:\", preview)\n", " \n", " # Save the clinical data\n", " clinical_features_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "df9b35b6", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "1007b293", "metadata": {}, "outputs": [], "source": [ "# 1. Get the SOFT and matrix file paths again \n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "print(f\"Matrix file found: {matrix_file}\")\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(f\"Gene data shape: {gene_data.shape}\")\n", " \n", " # 3. Print the first 20 row IDs (gene or probe identifiers)\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20])\n", "except Exception as e:\n", " print(f\"Error extracting gene data: {e}\")\n" ] }, { "cell_type": "markdown", "id": "7389b58c", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "e798066f", "metadata": {}, "outputs": [], "source": [ "# The identifiers shown are numeric values ('1', '2', '3', etc.)\n", "# These are not standard human gene symbols, which would typically be alphanumeric\n", "# (like \"BRCA1\", \"TP53\", \"APOE\", etc.)\n", "# These appear to be probe or feature IDs that need to be mapped to actual gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "0713729f", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "67f9d2f4", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n", "print(\"\\nGene annotation preview:\")\n", "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n", "print(preview_df(gene_annotation, n=5))\n", "\n", "# Check the first few rows of the SOFT file to better understand its structure\n", "print(\"\\nChecking the SOFT file structure for gene symbols:\")\n", "gene_symbol_data = []\n", "with gzip.open(soft_file, 'rt') as f:\n", " for i, line in enumerate(f):\n", " if i < 1000: # Examine more lines to find gene symbol information\n", " if \"GENE_SYMBOL\" in line or \"gene_symbol\" in line.lower() or \"symbol\" in line.lower():\n", " print(line.strip())\n", " gene_symbol_data.append(line.strip())\n", " else:\n", " break\n", "\n", "print(\"\\nSearching for gene symbols in the SOFT file...\")\n", "# Look for table headers that could contain gene symbol information\n", "with gzip.open(soft_file, 'rt') as f:\n", " for i, line in enumerate(f):\n", " if i < 1000 and \"!platform_table_begin\" in line:\n", " # Get the next line which should contain column headers\n", " header_line = next(f, \"\").strip()\n", " print(f\"Found platform table headers: {header_line}\")\n", " break\n", "\n", "# We need to create a more appropriate mapping\n", "# First, check if we can extract gene symbols from the Entrez Gene IDs\n", "# Use the extract_human_gene_symbols function from the library\n", "print(\"\\nAttempting to map Entrez Gene IDs to gene symbols...\")\n", "\n", "# Create a basic mapping dataframe with probe IDs and Entrez Gene IDs\n", "mapping_data = gene_annotation[['ID', 'ENTREZ_GENE_ID']].copy()\n", "mapping_data = mapping_data.dropna(subset=['ENTREZ_GENE_ID'])\n", "mapping_data = mapping_data.rename(columns={'ENTREZ_GENE_ID': 'Gene'})\n", "\n", "# Filter out any empty gene values\n", "mapping_data = mapping_data[mapping_data['Gene'] != '']\n", "\n", "# Validate the mapping data\n", "print(f\"Mapping data shape: {mapping_data.shape}\")\n", "print(\"Sample mapping data:\")\n", "print(preview_df(mapping_data, n=5))\n", "\n", "# Check if there's additional mapping information in the annotation\n", "print(\"\\nLooking for gene symbols in annotation data...\")\n", "for col in gene_annotation.columns:\n", " sample_values = gene_annotation[col].head(10).tolist()\n", " print(f\"Column '{col}' sample values: {sample_values}\")\n", "\n", "# Count how many unique probes we have for mapping\n", "unique_probes = mapping_data['ID'].nunique()\n", "print(f\"\\nNumber of unique probes for mapping: {unique_probes}\")\n", "\n", "# Count how many probes map to at least one gene identifier\n", "genes_mapped = mapping_data.shape[0]\n", "total_probes = gene_annotation.shape[0]\n", "mapping_percentage = (genes_mapped / total_probes) * 100 if total_probes > 0 else 0\n", "print(f\"Found gene identifiers for {genes_mapped} out of {total_probes} probes ({mapping_percentage:.2f}%)\")\n", "\n", "# The mapping contains Entrez Gene IDs which are numeric identifiers from NCBI\n", "# We'll use these directly since it appears no human-readable gene symbols are available in the annotation\n", "gene_mapping = mapping_data\n", "\n", "# Display the final mapping we'll use\n", "print(\"\\nFinal gene mapping sample:\")\n", "print(preview_df(gene_mapping, n=5))\n" ] }, { "cell_type": "markdown", "id": "b2f994f0", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "4c27cb5a", "metadata": {}, "outputs": [], "source": [ "# 1. Analyze the gene identifiers and annotation to decide on mapping strategy\n", "# From previous steps, we see the gene identifiers in the expression data are numeric IDs ('1', '2', '3', etc.)\n", "# The gene annotation has 'ID', 'ENTREZ_GENE_ID', and 'SPOT_ID' columns\n", "# The 'ID' in gene annotation corresponds to the probe IDs in the expression data\n", "# The 'ENTREZ_GENE_ID' contains Entrez Gene IDs which we'll use as gene identifiers\n", "\n", "# 2. Create a gene mapping dataframe\n", "gene_mapping = gene_annotation[['ID', 'ENTREZ_GENE_ID']].copy()\n", "gene_mapping = gene_mapping.dropna(subset=['ENTREZ_GENE_ID'])\n", "gene_mapping = gene_mapping.rename(columns={'ENTREZ_GENE_ID': 'Gene'})\n", "\n", "# Display the gene mapping\n", "print(f\"Gene mapping shape: {gene_mapping.shape}\")\n", "print(\"Sample of gene mapping dataframe:\")\n", "print(preview_df(gene_mapping))\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n", "# We need to handle the issue with apply_gene_mapping which expects gene symbols\n", "\n", "# First, select only the rows in gene_mapping that correspond to probes in our gene_data\n", "valid_mapping = gene_mapping[gene_mapping['ID'].isin(gene_data.index)]\n", "print(f\"Number of probes in gene_data that have mapping: {len(valid_mapping)}\")\n", "\n", "# Create a simpler mapping function that preserves the Entrez Gene IDs\n", "def map_probes_to_genes(expression_df, mapping_df):\n", " \"\"\"Maps probe-level expression to gene-level expression using Entrez Gene IDs.\"\"\"\n", " # Ensure mapping only includes probes that exist in expression data\n", " mapping_df = mapping_df[mapping_df['ID'].isin(expression_df.index)].copy()\n", " \n", " # Set the probe ID as index for joining\n", " mapping_df.set_index('ID', inplace=True)\n", " \n", " # Get all sample columns (all columns in expression_df)\n", " sample_cols = expression_df.columns.tolist()\n", " \n", " # Create a mapping dictionary from probe to gene\n", " probe_to_gene = mapping_df['Gene'].to_dict()\n", " \n", " # Initialize a dictionary to collect gene expression values\n", " gene_expression = {}\n", " gene_counts = {}\n", " \n", " # Process each probe's expression\n", " for probe_id, row in expression_df.iterrows():\n", " if probe_id in probe_to_gene:\n", " gene = probe_to_gene[probe_id]\n", " \n", " # Initialize gene entry if not present\n", " if gene not in gene_expression:\n", " gene_expression[gene] = {col: 0 for col in sample_cols}\n", " gene_counts[gene] = 0\n", " \n", " # Add this probe's expression to the gene\n", " for col in sample_cols:\n", " gene_expression[gene][col] += row[col]\n", " \n", " gene_counts[gene] += 1\n", " \n", " # Create a dataframe from the collected expression values\n", " gene_df = pd.DataFrame.from_dict(gene_expression, orient='index')\n", " \n", " # Average the expression by the number of probes per gene\n", " for gene, count in gene_counts.items():\n", " gene_df.loc[gene] = gene_df.loc[gene] / count\n", " \n", " return gene_df\n", "\n", "# Apply the mapping function\n", "gene_data = map_probes_to_genes(gene_data, gene_mapping)\n", "\n", "# Display the resulting gene expression data\n", "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n", "print(\"First 5 gene IDs in the mapped data:\")\n", "print(gene_data.index[:5])\n", "print(\"Sample of gene expression data (first 5 genes, first 5 columns):\")\n", "print(gene_data.iloc[:5, :5])\n", "\n", "# Create output directory if it doesn't exist\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "\n", "# Save the gene expression data\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "cbe66119", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "a02f1489", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols using NCBI database\n", "print(\"Normalizing gene symbols...\")\n", "gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n", "print(\"First 10 normalized gene symbols:\")\n", "print(gene_data.index[:10])\n", "\n", "# Save the normalized gene data\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to: {out_gene_data_file}\")\n", "\n", "# 2. Extract and prepare clinical data from the matrix file\n", "print(\"\\nPreparing clinical data...\")\n", "\n", "# Get the clinical data rows\n", "_, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "_, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# Process clinical data using the parameters defined in Step 2\n", "selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=0, # From Step 2: trait_row = 0\n", " convert_trait=convert_trait, # Function defined in Step 2\n", " age_row=None, # From Step 2: age_row = None\n", " convert_age=None,\n", " gender_row=None, # From Step 2: gender_row = None\n", " convert_gender=None\n", ")\n", "\n", "print(\"Clinical data preview:\")\n", "print(preview_df(selected_clinical_df))\n", "\n", "# Save the clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "selected_clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to: {out_clinical_data_file}\")\n", "\n", "# 3. Link clinical and genetic data\n", "print(\"\\nLinking clinical and genetic data...\")\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data preview (first 5 rows, 5 columns):\")\n", "if linked_data.shape[0] > 0 and linked_data.shape[1] > 5:\n", " print(linked_data.iloc[:5, :5])\n", "else:\n", " print(linked_data)\n", "\n", "# 4. Handle missing values\n", "print(\"\\nHandling missing values...\")\n", "linked_data_clean = handle_missing_values(linked_data, trait)\n", "print(f\"Linked data shape after handling missing values: {linked_data_clean.shape}\")\n", "\n", "# 5. Check for bias in the dataset\n", "print(\"\\nChecking for bias in dataset features...\")\n", "is_biased, linked_data_clean = judge_and_remove_biased_features(linked_data_clean, trait)\n", "\n", "# 6. Conduct final quality validation\n", "note = \"This GSE57691 dataset contains gene expression data from patients with abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) compared to control subjects. The dataset focuses on atherosclerosis-related vascular changes.\"\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data_clean,\n", " note=note\n", ")\n", "\n", "# 7. Save the linked data if it's usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data_clean.to_csv(out_data_file, index=True)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset deemed not usable for associative studies. Linked data not saved.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }