{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "e74b8683", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Rectal_Cancer\"\n", "cohort = \"GSE170999\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Rectal_Cancer\"\n", "in_cohort_dir = \"../../input/GEO/Rectal_Cancer/GSE170999\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Rectal_Cancer/GSE170999.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Rectal_Cancer/gene_data/GSE170999.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Rectal_Cancer/clinical_data/GSE170999.csv\"\n", "json_path = \"../../output/preprocess/Rectal_Cancer/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "e55782a8", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "86fa40bb", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "55710cf0", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "21c47658", "metadata": {}, "outputs": [], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the Series_summary information, this dataset contains gene expression data from Affymetrix U133 platform\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Identifying rows containing trait, age, and gender information\n", "trait_row = 0 # KRAS mutation status is in row 0\n", "age_row = None # Age information is not available\n", "gender_row = None # Gender information is not available\n", "\n", "# 2.2 Data Type Conversion functions\n", "def convert_trait(value):\n", " \"\"\"Convert KRAS mutation status to binary (0: wild-type, 1: mutant)\"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract value after the colon if present\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to binary\n", " if \"wild-type\" in value.lower():\n", " return 0 # KRAS wild-type\n", " elif \"mutant\" in value.lower():\n", " return 1 # KRAS mutant\n", " else:\n", " return None # Unknown or other values\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age to numeric (continuous) value\"\"\"\n", " # Not used since age data is not available\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender to binary (0: female, 1: male)\"\"\"\n", " # Not used since gender data is not available\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Check if trait data is available (trait_row is not None)\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Since trait_row is not None, clinical data is available\n", "if trait_row is not None:\n", " # Create clinical data DataFrame from the sample characteristics dictionary\n", " sample_chars = {0: ['kras_mutant or wild_type: KRAS-wild-type', 'kras_mutant or wild_type: KRAS-mutant']}\n", " clinical_data = pd.DataFrame()\n", " \n", " for key, values in sample_chars.items():\n", " clinical_data[key] = values\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted features\n", " print(\"Clinical Features Preview:\")\n", " print(preview_df(selected_clinical_df))\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n" ] }, { "cell_type": "markdown", "id": "5c7fb41a", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "18d07a12", "metadata": {}, "outputs": [], "source": [ "# 1. First get the file paths\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "a7610db1", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "47af28d2", "metadata": {}, "outputs": [], "source": [ "# These identifiers are not standard human gene symbols, which typically follow conventions like \n", "# HGNC symbols (e.g., BRCA1, TP53) or Ensembl IDs (starting with ENSG).\n", "# \n", "# The identifiers shown (like '1007_s_at', '1053_at') appear to be Affymetrix probe IDs,\n", "# which are specific to the microarray platform used for gene expression profiling.\n", "# These need to be mapped to standard gene symbols for meaningful analysis.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "0129196c", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "9bd0c5c0", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "0b33c6d6", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "7ba66294", "metadata": {}, "outputs": [], "source": [ "# 1. Based on the previews, we need to map:\n", "# - 'ID' in the gene_annotation dataframe (contains probe IDs like '1007_s_at')\n", "# - 'Gene Symbol' in the gene_annotation dataframe (contains gene symbols like 'DDR1 /// MIR4640')\n", "\n", "# 2. Get gene mapping dataframe by extracting the identifier and symbol columns\n", "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n", "\n", "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n", "# This function handles dividing expression values among multiple genes and summing by gene\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "# Print preview of gene expression data after mapping\n", "print(\"Gene expression data after mapping (first 5 genes):\")\n", "print(gene_data.head())\n" ] }, { "cell_type": "markdown", "id": "ff1e46af", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "44e0c5a0", "metadata": {}, "outputs": [], "source": [ "# 1. Extract clinical features from the original clinical_data\n", "clinical_features = geo_select_clinical_features(\n", " clinical_data, \n", " trait=trait, \n", " trait_row=trait_row, \n", " convert_trait=convert_trait,\n", " age_row=age_row, \n", " convert_age=convert_age,\n", " gender_row=gender_row, \n", " convert_gender=convert_gender\n", ")\n", "\n", "# Save the clinical features data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_features.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# 1. Normalize gene symbols in the gene expression data\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n", "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Link the clinical and genetic data\n", "# Ensure clinical data has the proper format\n", "clinical_df = clinical_features.copy()\n", "clinical_df = clinical_df.T\n", "clinical_df.columns = [trait]\n", "\n", "linked_data = pd.concat([clinical_df, normalized_gene_data.T], axis=1)\n", "print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n", "print(linked_data.head())\n", "\n", "# 3. Handle missing values in the linked data\n", "linked_data_cleaned = handle_missing_values(linked_data, trait)\n", "print(f\"Shape after handling missing values: {linked_data_cleaned.shape}\")\n", "\n", "# Check if we have sufficient data after handling missing values\n", "if linked_data_cleaned.shape[0] == 0 or linked_data_cleaned.shape[1] <= 1:\n", " print(f\"Insufficient data after handling missing values. All samples were filtered out.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=False, # Set to False since we have no usable trait data\n", " is_biased=None, \n", " df=linked_data_cleaned,\n", " note=f\"No usable samples after handling missing values. All samples had missing trait values.\"\n", " )\n", " print(f\"Data quality check failed. The dataset is not suitable for association studies.\")\n", "else:\n", " # 4. Determine whether the trait and demographic features are severely biased\n", " is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_cleaned, trait)\n", "\n", " # 5. Conduct quality check and save the cohort information\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True,\n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=f\"Dataset contains gene expression data from rectal cancer patients with KRAS mutation status.\"\n", " )\n", "\n", " # 6. Save the data if it's usable\n", " if is_usable:\n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " # Save the data\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " else:\n", " print(f\"Data quality check failed. The dataset is not suitable for association studies.\")\n" ] }, { "cell_type": "markdown", "id": "15f885df", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "1571787a", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n", "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Extract KRAS mutation information from the SOFT file\n", "# Read the SOFT file to look for sample characteristics that indicate KRAS status for each sample\n", "with gzip.open(soft_file, 'rt') as f:\n", " soft_content = f.read()\n", "\n", "# Extract sample blocks from the SOFT file\n", "sample_blocks = re.findall(r'^\\^SAMPLE = (GSM\\d+).*?!Sample_title = \"(.*?)\".*?!Sample_characteristics_ch1 = (.*?)(?=\\n\\n|\\n\\^|\\Z)', \n", " soft_content, re.DOTALL | re.MULTILINE)\n", "\n", "# Create a dictionary to map sample IDs to KRAS status\n", "kras_status = {}\n", "for sample_id, title, characteristics in sample_blocks:\n", " # Look for KRAS status in the characteristics\n", " if 'KRAS-mutant' in characteristics or 'KRAS-mutant' in title:\n", " kras_status[sample_id] = 1 # Mutant\n", " elif 'KRAS-wild-type' in characteristics or 'KRAS-wild-type' in title:\n", " kras_status[sample_id] = 0 # Wild-type\n", " else:\n", " # If not found in characteristics, try to extract from sample title\n", " if 'KRAS-mutant' in title.lower():\n", " kras_status[sample_id] = 1\n", " elif 'KRAS-wild-type' in title.lower() or 'KRAS-wt' in title.lower():\n", " kras_status[sample_id] = 0\n", "\n", "# Create a clinical DataFrame with sample IDs as index\n", "sample_ids = normalized_gene_data.columns\n", "clinical_df = pd.DataFrame(index=sample_ids)\n", "\n", "# Fill in the KRAS status for each sample\n", "clinical_df[trait] = clinical_df.index.map(lambda x: kras_status.get(x))\n", "\n", "# Save the clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "print(f\"Sample KRAS status: {clinical_df[trait].value_counts().to_dict()}\")\n", "\n", "# 3. Link the clinical and genetic data\n", "linked_data = pd.concat([clinical_df, normalized_gene_data.T], axis=1)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(linked_data.head())\n", "\n", "# 4. Handle missing values in the linked data\n", "linked_data_cleaned = handle_missing_values(linked_data, trait)\n", "print(f\"Shape after handling missing values: {linked_data_cleaned.shape}\")\n", "\n", "# Check if we still have data after handling missing values\n", "if linked_data_cleaned.shape[0] == 0 or linked_data_cleaned.shape[1] <= 1:\n", " print(\"All samples were filtered out during missing value handling.\")\n", " # Create a minimal DataFrame for validation purposes\n", " dummy_df = pd.DataFrame({trait: [0, 1]})\n", " # Validate and save information indicating the dataset is not usable\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True,\n", " is_biased=True,\n", " df=dummy_df,\n", " note=\"Dataset contains gene expression data from rectal cancer patients with KRAS mutation status, but sample IDs couldn't be properly linked between clinical and genetic data.\"\n", " )\n", " print(f\"Data quality check failed. The dataset is not suitable for association studies.\")\n", "else:\n", " # 5. Determine whether the trait and demographic features are severely biased\n", " is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_cleaned, trait)\n", "\n", " # 6. Conduct quality check and save the cohort information\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True,\n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=f\"Dataset contains gene expression data from rectal cancer patients with KRAS mutation status.\"\n", " )\n", "\n", " # 7. Save the data if it's usable\n", " if is_usable:\n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " # Save the data\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " else:\n", " print(f\"Data quality check failed. The dataset is not suitable for association studies.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }