{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "6769a68e", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Stomach_Cancer\"\n", "cohort = \"GSE146361\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Stomach_Cancer\"\n", "in_cohort_dir = \"../../input/GEO/Stomach_Cancer/GSE146361\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Stomach_Cancer/GSE146361.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Stomach_Cancer/gene_data/GSE146361.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Stomach_Cancer/clinical_data/GSE146361.csv\"\n", "json_path = \"../../output/preprocess/Stomach_Cancer/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "5fec3494", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "95949586", "metadata": {}, "outputs": [], "source": [ "# 1. Let's first list the directory contents to understand what files are available\n", "import os\n", "\n", "print(\"Files in the cohort directory:\")\n", "files = os.listdir(in_cohort_dir)\n", "print(files)\n", "\n", "# Adapt file identification to handle different naming patterns\n", "soft_files = [f for f in files if 'soft' in f.lower() or '.soft' in f.lower() or '_soft' in f.lower()]\n", "matrix_files = [f for f in files if 'matrix' in f.lower() or '.matrix' in f.lower() or '_matrix' in f.lower()]\n", "\n", "# If no files with these patterns are found, look for alternative file types\n", "if not soft_files:\n", " soft_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n", "if not matrix_files:\n", " matrix_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n", "\n", "print(\"Identified SOFT files:\", soft_files)\n", "print(\"Identified matrix files:\", matrix_files)\n", "\n", "# Use the first files found, if any\n", "if len(soft_files) > 0 and len(matrix_files) > 0:\n", " soft_file = os.path.join(in_cohort_dir, soft_files[0])\n", " matrix_file = os.path.join(in_cohort_dir, matrix_files[0])\n", " \n", " # 2. Read the matrix file to obtain background information and sample characteristics data\n", " background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", " clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", " background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", " \n", " # 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", " sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", " \n", " # 4. Explicitly print out all the background information and the sample characteristics dictionary\n", " print(\"\\nBackground Information:\")\n", " print(background_info)\n", " print(\"\\nSample Characteristics Dictionary:\")\n", " print(sample_characteristics_dict)\n", "else:\n", " print(\"No appropriate files found in the directory.\")\n" ] }, { "cell_type": "markdown", "id": "61199793", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "15d7037e", "metadata": {}, "outputs": [], "source": [ "# Analyze the output to determine the dataset characteristics\n", "\n", "# 1. Gene Expression Data Availability\n", "# From the background information, we can see this dataset contains gene expression data\n", "# It mentions \"gene expression profile\" and \"HumanHT-12 v3.0 Expression BeadChip array (Illumina)\"\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "\n", "# 2.1 Data Availability\n", "# For the trait (Stomach Cancer), we can see all samples have \"disease: Gastric Cancer\" (key 0)\n", "trait_row = 0\n", "\n", "# For age, there's no information available\n", "age_row = None\n", "\n", "# For gender, there's no information available\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion\n", "def convert_trait(value):\n", " \"\"\"Convert trait value to binary (1 for disease, 0 for control)\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " # Extract value after colon if present\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # All samples have gastric cancer, so all will be 1\n", " if \"gastric cancer\" in value.lower():\n", " return 1\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age value to continuous\"\"\"\n", " # Not used as age data is unavailable\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n", " # Not used as gender data is unavailable\n", " return None\n", "\n", "# 3. Save Metadata\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Create a DataFrame from the sample characteristics dictionary\n", " # Based on the sample characteristics, we know the dataset contains 27 cell lines\n", " # Each cell line has the same disease status (Gastric Cancer)\n", " \n", " # Create the clinical data DataFrame\n", " sample_chars = {\n", " 0: ['disease: Gastric Cancer'], \n", " 1: ['organism part: Stomach'], \n", " 2: ['cell line: Gastric Cancer Cell line'], \n", " 3: ['cell line: Hs746T', 'cell line: YCC-16', 'cell line: YCC-2', 'cell line: SNU-16', \n", " 'cell line: SNU-719', 'cell line: YCC-9', 'cell line: SNU-668', 'cell line: MKN-74', \n", " 'cell line: SNU-1', 'cell line: SNU-5', 'cell line: MKN-45', 'cell line: SNU-638', \n", " 'cell line: SNU-216', 'cell line: YCC-6', 'cell line: YCC-7', 'cell line: MKN-1', \n", " 'cell line: MKN-28', 'cell line: NCI-N87', 'cell line: SNU-484', 'cell line: SNU-601', \n", " 'cell line: SNU-620', 'cell line: YCC-3', 'cell line: YCC-11', 'cell line: YCC-1', \n", " 'cell line: AGS', 'cell line: KATOIII', 'cell line: SNU-520']\n", " }\n", " \n", " # Extract cell line names from the sample characteristics\n", " cell_lines = [line.split(\": \")[1] for line in sample_chars[3]]\n", " \n", " # Create a DataFrame with all samples having the same trait value\n", " clinical_data = pd.DataFrame(index=cell_lines)\n", " \n", " # Add sample characteristics as columns\n", " for row_idx, values in sample_chars.items():\n", " # Handle the case where row 3 has multiple values (one per cell line)\n", " if row_idx == 3:\n", " continue # Skip as we've already used these to create the index\n", " \n", " # For other rows, all cell lines share the same value\n", " for value in values:\n", " # Use the part before colon as column name, and after colon as value\n", " if \":\" in value:\n", " col_name, val = value.split(\":\", 1)\n", " clinical_data[col_name.strip()] = val.strip()\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the data\n", " print(\"Preview of selected clinical data:\")\n", " print(preview_df(selected_clinical_df))\n", " \n", " # Save the data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "efadfcc7", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "cc2a6aec", "metadata": {}, "outputs": [], "source": [ "# Use the helper function to get the proper file paths\n", "soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# Extract gene expression data\n", "try:\n", " gene_data = get_genetic_data(matrix_file_path)\n", " \n", " # Print the first 20 row IDs (gene or probe identifiers)\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20])\n", " \n", " # Print shape to understand the dataset dimensions\n", " print(f\"\\nGene expression data shape: {gene_data.shape}\")\n", " \n", "except Exception as e:\n", " print(f\"Error extracting gene data: {e}\")\n" ] }, { "cell_type": "markdown", "id": "786f9d52", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "ed1aacdb", "metadata": {}, "outputs": [], "source": [ "# Based on biomedical knowledge, these are Illumina probe IDs (indicated by the \"ILMN_\" prefix)\n", "# and not human gene symbols. These probe IDs need to be mapped to gene symbols.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "90a7c414", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "083ffd73", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "try:\n", " # Use the correct variable name from previous steps\n", " gene_annotation = get_gene_annotation(soft_file_path)\n", " \n", " # 2. Preview the gene annotation dataframe\n", " print(\"Gene annotation preview:\")\n", " print(preview_df(gene_annotation))\n", " \n", "except UnicodeDecodeError as e:\n", " print(f\"Unicode decoding error: {e}\")\n", " print(\"Trying alternative approach...\")\n", " \n", " # Read the file with Latin-1 encoding which is more permissive\n", " import gzip\n", " import pandas as pd\n", " \n", " # Manually read the file line by line with error handling\n", " data_lines = []\n", " with gzip.open(soft_file_path, 'rb') as f:\n", " for line in f:\n", " # Skip lines starting with prefixes we want to filter out\n", " line_str = line.decode('latin-1')\n", " if not line_str.startswith('^') and not line_str.startswith('!') and not line_str.startswith('#'):\n", " data_lines.append(line_str)\n", " \n", " # Create dataframe from collected lines\n", " if data_lines:\n", " gene_data_str = '\\n'.join(data_lines)\n", " gene_annotation = pd.read_csv(pd.io.common.StringIO(gene_data_str), sep='\\t', low_memory=False)\n", " print(\"Gene annotation preview (alternative method):\")\n", " print(preview_df(gene_annotation))\n", " else:\n", " print(\"No valid gene annotation data found after filtering.\")\n", " gene_annotation = pd.DataFrame()\n", " \n", "except Exception as e:\n", " print(f\"Error extracting gene annotation data: {e}\")\n", " gene_annotation = pd.DataFrame()\n" ] }, { "cell_type": "markdown", "id": "c60de818", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "9f9b46b6", "metadata": {}, "outputs": [], "source": [ "# 1. Determine the appropriate columns for mapping\n", "# Based on the preview of gene_annotation, we can see:\n", "# - 'ID' contains the Illumina probe IDs (same as in gene expression data)\n", "# - 'Symbol' contains the gene symbols we need\n", "\n", "# 2. Get the gene mapping dataframe using the specified columns\n", "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n", "\n", "# Print a preview of the mapping\n", "print(\"Preview of gene mapping:\")\n", "print(gene_mapping.head())\n", "print(f\"Gene mapping shape: {gene_mapping.shape}\")\n", "\n", "# 3. Convert probe-level measurements to gene expression data\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "# Preview the resulting gene expression data\n", "print(\"\\nPreview of mapped gene expression data:\")\n", "print(gene_data.head())\n", "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n", "\n", "# Normalize gene symbols to handle synonyms\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(\"\\nPreview after normalizing gene symbols:\")\n", "print(gene_data.head())\n", "print(f\"Gene expression data shape after normalization: {gene_data.shape}\")\n", "\n", "# Save the processed gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "2191b622", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "eeffbed2", "metadata": {}, "outputs": [], "source": [ "# 1. Load the normalized gene data that was saved in the previous step\n", "try:\n", " gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n", " print(f\"Loaded normalized gene data shape: {gene_data.shape}\")\n", "except Exception as e:\n", " print(f\"Error loading gene data: {e}\")\n", " raise ValueError(\"Cannot proceed without gene expression data\")\n", "\n", "# 2. Load the clinical data created in Step 2\n", "try:\n", " clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)\n", " print(f\"Loaded clinical data shape: {clinical_df.shape}\")\n", " print(\"Clinical data preview:\")\n", " print(clinical_df.head())\n", "except Exception as e:\n", " print(f\"Error loading clinical data: {e}\")\n", " clinical_df = pd.DataFrame()\n", "\n", "# The sample IDs in the gene expression data are GSM IDs\n", "gene_sample_ids = gene_data.columns\n", "print(f\"Gene data has {len(gene_sample_ids)} samples\")\n", "print(f\"First few sample IDs: {list(gene_sample_ids[:5])}\")\n", "\n", "# Create a clinical DataFrame with the same sample IDs as the gene data\n", "# We know from previous steps that all samples are cancer cell lines (all have trait=1)\n", "clinical_features = pd.DataFrame(index=gene_sample_ids)\n", "clinical_features[trait] = 1 # All samples are gastric cancer cell lines\n", "\n", "print(f\"Prepared clinical features shape: {clinical_features.shape}\")\n", "print(clinical_features.head())\n", "\n", "# Link clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# 3. Handle missing values\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Determine whether the trait and demographic features are biased\n", "is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "print(f\"Is trait biased: {is_trait_biased}\")\n", "print(f\"Linked data shape after removing biased features: {linked_data.shape}\")\n", "\n", "# 5. Conduct quality check and save the cohort information\n", "note = \"Dataset contains gene expression data from 27 gastric cancer cell lines. All samples have the same trait value (all are cancer), making the dataset unsuitable for associative studies.\"\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True,\n", " is_biased=is_trait_biased, \n", " df=linked_data,\n", " note=note\n", ")\n", "\n", "# 6. Save the linked data if it's usable\n", "print(f\"Data quality check result: {'Usable' if is_usable else 'Not usable'}\")\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(f\"Data not saved due to quality issues.\")\n" ] }, { "cell_type": "markdown", "id": "cf02978c", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "1b6795e0", "metadata": {}, "outputs": [], "source": [ "# 1. The gene data was already normalized in Step 6\n", "gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n", "print(f\"Loaded normalized gene data shape: {gene_data.shape}\")\n", "\n", "# 2. Create clinical features for the same samples that are in the gene data\n", "# From previous steps, we know all samples are gastric cancer cell lines\n", "clinical_features = pd.DataFrame(index=gene_data.columns)\n", "clinical_features[trait] = 1 # All samples are gastric cancer\n", "print(f\"Prepared clinical features shape: {clinical_features.shape}\")\n", "print(clinical_features.head())\n", "\n", "# Direct approach to link clinical and genetic data\n", "linked_data = clinical_features.copy()\n", "# Add gene expression data as additional columns\n", "for gene in gene_data.index:\n", " linked_data[gene] = gene_data.loc[gene]\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# 3. Handle missing values in the linked data\n", "linked_data_processed = handle_missing_values(linked_data, trait)\n", "print(f\"Linked data shape after handling missing values: {linked_data_processed.shape}\")\n", "\n", "# 4. Determine whether the trait is biased\n", "is_trait_biased, linked_data_processed = judge_and_remove_biased_features(linked_data_processed, trait)\n", "print(f\"Is trait biased: {is_trait_biased}\")\n", "print(f\"Linked data shape after removing biased features: {linked_data_processed.shape}\")\n", "\n", "# 5. Conduct quality check and save cohort information\n", "note = \"Dataset contains gene expression data from 27 gastric cancer cell lines. All samples have the same trait value (all are cancer), making the dataset unsuitable for case-control associative studies.\"\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True,\n", " is_biased=is_trait_biased, \n", " df=linked_data_processed,\n", " note=note\n", ")\n", "\n", "# 6. Save the linked data if it's usable\n", "print(f\"Data quality check result: {'Usable' if is_usable else 'Not usable'}\")\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data_processed.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(f\"Data not saved due to quality issues.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }