{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "d509e006", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:43:49.338123Z", "iopub.status.busy": "2025-03-25T03:43:49.338017Z", "iopub.status.idle": "2025-03-25T03:43:49.508909Z", "shell.execute_reply": "2025-03-25T03:43:49.508536Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Psoriasis\"\n", "cohort = \"GSE252029\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Psoriasis\"\n", "in_cohort_dir = \"../../input/GEO/Psoriasis/GSE252029\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Psoriasis/GSE252029.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Psoriasis/gene_data/GSE252029.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Psoriasis/clinical_data/GSE252029.csv\"\n", "json_path = \"../../output/preprocess/Psoriasis/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "cd2100b5", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "2bc728b9", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:43:49.510398Z", "iopub.status.busy": "2025-03-25T03:43:49.510253Z", "iopub.status.idle": "2025-03-25T03:43:49.853546Z", "shell.execute_reply": "2025-03-25T03:43:49.853212Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Guselkumab reduces disease- and mechanism-related biomarkers more than adalimumab in patients with psoriasis: a VOYAGE 1 substudy\"\n", "!Series_summary\t\"In the phase 3 VOYAGE-1 trial (ClinicalTrials.gov identifier: NCT02207231), guselkumab demonstrated superior efficacy versus placebo and the tumor necrosis factor (TNF)-α antagonist, adalimumab, in patients with moderate-to-severe plaque psoriasis (Blauvelt et al., 2017). Here, skin samples were collected from patients in VOYAGE-1 and pharmacodynamic (PD) responses to guselkumab (vs adalimumab) treatment were assessed over 48 weeks.\"\n", "!Series_overall_design\t\"Psoriasis lesional skin (LS) and nonlesional skin (NL) samples were collected from 39 VOYAGE-1 trial patients who provided consent to participate in an optional skin biopsy substudy to evaluate PD effects on psoriasis transcriptomics, and were profiled using GeneChip HT HG-U133+ PM 96-Array Plate (Affymetrix, Santa Clara, CA, USA)\"\n", "Sample Characteristics Dictionary:\n", "{0: ['study id: CNTO1959PSO3001'], 1: ['subject id: 10521', 'subject id: 10563', 'subject id: 10294', 'subject id: 10461', 'subject id: 10079', 'subject id: 10062', 'subject id: 10115', 'subject id: 10205', 'subject id: 10193', 'subject id: 10252', 'subject id: 10798', 'subject id: 10332', 'subject id: 10063', 'subject id: 10118', 'subject id: 10500', 'subject id: 10263', 'subject id: 10265', 'subject id: 10334', 'subject id: 10932', 'subject id: 10933', 'subject id: 10982', 'subject id: 10401', 'subject id: 10512', 'subject id: 10110', 'subject id: 10027', 'subject id: 10566', 'subject id: 10989', 'subject id: 10227', 'subject id: 10380', 'subject id: 10286'], 2: ['treatment: Placebo to Guselkumab', 'treatment: Guselkumab', 'treatment: Adalimumab'], 3: ['time point: WK_0', 'time point: WK_4', 'time point: WK_24', 'time point: WK_48'], 4: ['skin: LS', 'skin: NL']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "7825ef45", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "3aa2f227", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:43:49.854726Z", "iopub.status.busy": "2025-03-25T03:43:49.854613Z", "iopub.status.idle": "2025-03-25T03:43:49.868795Z", "shell.execute_reply": "2025-03-25T03:43:49.868494Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Clinical data preview:\n", "{'GSM7992374': [1.0], 'GSM7992375': [0.0], 'GSM7992376': [1.0], 'GSM7992377': [0.0], 'GSM7992378': [1.0], 'GSM7992379': [0.0], 'GSM7992380': [1.0], 'GSM7992381': [0.0], 'GSM7992382': [1.0], 'GSM7992383': [0.0], 'GSM7992384': [1.0], 'GSM7992385': [0.0], 'GSM7992386': [1.0], 'GSM7992387': [0.0], 'GSM7992388': [1.0], 'GSM7992389': [1.0], 'GSM7992390': [0.0], 'GSM7992391': [1.0], 'GSM7992392': [1.0], 'GSM7992393': [0.0], 'GSM7992394': [1.0], 'GSM7992395': [1.0], 'GSM7992396': [1.0], 'GSM7992397': [1.0], 'GSM7992398': [1.0], 'GSM7992399': [1.0], 'GSM7992400': [1.0], 'GSM7992401': [1.0], 'GSM7992402': [1.0], 'GSM7992403': [1.0], 'GSM7992404': [1.0], 'GSM7992405': [1.0], 'GSM7992406': [1.0], 'GSM7992407': [1.0], 'GSM7992408': [1.0], 'GSM7992409': [1.0], 'GSM7992410': [1.0], 'GSM7992411': [1.0], 'GSM7992412': [1.0], 'GSM7992413': [1.0], 'GSM7992414': [1.0], 'GSM7992415': [1.0], 'GSM7992416': [1.0], 'GSM7992417': [1.0], 'GSM7992418': [1.0], 'GSM7992419': [1.0], 'GSM7992420': [1.0], 'GSM7992421': [1.0], 'GSM7992422': [1.0], 'GSM7992423': [1.0], 'GSM7992424': [1.0], 'GSM7992425': [1.0], 'GSM7992426': [0.0], 'GSM7992427': [1.0], 'GSM7992428': [0.0], 'GSM7992429': [1.0], 'GSM7992430': [0.0], 'GSM7992431': [1.0], 'GSM7992432': [1.0], 'GSM7992433': [0.0], 'GSM7992434': [1.0], 'GSM7992435': [1.0], 'GSM7992436': [1.0], 'GSM7992437': [1.0], 'GSM7992438': [1.0], 'GSM7992439': [1.0], 'GSM7992440': [1.0], 'GSM7992441': [1.0], 'GSM7992442': [0.0], 'GSM7992443': [1.0], 'GSM7992444': [0.0], 'GSM7992445': [1.0], 'GSM7992446': [1.0], 'GSM7992447': [1.0], 'GSM7992448': [1.0], 'GSM7992449': [1.0], 'GSM7992450': [1.0], 'GSM7992451': [1.0], 'GSM7992452': [1.0], 'GSM7992453': [1.0], 'GSM7992454': [1.0], 'GSM7992455': [1.0], 'GSM7992456': [1.0], 'GSM7992457': [1.0], 'GSM7992458': [1.0], 'GSM7992459': [1.0], 'GSM7992460': [1.0], 'GSM7992461': [1.0], 'GSM7992462': [1.0], 'GSM7992463': [1.0], 'GSM7992464': [1.0], 'GSM7992465': [1.0], 'GSM7992466': [1.0], 'GSM7992467': [1.0], 'GSM7992468': [1.0], 'GSM7992469': [1.0], 'GSM7992470': [1.0], 'GSM7992471': [1.0], 'GSM7992472': [1.0], 'GSM7992473': [1.0], 'GSM7992474': [1.0], 'GSM7992475': [1.0], 'GSM7992476': [1.0], 'GSM7992477': [1.0], 'GSM7992478': [1.0], 'GSM7992479': [1.0], 'GSM7992480': [1.0], 'GSM7992481': [0.0], 'GSM7992482': [1.0], 'GSM7992483': [0.0], 'GSM7992484': [1.0], 'GSM7992485': [1.0], 'GSM7992486': [0.0], 'GSM7992487': [1.0], 'GSM7992488': [0.0], 'GSM7992489': [1.0], 'GSM7992490': [0.0], 'GSM7992491': [1.0], 'GSM7992492': [1.0], 'GSM7992493': [1.0], 'GSM7992494': [1.0], 'GSM7992495': [0.0], 'GSM7992496': [0.0], 'GSM7992497': [0.0], 'GSM7992498': [1.0], 'GSM7992499': [1.0], 'GSM7992500': [0.0], 'GSM7992501': [0.0], 'GSM7992502': [1.0], 'GSM7992503': [1.0], 'GSM7992504': [1.0], 'GSM7992505': [1.0], 'GSM7992506': [1.0], 'GSM7992507': [1.0], 'GSM7992508': [1.0], 'GSM7992509': [1.0], 'GSM7992510': [1.0], 'GSM7992511': [1.0], 'GSM7992512': [0.0], 'GSM7992513': [0.0], 'GSM7992514': [1.0], 'GSM7992515': [1.0], 'GSM7992516': [0.0], 'GSM7992517': [1.0], 'GSM7992518': [1.0], 'GSM7992519': [0.0], 'GSM7992520': [1.0], 'GSM7992521': [0.0], 'GSM7992522': [1.0], 'GSM7992523': [0.0], 'GSM7992524': [1.0], 'GSM7992525': [0.0], 'GSM7992526': [0.0], 'GSM7992527': [1.0], 'GSM7992528': [0.0], 'GSM7992529': [1.0], 'GSM7992530': [0.0], 'GSM7992531': [1.0], 'GSM7992532': [1.0], 'GSM7992533': [1.0], 'GSM7992534': [1.0], 'GSM7992535': [1.0], 'GSM7992536': [1.0], 'GSM7992537': [1.0], 'GSM7992538': [1.0], 'GSM7992539': [0.0], 'GSM7992540': [1.0], 'GSM7992541': [1.0], 'GSM7992542': [1.0], 'GSM7992543': [1.0], 'GSM7992544': [1.0], 'GSM7992545': [1.0], 'GSM7992546': [1.0], 'GSM7992547': [1.0], 'GSM7992548': [1.0], 'GSM7992549': [1.0], 'GSM7992550': [0.0], 'GSM7992551': [1.0], 'GSM7992552': [1.0], 'GSM7992553': [0.0], 'GSM7992554': [1.0]}\n", "Clinical data saved to ../../output/preprocess/Psoriasis/clinical_data/GSE252029.csv\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# From the background information, we can see that this dataset contains gene expression data\n", "# using GeneChip HT HG-U133+ PM 96-Array Plate (Affymetrix)\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# Looking at the sample characteristics dictionary:\n", "\n", "# 2.1 Trait (Psoriasis)\n", "# From the dictionary, we can see this is a psoriasis dataset\n", "# The skin type (LS = Lesional Skin, NL = Nonlesional Skin) at key 4 indicates psoriasis status\n", "trait_row = 4\n", "\n", "def convert_trait(value):\n", " \"\"\"Convert skin type to binary trait status (Psoriasis)\"\"\"\n", " if pd.isna(value):\n", " return None\n", " \n", " # Extract the value after the colon\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # LS (Lesional Skin) indicates psoriasis is present (1)\n", " # NL (Nonlesional Skin) indicates psoriasis is not present (0)\n", " if value.upper() == \"LS\":\n", " return 1\n", " elif value.upper() == \"NL\":\n", " return 0\n", " else:\n", " return None\n", "\n", "# 2.2 Age\n", "# There is no age information in the sample characteristics dictionary\n", "age_row = None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age to continuous value\"\"\"\n", " # This function won't be used but needs to be defined\n", " if pd.isna(value):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except:\n", " return None\n", "\n", "# 2.3 Gender\n", "# There is no gender information in the sample characteristics dictionary\n", "gender_row = None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender to binary value\"\"\"\n", " # This function won't be used but needs to be defined\n", " if pd.isna(value):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " value = value.lower()\n", " if value in [\"female\", \"f\"]:\n", " return 0\n", " elif value in [\"male\", \"m\"]:\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Check if trait data is available\n", "is_trait_available = trait_row is not None\n", "\n", "# Validate and save cohort info (initial filtering)\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Since trait_row is not None, we need to extract clinical features\n", "if trait_row is not None:\n", " clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the clinical data\n", " preview = preview_df(clinical_df)\n", " print(\"Clinical data preview:\")\n", " print(preview)\n", " \n", " # Save the clinical data to CSV\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "e1a6f15d", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "109748db", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:43:49.869802Z", "iopub.status.busy": "2025-03-25T03:43:49.869693Z", "iopub.status.idle": "2025-03-25T03:43:50.548807Z", "shell.execute_reply": "2025-03-25T03:43:50.548418Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "First 20 gene/probe identifiers:\n", "Index(['1007_PM_s_at', '1053_PM_at', '117_PM_at', '121_PM_at', '1255_PM_g_at',\n", " '1294_PM_at', '1316_PM_at', '1320_PM_at', '1405_PM_i_at', '1431_PM_at',\n", " '1438_PM_at', '1487_PM_at', '1494_PM_f_at', '1552256_PM_a_at',\n", " '1552257_PM_a_at', '1552258_PM_at', '1552261_PM_at', '1552263_PM_at',\n", " '1552264_PM_a_at', '1552266_PM_at'],\n", " dtype='object', name='ID')\n", "\n", "Gene data dimensions: 54715 genes × 181 samples\n" ] } ], "source": [ "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Extract the gene expression data from the matrix file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers)\n", "print(\"\\nFirst 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n", "\n", "# 4. Print the dimensions of the gene expression data\n", "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "\n", "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n", "is_gene_available = True\n" ] }, { "cell_type": "markdown", "id": "983f5abf", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "7e5aa695", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:43:50.550578Z", "iopub.status.busy": "2025-03-25T03:43:50.550450Z", "iopub.status.idle": "2025-03-25T03:43:50.552376Z", "shell.execute_reply": "2025-03-25T03:43:50.552086Z" } }, "outputs": [], "source": [ "# These identifiers appear to be Affymetrix probe IDs (like '1007_PM_s_at') from an Affymetrix microarray platform\n", "# They are not standard human gene symbols and will need to be mapped to proper gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "8fcf4fa8", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "53f594a5", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:43:50.553873Z", "iopub.status.busy": "2025-03-25T03:43:50.553763Z", "iopub.status.idle": "2025-03-25T03:44:02.393555Z", "shell.execute_reply": "2025-03-25T03:44:02.392981Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation dataframe column names:\n", "Index(['ID', 'GB_ACC', 'SPOT_ID', 'Species Scientific Name', 'Annotation Date',\n", " 'Sequence Type', 'Sequence Source', 'Target Description',\n", " 'Representative Public ID', 'Gene Title', 'Gene Symbol',\n", " 'ENTREZ_GENE_ID', 'RefSeq Transcript ID',\n", " 'Gene Ontology Biological Process', 'Gene Ontology Cellular Component',\n", " 'Gene Ontology Molecular Function'],\n", " dtype='object')\n", "\n", "Preview of gene annotation data:\n", "{'ID': ['1007_PM_s_at', '1053_PM_at', '117_PM_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757'], 'SPOT_ID': [nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\"], 'Representative Public ID': ['U48705', 'M87338', 'X51757'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\"], 'Gene Symbol': ['DDR1', 'RFC2', 'HSPA6'], 'ENTREZ_GENE_ID': ['780', '5982', '3310'], 'RefSeq Transcript ID': ['NM_001954 /// NM_013993 /// NM_013994', 'NM_002914 /// NM_181471', 'NM_002155'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein amino acid phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0031100 // organ regeneration // inferred from electronic annotation /// 0043583 // ear development // inferred from electronic annotation /// 0043588 // skin development // inferred from electronic annotation /// 0051789 // response to protein stimulus // inferred from electronic annotation /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation', '0006260 // DNA replication // not recorded /// 0006260 // DNA replication // inferred from electronic annotation /// 0006297 // nucleotide-excision repair, DNA gap filling // not recorded /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation', '0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from electronic annotation /// 0005887 // integral to plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral to membrane // inferred from electronic annotation /// 0016323 // basolateral plasma membrane // inferred from electronic annotation', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // not recorded /// 0005663 // DNA replication factor C complex // inferred from direct assay /// 0005663 // DNA replication factor C complex // inferred from electronic annotation', nan], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0004872 // receptor activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005515 // protein binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0003689 // DNA clamp loader activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0005524 // ATP binding // traceable author statement /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation']}\n" ] } ], "source": [ "# 1. First get the file paths using geo_get_relevant_filepaths function\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Extract gene annotation data from the SOFT file\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 3. Preview the gene annotation dataframe\n", "print(\"Gene annotation dataframe column names:\")\n", "print(gene_annotation.columns)\n", "\n", "# Preview the first few rows to understand the data structure\n", "print(\"\\nPreview of gene annotation data:\")\n", "annotation_preview = preview_df(gene_annotation, n=3)\n", "print(annotation_preview)\n", "\n", "# Maintain gene availability status as True based on previous steps\n", "is_gene_available = True\n" ] }, { "cell_type": "markdown", "id": "db393525", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "18d06898", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:44:02.395073Z", "iopub.status.busy": "2025-03-25T03:44:02.394942Z", "iopub.status.idle": "2025-03-25T03:44:03.109328Z", "shell.execute_reply": "2025-03-25T03:44:03.108930Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Gene data dimensions after mapping: 18989 genes × 181 samples\n", "\n", "Sample of gene symbols after mapping:\n", "Index(['A1BG', 'A1CF', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT',\n", " 'AAA1', 'AAAS'],\n", " dtype='object', name='Gene')\n" ] } ], "source": [ "# 1. Determine which columns contain the probe IDs and gene symbols\n", "# Looking at the previews, 'ID' column in gene_annotation matches the indices in gene_data (probe IDs)\n", "# 'Gene Symbol' contains the corresponding gene symbols\n", "\n", "# 2. Extract gene mapping from the annotation\n", "mapping_df = get_gene_mapping(\n", " annotation=gene_annotation,\n", " prob_col='ID',\n", " gene_col='Gene Symbol'\n", ")\n", "\n", "# 3. Apply the gene mapping to convert probes to gene expressions\n", "gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)\n", "\n", "# 4. Check the dimensionality change after mapping\n", "print(f\"\\nGene data dimensions after mapping: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "\n", "# 5. Print a sample of the first few gene symbols after mapping\n", "print(\"\\nSample of gene symbols after mapping:\")\n", "print(gene_data.index[:10])\n" ] }, { "cell_type": "markdown", "id": "fe621746", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "aa138324", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:44:03.111780Z", "iopub.status.busy": "2025-03-25T03:44:03.111627Z", "iopub.status.idle": "2025-03-25T03:44:21.890634Z", "shell.execute_reply": "2025-03-25T03:44:21.890082Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalizing gene symbols...\n", "Gene data shape after normalization: 18622 genes × 181 samples\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene expression data saved to ../../output/preprocess/Psoriasis/gene_data/GSE252029.csv\n", "Extracting clinical features from the original source...\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Extracted clinical features preview:\n", "{'GSM7992374': [1.0], 'GSM7992375': [0.0], 'GSM7992376': [1.0], 'GSM7992377': [0.0], 'GSM7992378': [1.0], 'GSM7992379': [0.0], 'GSM7992380': [1.0], 'GSM7992381': [0.0], 'GSM7992382': [1.0], 'GSM7992383': [0.0], 'GSM7992384': [1.0], 'GSM7992385': [0.0], 'GSM7992386': [1.0], 'GSM7992387': [0.0], 'GSM7992388': [1.0], 'GSM7992389': [1.0], 'GSM7992390': [0.0], 'GSM7992391': [1.0], 'GSM7992392': [1.0], 'GSM7992393': [0.0], 'GSM7992394': [1.0], 'GSM7992395': [1.0], 'GSM7992396': [1.0], 'GSM7992397': [1.0], 'GSM7992398': [1.0], 'GSM7992399': [1.0], 'GSM7992400': [1.0], 'GSM7992401': [1.0], 'GSM7992402': [1.0], 'GSM7992403': [1.0], 'GSM7992404': [1.0], 'GSM7992405': [1.0], 'GSM7992406': [1.0], 'GSM7992407': [1.0], 'GSM7992408': [1.0], 'GSM7992409': [1.0], 'GSM7992410': [1.0], 'GSM7992411': [1.0], 'GSM7992412': [1.0], 'GSM7992413': [1.0], 'GSM7992414': [1.0], 'GSM7992415': [1.0], 'GSM7992416': [1.0], 'GSM7992417': [1.0], 'GSM7992418': [1.0], 'GSM7992419': [1.0], 'GSM7992420': [1.0], 'GSM7992421': [1.0], 'GSM7992422': [1.0], 'GSM7992423': [1.0], 'GSM7992424': [1.0], 'GSM7992425': [1.0], 'GSM7992426': [0.0], 'GSM7992427': [1.0], 'GSM7992428': [0.0], 'GSM7992429': [1.0], 'GSM7992430': [0.0], 'GSM7992431': [1.0], 'GSM7992432': [1.0], 'GSM7992433': [0.0], 'GSM7992434': [1.0], 'GSM7992435': [1.0], 'GSM7992436': [1.0], 'GSM7992437': [1.0], 'GSM7992438': [1.0], 'GSM7992439': [1.0], 'GSM7992440': [1.0], 'GSM7992441': [1.0], 'GSM7992442': [0.0], 'GSM7992443': [1.0], 'GSM7992444': [0.0], 'GSM7992445': [1.0], 'GSM7992446': [1.0], 'GSM7992447': [1.0], 'GSM7992448': [1.0], 'GSM7992449': [1.0], 'GSM7992450': [1.0], 'GSM7992451': [1.0], 'GSM7992452': [1.0], 'GSM7992453': [1.0], 'GSM7992454': [1.0], 'GSM7992455': [1.0], 'GSM7992456': [1.0], 'GSM7992457': [1.0], 'GSM7992458': [1.0], 'GSM7992459': [1.0], 'GSM7992460': [1.0], 'GSM7992461': [1.0], 'GSM7992462': [1.0], 'GSM7992463': [1.0], 'GSM7992464': [1.0], 'GSM7992465': [1.0], 'GSM7992466': [1.0], 'GSM7992467': [1.0], 'GSM7992468': [1.0], 'GSM7992469': [1.0], 'GSM7992470': [1.0], 'GSM7992471': [1.0], 'GSM7992472': [1.0], 'GSM7992473': [1.0], 'GSM7992474': [1.0], 'GSM7992475': [1.0], 'GSM7992476': [1.0], 'GSM7992477': [1.0], 'GSM7992478': [1.0], 'GSM7992479': [1.0], 'GSM7992480': [1.0], 'GSM7992481': [0.0], 'GSM7992482': [1.0], 'GSM7992483': [0.0], 'GSM7992484': [1.0], 'GSM7992485': [1.0], 'GSM7992486': [0.0], 'GSM7992487': [1.0], 'GSM7992488': [0.0], 'GSM7992489': [1.0], 'GSM7992490': [0.0], 'GSM7992491': [1.0], 'GSM7992492': [1.0], 'GSM7992493': [1.0], 'GSM7992494': [1.0], 'GSM7992495': [0.0], 'GSM7992496': [0.0], 'GSM7992497': [0.0], 'GSM7992498': [1.0], 'GSM7992499': [1.0], 'GSM7992500': [0.0], 'GSM7992501': [0.0], 'GSM7992502': [1.0], 'GSM7992503': [1.0], 'GSM7992504': [1.0], 'GSM7992505': [1.0], 'GSM7992506': [1.0], 'GSM7992507': [1.0], 'GSM7992508': [1.0], 'GSM7992509': [1.0], 'GSM7992510': [1.0], 'GSM7992511': [1.0], 'GSM7992512': [0.0], 'GSM7992513': [0.0], 'GSM7992514': [1.0], 'GSM7992515': [1.0], 'GSM7992516': [0.0], 'GSM7992517': [1.0], 'GSM7992518': [1.0], 'GSM7992519': [0.0], 'GSM7992520': [1.0], 'GSM7992521': [0.0], 'GSM7992522': [1.0], 'GSM7992523': [0.0], 'GSM7992524': [1.0], 'GSM7992525': [0.0], 'GSM7992526': [0.0], 'GSM7992527': [1.0], 'GSM7992528': [0.0], 'GSM7992529': [1.0], 'GSM7992530': [0.0], 'GSM7992531': [1.0], 'GSM7992532': [1.0], 'GSM7992533': [1.0], 'GSM7992534': [1.0], 'GSM7992535': [1.0], 'GSM7992536': [1.0], 'GSM7992537': [1.0], 'GSM7992538': [1.0], 'GSM7992539': [0.0], 'GSM7992540': [1.0], 'GSM7992541': [1.0], 'GSM7992542': [1.0], 'GSM7992543': [1.0], 'GSM7992544': [1.0], 'GSM7992545': [1.0], 'GSM7992546': [1.0], 'GSM7992547': [1.0], 'GSM7992548': [1.0], 'GSM7992549': [1.0], 'GSM7992550': [0.0], 'GSM7992551': [1.0], 'GSM7992552': [1.0], 'GSM7992553': [0.0], 'GSM7992554': [1.0]}\n", "Clinical data shape: (1, 181)\n", "Clinical features saved to ../../output/preprocess/Psoriasis/clinical_data/GSE252029.csv\n", "Linking clinical and genetic data...\n", "Linked data shape: (181, 18623)\n", "Handling missing values...\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Data shape after handling missing values: (181, 18623)\n", "\n", "Checking for bias in feature variables:\n", "For the feature 'Psoriasis', the least common label is '0.0' with 38 occurrences. This represents 20.99% of the dataset.\n", "The distribution of the feature 'Psoriasis' in this dataset is fine.\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data saved to ../../output/preprocess/Psoriasis/GSE252029.csv\n", "Final dataset shape: (181, 18623)\n" ] } ], "source": [ "# 1. Check if gene data is available after mapping\n", "if gene_data.shape[0] == 0:\n", " print(\"Error: Gene expression matrix is empty after mapping.\")\n", " # Mark the dataset as not usable due to lack of gene expression data\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=False, # No usable gene data\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"Failed to map probe IDs to gene symbols. The annotation format may not be compatible with the extraction methods.\"\n", " )\n", " print(\"Dataset deemed not usable due to lack of gene expression data.\")\n", "else:\n", " # Only proceed with normalization if we have gene data\n", " print(\"Normalizing gene symbols...\")\n", " gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n", " print(f\"Gene data shape after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n", "\n", " # Save the normalized gene data\n", " os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", " gene_data_normalized.to_csv(out_gene_data_file)\n", " print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n", " \n", " # Extract clinical features from the original data source\n", " print(\"Extracting clinical features from the original source...\")\n", " # Get background information and clinical data again\n", " background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", " clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", " background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " print(\"Extracted clinical features preview:\")\n", " print(preview_df(selected_clinical_df))\n", " print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n", " \n", " # Save the extracted clinical features\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n", " \n", " # Link clinical and genetic data\n", " print(\"Linking clinical and genetic data...\")\n", " linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data_normalized)\n", " print(f\"Linked data shape: {linked_data.shape}\")\n", " \n", " # Check if the linked data has adequate data\n", " if linked_data.shape[0] == 0 or linked_data.shape[1] <= 4: # 4 is an arbitrary small number\n", " print(\"Error: Linked data has insufficient samples or features.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=linked_data,\n", " note=\"Failed to properly link gene expression data with clinical features.\"\n", " )\n", " print(\"Dataset deemed not usable due to linking failure.\")\n", " else:\n", " # Handle missing values systematically\n", " print(\"Handling missing values...\")\n", " linked_data_clean = handle_missing_values(linked_data, trait_col=trait)\n", " print(f\"Data shape after handling missing values: {linked_data_clean.shape}\")\n", " \n", " # Check if there are still samples after missing value handling\n", " if linked_data_clean.shape[0] == 0:\n", " print(\"Error: No samples remain after handling missing values.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"All samples were removed during missing value handling.\"\n", " )\n", " print(\"Dataset deemed not usable as all samples were filtered out.\")\n", " else:\n", " # Check if the dataset is biased\n", " print(\"\\nChecking for bias in feature variables:\")\n", " is_biased, linked_data_final = judge_and_remove_biased_features(linked_data_clean, trait)\n", " \n", " # Conduct final quality validation\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data_final,\n", " note=\"Dataset contains gene expression data for Crohn's Disease patients, examining response to Infliximab treatment.\"\n", " )\n", " \n", " # Save linked data if usable\n", " if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data_final.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " print(f\"Final dataset shape: {linked_data_final.shape}\")\n", " else:\n", " print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }