{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "7491392e", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Alzheimers_Disease\"\n", "cohort = \"GSE109887\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Alzheimers_Disease\"\n", "in_cohort_dir = \"../../input/GEO/Alzheimers_Disease/GSE109887\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Alzheimers_Disease/GSE109887.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Alzheimers_Disease/gene_data/GSE109887.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Alzheimers_Disease/clinical_data/GSE109887.csv\"\n", "json_path = \"../../output/preprocess/Alzheimers_Disease/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "30656eb1", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "e614c493", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "2809aba3", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "c7c52aef", "metadata": {}, "outputs": [], "source": [ "# 1. Determine if gene expression data is available\n", "# Based on the background information, this dataset contains gene expression data from Illumina HumanHT-12 V4.0\n", "is_gene_available = True\n", "\n", "# 2. Data Availability and Type Conversion Functions\n", "# 2.1 Identify rows in sample characteristics where data is recorded\n", "trait_row = 3 # The trait (AD vs Control) is in row 3 as 'disease state'\n", "age_row = 1 # Age is in row 1\n", "gender_row = 0 # Gender is in row 0\n", "\n", "# 2.2 Data type conversion functions\n", "def convert_trait(value):\n", " \"\"\"Convert trait values to binary (0 for Control, 1 for AD)\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Split by colon and get the value part\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to binary\n", " if value.lower() == \"ad\" or value.lower() == \"alzheimer's disease\":\n", " return 1\n", " elif value.lower() == \"control\":\n", " return 0\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age values to continuous numeric values\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Split by colon and get the value part\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to float if possible\n", " try:\n", " return float(value)\n", " except ValueError:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender values to binary (0 for Female, 1 for Male)\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Split by colon and get the value part\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to binary\n", " if value.lower() == \"male\":\n", " return 1\n", " elif value.lower() == \"female\":\n", " return 0\n", " else:\n", " return None\n", "\n", "# 3. Save metadata\n", "# Determine if trait data is available\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Since trait_row is not None, we need to extract clinical features\n", "if trait_row is not None:\n", " # Define the sample characteristics dictionary from the previous output\n", " sample_char_dict = {\n", " 0: ['gender: Male', 'gender: Female'], \n", " 1: ['age: 91', 'age: 87', 'age: 82', 'age: 73', 'age: 94', 'age: 72', 'age: 90', 'age: 86', \n", " 'age: 92', 'age: 81', 'age: 95', 'age: 75', 'age: 77', 'age: 84', 'age: 85', 'age: 89', \n", " 'age: 78', 'age: 70', 'age: 88', 'age: 79'], \n", " 2: ['tissue: brain, middle temporal gyrus'], \n", " 3: ['disease state: AD', 'disease state: Control']\n", " }\n", " \n", " # Create a compatible DataFrame for geo_select_clinical_features\n", " # The function expects a DataFrame where rows are features and columns are samples\n", " # For this test case, we'll create a minimal DataFrame with the expected structure\n", " # Create a dummy DataFrame with the right structure\n", " data = {}\n", " for i in range(2): # Create 2 sample columns for testing\n", " col_name = f\"GSM{i+1}\"\n", " data[col_name] = [\n", " sample_char_dict[0][i % len(sample_char_dict[0])], # Gender\n", " sample_char_dict[1][i % len(sample_char_dict[1])], # Age\n", " sample_char_dict[2][0], # Tissue (constant)\n", " sample_char_dict[3][i % len(sample_char_dict[3])] # Disease state\n", " ]\n", " \n", " clinical_data = pd.DataFrame(data)\n", " \n", " # Extract clinical features using the geo_select_clinical_features function\n", " selected_clinical_data = geo_select_clinical_features(\n", " clinical_data, \n", " trait=trait, \n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical data\n", " print(\"Preview of extracted clinical data:\")\n", " print(preview_df(selected_clinical_data))\n", " \n", " # Save the clinical data to CSV\n", " selected_clinical_data.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "b28ab1ae", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "6746b4a1", "metadata": {}, "outputs": [], "source": [ "# 1. First get the file paths again to access the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n", "print(\"First 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "53882535", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "6bc25cff", "metadata": {}, "outputs": [], "source": [ "# Review the gene identifiers\n", "# Looking at the first 20 identifiers shows a mix of conventional gene symbols like A1BG, A2M, AAAS, AACS\n", "# These appear to be standard human gene symbols (HGNC symbols)\n", "# Names like A1CF, A2BP1, etc. are older gene symbols that have been updated in newer nomenclature\n", "# There are also some less common identifiers like 7A5 and AAA1, but overall these appear to be gene symbols\n", "\n", "requires_gene_mapping = False\n" ] }, { "cell_type": "markdown", "id": "db9b7325", "metadata": {}, "source": [ "### Step 5: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "62d8734b", "metadata": {}, "outputs": [], "source": [ "# 1. First get the file paths using geo_get_relevant_filepaths function\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Extract gene expression data from the matrix file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Since we determined that gene mapping is not required (requires_gene_mapping = False),\n", "# we can directly normalize the gene symbols in the index\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Original gene data shape: {gene_data.shape}\")\n", "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n", "\n", "# Save the processed gene data to file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Processed gene data saved to {out_gene_data_file}\")\n", "\n", "# 4. Re-extract clinical data properly\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "_, clinical_raw = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# Define conversion functions again to ensure they're available\n", "def convert_trait(value):\n", " \"\"\"Convert trait values to binary (0 for Control, 1 for AD)\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Split by colon and get the value part\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to binary\n", " if value.lower() == \"ad\" or value.lower() == \"alzheimer's disease\":\n", " return 1\n", " elif value.lower() == \"control\":\n", " return 0\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age values to continuous numeric values\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Split by colon and get the value part\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to float if possible\n", " try:\n", " return float(value)\n", " except ValueError:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender values to binary (0 for Female, 1 for Male)\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Split by colon and get the value part\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to binary\n", " if value.lower() == \"male\":\n", " return 1\n", " elif value.lower() == \"female\":\n", " return 0\n", " else:\n", " return None\n", "\n", "# Extract clinical features properly\n", "clinical_data = geo_select_clinical_features(\n", " clinical_raw, \n", " trait=trait, \n", " trait_row=3, # From previous step\n", " convert_trait=convert_trait,\n", " age_row=1, # From previous step\n", " convert_age=convert_age,\n", " gender_row=0, # From previous step\n", " convert_gender=convert_gender\n", ")\n", "\n", "print(f\"Clinical data shape: {clinical_data.shape}\")\n", "print(\"Clinical data preview:\")\n", "print(preview_df(clinical_data.T))\n", "\n", "# Save the extracted clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_data.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# 5. Link the clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# 6. Handle missing values in the linked data\n", "# The trait column name should be 'Alzheimers_Disease' based on the variable we passed to geo_select_clinical_features\n", "linked_data = handle_missing_values(linked_data, trait_col=trait)\n", "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 7. Evaluate whether the trait and demographic features are biased\n", "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 8. Conduct final quality validation and save cohort info\n", "note = \"Gene expression data from Illumina HumanHT-12 V4.0 in middle temporal gyrus brain tissue.\"\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=note\n", ")\n", "\n", "# 9. Save the linked data if it is usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file, index=True)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(f\"Dataset {cohort} was determined to be unusable due to bias or other issues. Data not saved.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }