# Path Configuration from tools.preprocess import * # Processing context trait = "Adrenocortical_Cancer" cohort = "GSE19776" # Input paths in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE19776" # Output paths out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE19776.csv" out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE19776.csv" out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE19776.csv" json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Decide if the dataset contains gene expression data # Based on the series title "Adrenocortical Carcinoma Gene Expression Profiling", # we conclude that it is likely to contain gene expression data. is_gene_available = True # Step 2: Variable Availability and Data Type Conversion # 2.1 Identify Rows # - trait: We see only "tissue: adrenocortical carcinoma" under key 0. This is a single unique value, # which is uninformative for association. Hence treat it as not available for the trait. trait_row = None # - age: Found under key 5 (multiple distinct values, some are "age: Unknown"). age_row = 5 # - gender: Found under key 4 (M/F). Multiple values, not constant. gender_row = 4 # 2.2 Define Conversion Functions def convert_trait(x: str) -> int: """ Returns None because trait is not available (single unique value in dataset). This function is a placeholder to adhere to the required interface. """ return None def convert_age(x: str) -> float: """ Convert the substring after 'age:' to float if possible. If it's 'Unknown' or non-parsable, return None. """ val = x.split(':')[-1].strip() if val.lower() == "unknown": return None try: return float(val) except ValueError: return None def convert_gender(x: str) -> int: """ Convert 'gender: F' -> 0, 'gender: M' -> 1. If the value is unknown or doesn't match, return None. """ val = x.split(':')[-1].strip().upper() if val == 'F': return 0 elif val == 'M': return 1 return None # Step 3: Save initial filtering metadata # Trait data is not available if trait_row is None is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Extract clinical features only if trait_row is not None # Since trait_row = None, we skip clinical feature extraction. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The provided gene identifiers are all numeric, which are not standard human gene symbols. # They likely refer to probe IDs or some other numeric format. # Therefore, gene mapping to human gene symbols is required. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # Reviewer feedback indicates a mismatch between the numeric row IDs in the gene expression dataframe # (e.g., "3", "4", "5") and the probe IDs in the annotation file (e.g., "1007_s_at", "1053_at"). # Because there is no overlap, a direct mapping is not possible with the provided annotation. # We'll demonstrate a fallback approach: we attempt to match, but if no overlap is found, we skip mapping. # 1. Decide which columns in the annotation *would* store the probe IDs and gene symbols if they matched. probe_col = "ID" gene_col = "Gene Symbol" # 2. Extract the potential mapping dataframe. mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col) # 3. Check for any intersection in identifiers before applying the mapping. common_ids = set(gene_data.index).intersection(mapping_df['ID']) if len(common_ids) == 0: print("No matching identifiers found between gene expression data and annotation. Skipping gene mapping.") else: gene_data = apply_gene_mapping(gene_data, mapping_df) print("Gene mapping applied successfully.") # STEP 7: Data Normalization and Linking # In this dataset, we determined in Step 2 that trait data is not available (trait_row = None). # Therefore, we cannot link clinical and genetic data or perform trait-based processing. # Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation. # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) # 2. Since trait data is missing, skip linking clinical and genetic data, # skip missing-value handling and bias detection for the trait. # 3. Conduct final validation and record info. # Since trait data is unavailable, set is_trait_available=False, # pass a dummy/empty DataFrame and is_biased=False (it won't be used). dummy_df = pd.DataFrame() is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, df=dummy_df, note="No trait data found; skipped clinical-linking steps." ) # 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data. if is_usable: dummy_df.to_csv(out_data_file, index=True)