# Path Configuration from tools.preprocess import * # Processing context trait = "Adrenocortical_Cancer" cohort = "GSE67766" # Input paths in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE67766" # Output paths out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE67766.csv" out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE67766.csv" out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE67766.csv" json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available is_gene_available = True # Based on background context, we assume gene expression data is present # 2. Determine availability for trait, age, and gender from the sample characteristics dictionary # Given the dictionary: {0: ['cell line: SW-13']}, there is no variation or explicit mention # of trait, age, or gender. Hence, they are all considered unavailable. trait_row = None age_row = None gender_row = None # 2.2 Define data type conversion functions def convert_trait(x: str): # No trait data available. Return None for any input. return None def convert_age(x: str): # No age data available. Return None for any input. return None def convert_gender(x: str): # No gender data available. Return None for any input. return None # 3. Save Metadata (initial filtering) # 'is_trait_available' is False because 'trait_row' is None is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since 'trait_row' is None, we skip this step (no clinical data to extract). # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These gene identifiers ('ILMN_...') are Illumina probe IDs rather than standard human gene symbols. # Hence, gene mapping to official symbols is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1) Identify the columns for gene identifier and gene symbol based on the annotation preview. probe_col = "ID" symbol_col = "Symbol" # 2) Build the gene mapping dataframe from the annotation dataframe. mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col) # 3) Apply the mapping to convert probe-level expression to gene-level expression. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) # Since trait data is unavailable (trait_row = None), we cannot link or analyze trait/demographic features. # We must finalize this dataset as unusable for downstream analysis. # Provide a dummy dataframe and a boolean for is_biased to satisfy the library requirements. import pandas as pd empty_df = pd.DataFrame() # 5. Perform final quality validation and save cohort info. # We set is_biased=False to fulfill the function parameters; it will still result in is_usable=False # because is_trait_available=False. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, df=empty_df, note="No trait data available for this cohort." ) # 6. Since no trait data is available, is_usable must be False, so we skip saving the final linked data.