# Path Configuration from tools.preprocess import * # Processing context trait = "Adrenocortical_Cancer" cohort = "GSE68606" # Input paths in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE68606" # Output paths out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE68606.csv" out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE68606.csv" out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE68606.csv" json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability # Based on the "Assay Type: Gene Expression" and "Affymetrix Human Genome U133A arrays" in the metadata, # we conclude that this dataset likely contains gene expression data. is_gene_available = True # 2) Variable Availability and Data Type Conversion # 2.1 Identify availability of 'trait', 'age', and 'gender' by looking at the Sample Characteristics Dictionary # We did not find "Adrenocortical_Cancer" or an equivalent entry in any row, # so trait data is considered not available. trait_row = None # Age data is present in row 6 with multiple unique numeric values. age_row = 6 # Gender data is present in row 5 (female/male). gender_row = 5 # 2.2 Define conversion functions for each variable def convert_trait(x: str): # Trait data is not available in this dataset, return None for all inputs. return None def convert_age(x: str): # Extract the substring after the colon and strip whitespace val = x.split(":", 1)[-1].strip() # Convert to integer if possible, otherwise None return int(val) if val.isdigit() else None def convert_gender(x: str): # Extract the substring after the colon and strip whitespace val = x.split(":", 1)[-1].strip().lower() if val == "female": return 0 elif val == "male": return 1 else: return None # 3) Save Metadata (Initial Filtering) is_trait_available = (trait_row is not None) # False in this case validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction # Skip this step because trait_row is None (no trait data available). # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., '1007_s_at', '1053_at') are Affymetrix probe set IDs, not human gene symbols. # Therefore, they require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1) The key for the probe identifiers in the gene annotation is "ID", # and the key for the gene symbols is "Gene Symbol". # 2) Build a gene mapping dataframe using those two columns. gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # 3) Apply the mapping to convert probe-level measurements to gene expression data. gene_data = apply_gene_mapping(gene_data, gene_mapping) # STEP 7: Data Normalization and Linking # Even though we lack trait data, it's still valuable to finalize gene-level data. # 1. Normalize gene symbols and save the normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) # Since trait_row = None, there's no trait data to link or analyze. # We cannot produce a linked dataset or evaluate trait bias in a meaningful way. # However, the task instructions request a "final" validation. import pandas as pd # Provide a dummy DataFrame and set is_biased to False # so that validate_and_save_cohort_info can finalize and mark this dataset as unusable for trait analysis. empty_df = pd.DataFrame() is_biased = False is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # We do have gene data is_trait_available=False, # But no trait data is_biased=is_biased, # Arbitrarily set to False since no trait is present df=empty_df, # An empty DataFrame to satisfy the function's requirements note="No trait data available, so no final linked dataset can be produced." ) # 6. Because the dataset is not usable for trait-based analysis, we do not save a final linked dataset.