# Path Configuration from tools.preprocess import * # Processing context trait = "Adrenocortical_Cancer" cohort = "GSE90713" # Input paths in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE90713" # Output paths out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE90713.csv" out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE90713.csv" out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE90713.csv" json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Determine if gene expression data is available is_gene_available = True # Based on the series description showing Affymetrix microarray gene expression # 2) Identify availability of trait, age, and gender data trait_row = 0 # "tissue: adrenocortical carcinoma" vs. "tissue: normal adrenal" age_row = None # No age-related information found gender_row = None # No gender-related information found # 2) Data type conversion functions def convert_trait(x: str) -> Optional[int]: """ Convert the tissue annotation to binary values for adrenocortical carcinoma (1) or normal adrenal (0). Unknown values return None. """ parts = x.split(':') if len(parts) < 2: return None val = parts[-1].strip().lower() if val in ["adrenocortical carcinoma", "acc", "tumor"]: return 1 elif val in ["normal adrenal", "normal"]: return 0 else: return None def convert_age(x: str) -> Optional[float]: """No age data available, so always return None.""" return None def convert_gender(x: str) -> Optional[int]: """No gender data available, so always return None.""" return None # 3) Initial filtering and metadata saving is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Extract clinical features if trait_row is not None if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save the extracted clinical features preview_result = preview_df(selected_clinical_df) print("Preview of Clinical Data:", preview_result) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., "11715100_at", "11715101_s_at") appear to be Affymetrix probe set IDs, # not standard human gene symbols. Hence, gene symbol mapping is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in the annotation that match our probe IDs and gene symbols: # - Probe ID column: 'ID' # - Gene Symbol column: 'Gene Symbol' probe_col = 'ID' gene_symbol_col = 'Gene Symbol' # 2. Generate a gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) # 3. Apply the gene mapping to convert probe-level expression to gene-level expression gene_data = apply_gene_mapping(gene_data, mapping_df) # Print a quick preview of the first few rows after mapping print("Mapped Gene Expression Data (first 5 rows):") print(gene_data.head(5)) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols and save the normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) # 2. Link clinical and genetic data on sample IDs # "selected_clinical_df" was defined in a previous step, so we can use it directly. linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically processed_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are severely biased trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait) # 5. Final quality validation and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=processed_data, note="Trait data present and mapped from step 2." ) # 6. Save the final linked data only if usable if is_usable: processed_data.to_csv(out_data_file, index=True)