# Path Configuration from tools.preprocess import * # Processing context trait = "Allergies" cohort = "GSE169149" # Input paths in_trait_dir = "../DATA/GEO/Allergies" in_cohort_dir = "../DATA/GEO/Allergies/GSE169149" # Output paths out_data_file = "./output/preprocess/1/Allergies/GSE169149.csv" out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE169149.csv" out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE169149.csv" json_path = "./output/preprocess/1/Allergies/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine gene expression availability is_gene_available = True # Based on the background, we assume this dataset likely contains gene expression data. # Step 2: Identify data availability for 'trait', 'age', and 'gender' # According to the sample characteristics dictionary, there is no mention of "Allergies," "age," or "gender." trait_row = None age_row = None gender_row = None # Step 2.2: Define data type conversion functions def convert_trait(value: str) -> Optional[int]: # No actual data for 'Allergies' in this dataset return None def convert_age(value: str) -> Optional[float]: # No age information in this dataset return None def convert_gender(value: str) -> Optional[int]: # No gender information in this dataset return None # Step 3: Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: If trait data is available, extract clinical features; otherwise, skip. if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical_df) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the numeric nature of these identifiers, they do not appear to be conventional human gene symbols. # Therefore, they require mapping to known gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which columns map the same kind of IDs as the gene expression data and which store the gene symbols # From the annotation preview, the "ID" column matches the expression data identifiers (1, 2, 3, ...). # The "Assay" column appears to contain the gene symbols. # 2. Extract a gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Assay") # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # Display the first few rows of the resulting gene expression dataframe for verification print(gene_data.head()) import pandas as pd # STEP 7: Data Normalization and (Conditional) Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) print(f"Saved normalized gene data to {out_gene_data_file}") # Since trait_row was None in step 2, we have no clinical features extracted. # Hence 'clinical_data_selected' does not exist, and there is no trait column to link or to analyze. # We will proceed with final validation using the fact that trait data is unavailable. is_trait_available = False is_gene_available = True # As concluded in step 2, it is a gene expression dataset if not is_trait_available: # Without trait data, we cannot link or do the usual missing-value handling by trait. # We still provide the normalized_gene_data to the validator (though it won't be used for trait analysis). final_data = normalized_gene_data is_biased = False # We must supply a boolean; no trait data => cannot assess bias # 5. Final quality validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available, is_biased=is_biased, df=final_data, note="No trait data available in this dataset." ) # 6. If the dataset is usable, save final data; however, in this scenario it likely won't be. if is_usable: final_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Data not usable; skipping final output.") else: # If trait data were available, we would link, handle missing values, check bias, and finalize. # This branch is skipped because 'is_trait_available' is False. pass