# Path Configuration from tools.preprocess import * # Processing context trait = "Allergies" cohort = "GSE182740" # Input paths in_trait_dir = "../DATA/GEO/Allergies" in_cohort_dir = "../DATA/GEO/Allergies/GSE182740" # Output paths out_data_file = "./output/preprocess/1/Allergies/GSE182740.csv" out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE182740.csv" out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE182740.csv" json_path = "./output/preprocess/1/Allergies/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # Based on the background information ("Global mRNA expression" is mentioned), # we conclude that gene expression data is available: is_gene_available = True # 2. Variable Availability and Data Type Conversion # After reviewing the sample characteristics dictionary, we see that # key=1 contains "disease: Psoriasis", "disease: Atopic_dermatitis", "disease: Mixed", "disease: Normal_skin". # We can use this to infer a binary trait for "Allergies" if "Atopic_dermatitis" or "Mixed" is present, else 0. trait_row = 1 # because it provides disease info that we can map to 'Allergies' # No mention of age or gender in the dictionary, so these are not available: age_row = None gender_row = None # Define the conversion functions. def convert_trait(value: str): """ Convert a string like "disease: Psoriasis" to a binary indicator for the trait "Allergies". We parse the substring after "disease:" and map: - "Atopic_dermatitis" or "Mixed" -> 1 (indicative of 'Allergies') - Otherwise -> 0 Unknown or unexpected -> None """ if not isinstance(value, str): return None # Typically "disease: something", split by colon parts = value.split(":", 1) if len(parts) < 2: return None disease_str = parts[1].strip().lower() # e.g. "psoriasis", "atopic_dermatitis", "mixed", "normal_skin" if "atopic_dermatitis" in disease_str or "mixed" in disease_str: return 1 elif "psoriasis" in disease_str or "normal_skin" in disease_str: return 0 else: return None def convert_age(value: str): """ Data not available; placeholder function returning None. """ return None def convert_gender(value: str): """ Data not available; placeholder function returning None. """ return None # 3. Save Metadata (initial filtering) # Trait data is available if trait_row != None is_trait_available = (trait_row is not None) # Perform the initial validation and save metadata. # The function returns True if the dataset passes final validation, # but here we only do the initial filtering (is_final=False). is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Proceed only if trait_row is not None if trait_row is not None: # Assuming "clinical_data" is the previously obtained clinical DataFrame clinical_data_selected = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected clinical data preview_result = preview_df(clinical_data_selected) print("Clinical data preview:", preview_result) # Save the extracted clinical features clinical_data_selected.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The given identifiers (e.g., '1007_s_at', '1053_at') appear to be Affymetrix probe IDs, not official gene symbols. # Hence, we need to map them to recognized gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which keys in the gene annotation store the probe IDs and gene symbols # From our observation, 'ID' matches the probe IDs (e.g., '1007_s_at'), # and 'Gene Symbol' stores the gene symbols. # 2. Get a gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # 3. Convert probe-level measurements to gene-level measurements gene_data = apply_gene_mapping(gene_data, mapping_df) # (At this stage, 'gene_data' now holds gene-level expression data.) import pandas as pd # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data_selected, normalized_gene_data) # 3. Handle missing values cleaned_data = handle_missing_values(linked_data, trait) # 4. Determine bias in trait and demographic features trait_biased, final_data = judge_and_remove_biased_features(cleaned_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Processed with standard GEO pipeline." ) # 6. If data is usable, save the final linked data if is_usable: final_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Data not usable; skipping final output.")