# Path Configuration from tools.preprocess import * # Processing context trait = "Allergies" cohort = "GSE203196" # Input paths in_trait_dir = "../DATA/GEO/Allergies" in_cohort_dir = "../DATA/GEO/Allergies/GSE203196" # Output paths out_data_file = "./output/preprocess/1/Allergies/GSE203196.csv" out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE203196.csv" out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE203196.csv" json_path = "./output/preprocess/1/Allergies/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available is_gene_available = True # Based on the summary: "RNA ... used for transcriptomic studies" # 2. Determine data availability for trait, age, and gender (row keys) and define type conversions # From the sample characteristics dictionary: # {0: ['cell type: ...'], # 1: ['gender: F','gender: M'], # 2: ['individual: patient16', ...], # 3: ['age: 28','age: 40',...], # 4: ['allergy: mild','allergy: severe','allergy: control']} trait_row = 4 # variable "allergy: mild/severe/control" age_row = 3 # variable "age: NN" gender_row = 1 # variable "gender: F/M" def convert_trait(value: str) -> Optional[int]: """ Convert allergy values to binary: 'control' -> 0, 'mild'/'severe' -> 1, otherwise None """ # Expected format is 'allergy: something' parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() if val == 'control': return 0 elif val in ['mild', 'severe']: return 1 return None def convert_age(value: str) -> Optional[float]: """ Convert age values to float; unknown or malformed -> None """ # Expected format is 'age: NN' parts = value.split(':') if len(parts) < 2: return None try: return float(parts[1].strip()) except ValueError: return None def convert_gender(value: str) -> Optional[int]: """ Convert gender values to binary: 'F' -> 0, 'M' -> 1, otherwise None """ # Expected format is 'gender: F' or 'gender: M' parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().upper() if val == 'F': return 0 elif val == 'M': return 1 return None # Determine if trait data is available is_trait_available = (trait_row is not None) # 3. Initial filtering and saving metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction (only if trait_row is not None) if trait_row is not None: # Suppose 'clinical_data' DataFrame was obtained in a previous step # We'll assume it's already loaded in the environment df_clinical = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Observe a preview of the extracted features clinical_preview = preview_df(df_clinical) print("Preview of clinical features:", clinical_preview) # Save the clinical dataframe to CSV df_clinical.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the numeric nature of these IDs, they are not standard human gene symbols and require mapping. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping # 1. Identify which annotation columns match the expression data and gene symbols # - The gene expression data index is stored in "ID" # - The likely column with gene symbols is "gene_assignment" # 2. Get the gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # 3. Convert probe-level data to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print a quick shape check to confirm mapping print("Mapped gene expression data shape:", gene_data.shape) # STEP 7: Data Normalization and Linking import pandas as pd # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the refined clinical data (with "Allergies" column) to the normalized gene data # Recall that 'df_clinical' was created in an earlier step and contains the trait column "Allergies." linked_data = geo_link_clinical_genetic_data(df_clinical, normalized_gene_data) # 3. Handle missing values in the linked dataset processed_data = handle_missing_values(linked_data, trait) # 4. Judge if the trait (and covariates) are biased trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=processed_data, note="Linked clinical and gene data successfully." ) # 6. If the dataset is usable, save the final linked DataFrame if is_usable: processed_data.to_csv(out_data_file, index=True) print(f"Final linked data saved to {out_data_file}") else: print("Data was determined not to be usable; final dataset not saved.")