# Path Configuration from tools.preprocess import * # Processing context trait = "Allergies" cohort = "GSE270312" # Input paths in_trait_dir = "../DATA/GEO/Allergies" in_cohort_dir = "../DATA/GEO/Allergies/GSE270312" # Output paths out_data_file = "./output/preprocess/1/Allergies/GSE270312.csv" out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE270312.csv" out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE270312.csv" json_path = "./output/preprocess/1/Allergies/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the transcriptome data (nanostring) # 2. Variable Availability and Data Type Conversion # From the sample characteristics dictionary, we see that: # - 'allergic rhinitis status: Yes/No' corresponds to allergies, i.e., trait_row = 5 # - No age information is available => age_row = None # - 'gender: Female/Male' => gender_row = 2 trait_row = 5 age_row = None gender_row = 2 # Define the conversion functions def convert_trait(value: str): # Extract the part after the colon and strip spaces val = value.split(':')[-1].strip().lower() if val == 'yes': return 1 elif val == 'no': return 0 return None # For unknown or unexpected values def convert_age(value: str): # Not applicable here, so just return None return None def convert_gender(value: str): val = value.split(':')[-1].strip().lower() if val == 'female': return 0 elif val == 'male': return 1 return None # 3. Save Metadata (Initial Filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait data is available) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=None, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical DataFrame preview_result = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_result) # Save the clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers appear to be valid human gene symbols. # Hence, no additional mapping is required. requires_gene_mapping = False # STEP 6: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data systematically linked_data_processed = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and demographic features are biased is_trait_biased, linked_data_processed = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Conduct final validation and record information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data_processed, note="Final step completed with trait and gene data available." ) # 6. If the linked data is usable, save it; otherwise, do not save if is_usable: linked_data_processed.to_csv(out_data_file) print(f"Final linked data saved to {out_data_file}")