# Path Configuration from tools.preprocess import * # Processing context trait = "Allergies" cohort = "GSE84046" # Input paths in_trait_dir = "../DATA/GEO/Allergies" in_cohort_dir = "../DATA/GEO/Allergies/GSE84046" # Output paths out_data_file = "./output/preprocess/1/Allergies/GSE84046.csv" out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE84046.csv" out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE84046.csv" json_path = "./output/preprocess/1/Allergies/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # The study clearly mentions "whole genome gene expression" in adipose tissue. # 2. Variable Availability # Trait (Allergies): Not found in the sample characteristics. trait_row = None # Age: We can infer from date of birth, which is stored under key=5 "date of birth". age_row = 5 # Gender: Found under key=4 "sexe: Male/Female". gender_row = 4 # 2.2 Data Type Conversion Functions def convert_trait(value: str): # No trait data, so return None. return None def convert_age(value: str): # Example format: "date of birth (dd-mm-yyyy): 1952-06-17" # We parse out '1952-06-17' and convert it to approximate age. try: date_str = value.split(':', 1)[1].strip() # e.g. "1952-06-17" birth_year = int(date_str.split('-')[0]) # Approximate age by subtracting from current year approx_age = 2023 - birth_year if approx_age < 0 or approx_age > 120: return None return float(approx_age) except: return None def convert_gender(value: str): # Example format: "sexe: Male" or "sexe: Female" try: gender_str = value.split(':', 1)[1].strip().lower() if gender_str == "male": return 1 elif gender_str == "female": return 0 else: return None except: return None # 3. Save Metadata (Initial Filtering) is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip extracting clinical features for the trait "Allergies". # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The gene identifiers in the provided index are numeric, suggesting they are not standard human gene symbols. # These likely need to be mapped to gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which columns in 'gene_annotation' match the probe IDs in 'gene_data' (i.e., "ID") # and which column contains text that can lead to actual gene symbols (i.e., "gene_assignment"). prob_col = "ID" gene_col = "gene_assignment" # 2. Get a gene mapping dataframe using these two columns. gene_mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col) # 3. Apply the gene mapping to convert probe-level data to gene-level data. gene_data = apply_gene_mapping(gene_data, gene_mapping_df) # STEP 7: Data Normalization and Linking # In this dataset, we determined in Step 2 that trait data is not available (trait_row = None). # Therefore, we cannot link clinical and genetic data or perform trait-based processing. # Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation. # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) # 2. Since trait data is missing, skip linking clinical and genetic data, # skip missing-value handling and bias detection for the trait. # 3. Conduct final validation and record info. # Since trait data is unavailable, set is_trait_available=False, # pass a dummy/empty DataFrame and is_biased=False (it won't be used). dummy_df = pd.DataFrame() is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, df=dummy_df, note="No trait data found; skipped clinical-linking steps." ) # 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data. if is_usable: dummy_df.to_csv(out_data_file, index=True)