# Path Configuration from tools.preprocess import * # Processing context trait = "Aniridia" cohort = "GSE137996" # Input paths in_trait_dir = "../DATA/GEO/Aniridia" in_cohort_dir = "../DATA/GEO/Aniridia/GSE137996" # Output paths out_data_file = "./output/preprocess/1/Aniridia/GSE137996.csv" out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE137996.csv" out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE137996.csv" json_path = "./output/preprocess/1/Aniridia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if gene expression data is available # Based on the background info (mRNA expression and microRNA data), we consider this dataset to have gene expression data. is_gene_available = True # Step 2: Identify availability for trait, age, and gender, and define conversion functions. # From the sample characteristics: # row 0 => age # row 1 => gender # row 2 => disease (AAK / healthy control) # # We treat 'disease' as the trait variable, 'age' as continuous, and 'gender' as binary. trait_row = 2 age_row = 0 gender_row = 1 def convert_trait(x: str) -> int: # Extract the raw value after the colon val = x.split(':')[-1].strip().lower() # Convert to binary: 1 for aniridia (AAK), 0 for control, None otherwise if val == 'aak': return 1 elif val == 'healthy control': return 0 return None def convert_age(x: str) -> float: # Extract the raw value after the colon val = x.split(':')[-1].strip() # Convert to float if possible try: return float(val) except ValueError: return None def convert_gender(x: str) -> int: # Extract the raw value after the colon val = x.split(':')[-1].strip().lower() # Convert F/M/W to binary: female => 0, male => 1 if val in ['f', 'w']: return 0 elif val == 'm': return 1 return None # Step 3: Initial filtering and saving metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Clinical feature extraction (only if trait_row is not None) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, # "Aniridia" trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted clinical features previewed_data = preview_df(selected_clinical_df) print("Preview of selected clinical data:", previewed_data) # Save clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # After reviewing the identifiers such as "A_19_P00315452", they appear to be array probe IDs and not standard gene symbols. # Therefore, gene symbol mapping is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # Gene Identifier Mapping mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL") gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait (and potentially other features) is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, # We do have a trait column is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")