# Path Configuration from tools.preprocess import * # Processing context trait = "Aniridia" cohort = "GSE137997" # Input paths in_trait_dir = "../DATA/GEO/Aniridia" in_cohort_dir = "../DATA/GEO/Aniridia/GSE137997" # Output paths out_data_file = "./output/preprocess/1/Aniridia/GSE137997.csv" out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE137997.csv" out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE137997.csv" json_path = "./output/preprocess/1/Aniridia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available is_gene_available = True # The title mentions "mRNA" alongside miRNA, so we consider gene expression data present. # 2. Identify rows for trait, age, and gender, and define their conversion functions # Based on the sample characteristics dictionary: # 0 -> age data # 1 -> gender data # 2 -> "disease: AAK" or "disease: healthy control" # This suggests: trait_row = 2 age_row = 0 gender_row = 1 def convert_trait(value: str) -> int: """ Convert 'disease: AAK' or 'disease: healthy control' to binary (1 for aniridia, 0 for control). Unknown or unexpected values become None. """ try: val = value.split(':', 1)[1].strip().lower() if 'aak' in val: return 1 elif 'healthy' in val: return 0 else: return None except: return None def convert_age(value: str) -> float: """ Convert 'age: 20' etc. to a float (continuous). Unknown values become None. """ try: val = value.split(':', 1)[1].strip() return float(val) except: return None def convert_gender(value: str) -> int: """ Convert 'gender: F', 'gender: M', 'gender: W' to binary (female=0, male=1). 'W' presumed female. Unknown or unexpected become None. """ try: val = value.split(':', 1)[1].strip().lower() if val in ['f', 'w', 'female', 'woman', 'women']: return 0 elif val in ['m', 'male']: return 1 else: return None except: return None # 3. Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview preview_result = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_result) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These are microRNA identifiers (e.g. hsa-miR-1-3p) rather than standard human gene symbols; # they do not require further mapping to gene symbols. print("requires_gene_mapping = False") # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait (and potentially other features) is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, # We do have a trait column is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")