# Path Configuration from tools.preprocess import * # Processing context trait = "Anxiety_disorder" cohort = "GSE60491" # Input paths in_trait_dir = "../DATA/GEO/Anxiety_disorder" in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE60491" # Output paths out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE60491.csv" out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE60491.csv" out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE60491.csv" json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # The series explicitly mentions "gene expression profiling", so we consider it available. # 2. Variable Availability and Data Type Conversion # After examining the sample characteristics, # we do not see any key referencing "anxiety" or "anxiety_disorder." # Therefore, we conclude that the trait data is not available in this dataset. trait_row = None # The 'age' information appears in row 0. age_row = 0 # The 'gender' information appears in row 1 (it's labeled 'male: 0' or 'male: 1'). gender_row = 1 # Define data-type conversion functions. def convert_trait(value: str): # Trait data is unavailable, so this function won't be used. # We'll just return None as a placeholder. return None def convert_age(value: str): # Extract the numeric part after the colon. Convert to float if possible, else None. try: val = value.split(':', 1)[1].strip() return float(val) except: return None def convert_gender(value: str): # The field is "male: 0" for female, "male: 1" for male. # We'll parse it and convert to 0 (female) or 1 (male). try: val = value.split(':', 1)[1].strip() return 1 if val == '1' else 0 except: return None # Determine whether trait data is available is_trait_available = trait_row is not None # 3. Save Metadata (initial filtering) _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip this step. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the identifiers such as "7A5" (likely SLC7A5) and "A2BP1" (also known as RBFOX1), # it appears that these gene symbols are not standardized. Therefore, mapping is required. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify which columns match the gene expression data # Based on the previous previews, 'ID' matches the expression data identifiers, # and 'ORF' contains the gene symbols. mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col='ID', gene_col='ORF') # 2. Convert probe-level measurements to gene expression data by applying the gene mapping gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Print a small preview of the resulting mapped gene data print("Mapped gene data shape:", gene_data.shape) print("First 5 mapped gene symbols:", gene_data.index[:5]) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data) # Since trait_row is None, trait data is unavailable, we cannot perform final trait-based validation. # 3. We skip any trait-based missing value handling and bias checking because there's no trait. # 4. Perform only partial metadata validation (is_final=False) since no trait data is available. is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False ) # 5. We do not save a final linked data file because trait-based analysis is not possible. print("Dataset does not have the specified trait data; no final data output generated.")