# Path Configuration from tools.preprocess import * # Processing context trait = "Anxiety_disorder" cohort = "GSE61672" # Input paths in_trait_dir = "../DATA/GEO/Anxiety_disorder" in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE61672" # Output paths out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE61672.csv" out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE61672.csv" out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE61672.csv" json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) import pandas as pd import os import json from typing import Optional, Callable # The sample characteristics dictionary from the previous step: sample_dict = { 0: ['age: 44', 'age: 59', 'age: 39', 'age: 64', 'age: 58', 'age: 45', 'age: 37', 'age: 40', 'age: 57', 'age: 52', 'age: 62', 'age: 55', 'age: 53', 'age: 47', 'age: 48', 'age: 49', 'age: 35', 'age: 46', 'age: 54', 'age: 67', 'age: 51', 'age: 34', 'age: 60', 'age: 41', 'age: 38', 'age: 73', 'age: 28', 'age: 56', 'age: 71', 'age: 50'], 1: ['Sex: F', 'Sex: M', 'body mass index: 25.1', 'body mass index: 31.1', 'body mass index: 29.4', 'body mass index: 27.6', 'body mass index: 24.6', 'body mass index: 28', 'body mass index: 33.9', 'body mass index: 35', 'body mass index: 18.1', 'body mass index: 19.2', 'body mass index: 39.2', 'body mass index: 26.8', 'body mass index: 21.3', 'body mass index: 36.5', 'body mass index: 19.5', 'body mass index: 24.4', 'body mass index: 26.4', 'body mass index: 26.2', 'body mass index: 23.8', 'body mass index: 19.7', 'body mass index: 30.6', 'body mass index: 22.8', 'body mass index: 22.1', 'body mass index: 33.4', 'body mass index: 26.6', 'body mass index: 21.8', 'body mass index: 24.3', 'body mass index: 27'], 2: ['body mass index: 22.2', 'body mass index: 33.1', 'body mass index: 22.4', 'body mass index: 20.6', 'body mass index: 27.5', 'body mass index: 21.9', 'body mass index: 26.1', 'body mass index: 34.8', 'body mass index: 20.8', 'body mass index: 23.3', 'body mass index: 22.7', 'body mass index: 26.4', 'body mass index: 32.5', 'body mass index: 21.6', 'body mass index: 27.6', 'body mass index: 25.7', 'body mass index: 33.3', 'body mass index: 31.6', 'body mass index: 28', 'body mass index: 41.1', 'body mass index: 19.7', 'body mass index: 22.1', 'body mass index: 20.7', 'body mass index: 30.9', 'body mass index: 17.8', 'body mass index: 22.5', 'body mass index: 40.6', 'body mass index: 28.9', 'body mass index: 26', 'body mass index: 22'], 3: ['ethnicity: CAU', 'ethnicity: AFR', 'ethnicity: ASN', 'ethnicity: AMI', 'ethnicity: CAH', 'gad7 score: 6', 'gad7 score: 1', 'gad7 score: 0', 'gad7 score: 2', 'gad7 score: 3', 'gad7 score: 5', 'gad7 score: 4', 'gad7 score: 9', 'gad7 score: 7', 'gad7 score: 8', 'hybridization batch: C', 'gad7 score: .', 'gad7 score: 16', 'gad7 score: 12', 'gad7 score: 11', 'gad7 score: 21', 'gad7 score: 18', 'gad7 score: 14'], 4: ['gad7 score: 2', 'gad7 score: 0', 'gad7 score: 3', 'gad7 score: 7', 'gad7 score: 4', 'gad7 score: 9', 'gad7 score: 1', 'gad7 score: 10', 'gad7 score: 5', 'gad7 score: 17', 'gad7 score: 6', 'gad7 score: 8', 'gad7 score: 12', 'gad7 score: 11', 'gad7 score: 14', 'gad7 score: .', 'hybridization batch: Z', 'gad7 score: 18', 'hybridization batch: O', 'gad7 score: 13', 'gad7 score: 15', 'gad7 score: 20', 'gad7 score: 21', 'gad7 score: 19', 'anxiety case/control: case', 'anxiety case/control: control', 'hybridization batch: B', None, 'hybridization batch: C', 'hybridization batch: D'], 5: ['hybridization batch: Z', 'anxiety case/control: control', 'anxiety case/control: case', 'rin: 8.4', 'hybridization batch: A', 'hybridization batch: O', 'rin: 6', None, 'hybridization batch: B', 'rin: 9.5', 'rin: 9.1', 'rin: 9.3', 'rin: 9.7', 'rin: 9.6', 'rin: 8.7', 'hybridization batch: C', 'rin: 8.6', 'rin: 7.9', 'rin: 7.3', 'rin: 7.1', 'rin: 8.9', 'rin: 9.8', 'rin: 9.4', 'rin: 9.2', 'rin: 8.8', 'rin: 10', 'rin: 9', 'rin: 9.9', 'hybridization batch: D'], 6: ['rin: 8.1', 'hybridization batch: Z', 'rin: 7.9', 'rin: 6.6', 'rin: 7.3', 'rin: 6.9', 'rin: 6.8', 'rin: 7.5', 'rin: 6.7', 'rin: 6.5', 'rin: 7.8', 'rin: 7.6', 'rin: 8', 'rin: 7.4', 'rin: 8.4', 'rin: 8.7', 'rin: 8.8', 'rin: 7.7', 'rin: 8.3', 'rin: 7', 'rin: 9', 'rin: 9.3', 'rin: 8.9', None, 'rin: 8.2', 'rin: 9.2', 'rin: 7.2', 'rin: 7.1', 'hybridization batch: A', 'rin: 9.8'], 7: [None, 'rin: 7.8', 'rin: 8.1', 'rin: 6.6', 'rin: 6.5', 'rin: 6.7', 'rin: 7.2', 'rin: 7.7', 'rin: 7.1', 'rin: 7', 'rin: 7.3', 'rin: 7.5', 'rin: 7.9', 'rin: 8.2', 'rin: 7.4', 'rin: 7.6', 'rin: 6.8', 'rin: 9.4', 'rin: 8.6', 'rin: 8.3', 'rin: 8.8', 'rin: 8', 'rin: 8.4', 'rin: 8.7', 'rin: 9', 'rin: 9.1', 'rin: 9.2', 'rin: 9.3', 'rin: 8.5', 'rin: 6.9'] } # Construct the DataFrame where each row in sample_dict is a row in the DataFrame. clinical_data = pd.DataFrame.from_dict(sample_dict, orient='index') # 1. Gene Expression Data Availability # The background info specifies "genome-wide differential gene expression", # so we set is_gene_available to True. is_gene_available = True # 2. Variable Availability and Data Type Conversion # Identify row keys for the variables (trait, age, gender) if they exist and are not constant. # - Age is row 0, multiple distinct values => available. age_row = 0 # - Trait (anxiety case/control) is found in row 4: "anxiety case/control: case"/"control" trait_row = 4 # - Gender is in row 1: "Sex: F"/"Sex: M" along with BMI. Let's parse those "Sex" entries. gender_row = 1 def convert_trait(value: str) -> Optional[int]: """ Convert values referring to 'anxiety case/control': 'case' -> 1 'control' -> 0 Everything else -> None """ parts = value.split(":", 1) if len(parts) == 2: header = parts[0].strip().lower() val = parts[1].strip().lower() if header == "anxiety case/control": if val == "case": return 1 elif val == "control": return 0 return None def convert_age(value: str) -> Optional[float]: """ Convert values of the form 'age: 44' -> 44.0 Otherwise -> None """ parts = value.split(":", 1) if len(parts) == 2: header = parts[0].strip().lower() val = parts[1].strip() if header == "age": try: return float(val) except ValueError: return None return None def convert_gender(value: str) -> Optional[int]: """ For gender, convert: 'Sex: F' -> 0 'Sex: M' -> 1 Otherwise -> None """ parts = value.split(":", 1) if len(parts) == 2: header = parts[0].strip().lower() val = parts[1].strip().lower() if header == "sex": if val == "f": return 0 elif val == "m": return 1 return None # 2.1 Check trait availability: is_trait_available = (trait_row is not None) # 3. Save Metadata (initial filtering) from tools.preprocess import validate_and_save_cohort_info, geo_select_clinical_features, preview_df is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical_df) print("Clinical dataframe preview:", preview) # Save the extracted clinical features selected_clinical_df.to_csv(out_clinical_data_file, index=False) import re # 1. Gene Expression Data Availability is_gene_available = True # 2. Variable Availability and Data Type Conversion # (We do not see any evidence of actual row keys for trait, age, or gender, so set them to None.) trait_row = None age_row = None gender_row = None # Define conversion functions even if rows are None, for consistency and future use. def convert_trait(val_str: str): """Convert trait value to binary (0 for control, 1 for anxiety), None if unknown.""" if val_str is None: return None # If there's a colon, separate out the last segment. parts = val_str.split(":") val_str = parts[-1].strip() if len(parts) > 1 else val_str.strip() val_lower = val_str.lower() if "anxiety" in val_lower: return 1 elif "control" in val_lower: return 0 return None def convert_age(val_str: str): """Convert age to a continuous number, None if parsing fails.""" if val_str is None: return None # If there's a colon, separate out the last segment. parts = val_str.split(":") val_str = parts[-1].strip() if len(parts) > 1 else val_str.strip() # Extract numeric part from the string match = re.search(r"(\d+(\.\d+)?)", val_str) if match: try: return float(match.group(1)) except ValueError: return None return None def convert_gender(val_str: str): """Convert gender to binary (0 for female, 1 for male), None if unknown.""" if val_str is None: return None # If there's a colon, separate out the last segment. parts = val_str.split(":") val_str = parts[-1].strip() if len(parts) > 1 else val_str.strip() val_lower = val_str.lower() if "female" in val_lower: return 0 elif "male" in val_lower: return 1 return None # Determine availability of trait data is_trait_available = (trait_row is not None) # 3. Save Metadata - initial filtering is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip the clinical feature extraction step. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These gene identifiers are from the Illumina platform (e.g., "ILMN_1343291"), not standard human gene symbols. # Therefore, gene mapping to standard symbols is likely required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. We observed that in the gene annotation dataframe, the column "ID" stores the same probe identifiers # (e.g., ILMN_1343291) as in the gene expression data index, and the column "Symbol" stores the potential gene symbols. # 2. Get a gene mapping from 'ID' to 'Symbol'. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 3. Convert probe-level measurements to gene expression data using our mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 8: Data Normalization and (Potential) Linking # Because, in earlier steps, we determined trait_row = None, the trait data is unavailable, # so there's no clinical CSV file to read back in. By the instructions, we still finalize # the process but skip linking and trait-based analysis. # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Since trait data is not available, we cannot link or run trait-based analyses. print("Trait is not available (trait_row = None). Skipping linking and missing-value handling steps.") # 3. Perform final validation indicating that trait data is missing, causing the dataset to be unusable: is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # Gene data exists is_trait_available=False, # Trait data is not available is_biased=None, # This must be None if is_trait_available=False df=pd.DataFrame(), # Pass an empty DataFrame since we have no clinical+trait data note="No trait data available, thus not usable for trait-based analysis." ) # 4. If the dataset is somehow deemed usable (unlikely, because no trait), save the final data anyway; # otherwise skip saving. if is_usable: # This scenario won't occur, but included for completeness out_data_file_placeholder = out_data_file.replace(".csv", "_linked_placeholder.csv") pd.DataFrame().to_csv(out_data_file_placeholder, index=False) print(f"Saved a placeholder linked dataset to {out_data_file_placeholder}") else: print("The dataset is not usable for trait-based association. Skipping final output of linked data.")