# Path Configuration from tools.preprocess import * # Processing context trait = "Anxiety_disorder" cohort = "GSE68526" # Input paths in_trait_dir = "../DATA/GEO/Anxiety_disorder" in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE68526" # Output paths out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE68526.csv" out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE68526.csv" out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE68526.csv" json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available is_gene_available = True # Based on the background info: "Gene expression profiling was carried out ..." # 2. Determine availability of trait, age, gender, and define conversion functions # From the dictionary, anxiety is at row 13 and has multiple distinct values. trait_row = 13 # Age is at row 0, with multiple distinct values. age_row = 0 # Gender is at row 1, with two distinct values (female: 0 or 1). gender_row = 1 # Data type conversions: def convert_trait(value: str): """ Convert the anxiety string value after colon to a float (continuous measure). Returns None if 'missing' or conversion fails. """ # Example: "anxiety: 1.4" try: val_str = value.split(':', 1)[1].strip() if val_str.lower() == "missing": return None return float(val_str) except: return None def convert_age(value: str): """ Convert the age string value after colon to a float (continuous measure). Returns None if conversion fails. """ # Example: "age (yrs): 76" try: val_str = value.split(':', 1)[1].strip() return float(val_str) except: return None def convert_gender(value: str): """ Convert the gender string value after colon to binary (female=0, male=1). The data is stored as 'female: 0' or 'female: 1'. 'female: 1' means the subject is female -> 0 'female: 0' means the subject is male -> 1 Returns None if conversion fails. """ try: val_str = value.split(':', 1)[1].strip() if val_str == "1": return 0 # female elif val_str == "0": return 1 # male return None except: return None # 3. Save metadata with initial filtering is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction if trait_row is not None if trait_row is not None: # Assume "clinical_data" is the DataFrame containing sample characteristics # from a previous step in the pipeline selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical, n=5, max_items=200) # Optionally observe the preview (not printing to avoid extra text, but you could if needed) selected_clinical.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the observed identifiers, some (like "A2BP1", "7A5") appear to be old or non-standard. # Hence, they likely need to be mapped to official gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1) Identify columns in `gene_annotation` corresponding to probe IDs and gene symbols. # From the previous preview, "ID" in the gene annotation matches the expression data's IDs, # and "ORF" appears to hold the same text which we'll treat as the gene symbol column. # 2) Get the gene mapping dataframe. mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col='ID', gene_col='ORF') # 3) Apply mapping to convert probe-level measurements to gene-level expression. gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # (Optional) Print basic info to confirm successful mapping. print("Mapped gene data shape:", gene_data.shape) print("First 20 mapped gene symbols:", list(gene_data.index[:20])) # STEP 7: Data Normalization and Linking import pandas as pd # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # Ensure "selected_clinical" is defined by reading from our previously saved CSV. temp_df = pd.read_csv(out_clinical_data_file) # Step 2 extracts trait, age, gender => we expect exactly 3 rows if temp_df.shape[0] == 3: temp_df.index = [trait, "Age", "Gender"] selected_clinical = temp_df # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) # 3. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait (and potentially other features) is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")