# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE115574" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE115574" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE115574.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE115574.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE115574.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if gene expression data is available is_gene_available = True # Based on the background info (Affymetrix human gene expression microarrays) # Step 2: Identify data availability and define conversion functions # After reviewing the sample characteristics dictionary: # {0: ['disease state: atrial fibrillation patient with severe mitral regurgitation', # 'disease state: sinus rhythm patient with severe mitral regurgitation'], # 1: ['tissue: left atrium - heart', # 'tissue: right atrium - heart']} # The "trait" 'Arrhythmia' can be inferred from row 0, which distinguishes AFib vs. sinus rhythm. trait_row = 0 # Age and gender data are not apparent in the dictionary, so set them to None. age_row = None gender_row = None def convert_trait(value): """ Convert the disease state string to a binary indicator for arrhythmia (AFib). Return 1 if the string indicates atrial fibrillation, 0 if sinus rhythm, else None. """ try: after_colon = value.split(':', 1)[1].strip().lower() except IndexError: return None if 'atrial fibrillation' in after_colon: return 1 elif 'sinus rhythm' in after_colon: return 0 return None def convert_age(value): """ Age data is not available in this dataset. Return None. """ return None def convert_gender(value): """ Gender data is not available in this dataset. Return None. """ return None # Step 3: Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: If trait data is available, extract clinical features and save if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview_result = preview_df(selected_clinical_df, n=5) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., '1007_s_at', '1053_at') are Affymetrix probe IDs, not standard gene symbols. # Therefore, mapping to gene symbols is required. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # Gene Identifier Mapping # 1. Identify the columns in 'gene_annotation' that match the probe IDs in 'gene_data' and the gene symbols. # From the preview, the probe ID is stored in column "ID", and gene symbols are stored in "Gene Symbol". # 2. Extract the gene mapping dataframe. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol") # 3. Convert probe-level measurements to gene expression data. gene_data = apply_gene_mapping(gene_data, mapping_df) # For verification, let's print the new gene_data shape and a sample of its row indices. print("Mapped gene_data shape:", gene_data.shape) print("Sample gene symbols:", list(gene_data.index[:10])) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait_col=trait) # 4. Determine whether the trait/demographic features are severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait data and gene data successfully linked." ) # 6. If the dataset is deemed usable, save the final linked data as a CSV file if is_usable: linked_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Dataset was not deemed usable; final linked data not saved.")