# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE182600" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE182600" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE182600.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE182600.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE182600.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if gene expression data is available is_gene_available = True # Based on the background info describing "genome-wide gene expression" # Step 2: Identify trait/age/gender rows and define data conversion functions trait_row = 0 # Row containing disease states, including "Arrhythmia" age_row = 1 # Row containing age gender_row = 2 # Row containing gender def convert_trait(value: str) -> int: """ Convert the 'disease state' string to a binary value. 1 if it indicates 'Arrhythmia', else 0. """ # Extract the part after "disease state:" parts = value.split(":") if len(parts) < 2: return None disease_str = parts[1].strip().lower() return 1 if disease_str == "arrhythmia" else 0 def convert_age(value: str) -> float: """ Convert the 'age' string to a float. Return None if conversion fails. """ parts = value.split(":") if len(parts) < 2: return None try: return float(parts[1].strip()) except ValueError: return None def convert_gender(value: str) -> int: """ Convert the 'gender' string to a binary value. Female -> 0, Male -> 1, None if unknown. """ parts = value.split(":") if len(parts) < 2: return None gender_str = parts[1].strip().lower() if gender_str == "f": return 0 elif gender_str == "m": return 1 else: return None # Step 3: Determine if trait data is available is_trait_available = (trait_row is not None) # Perform initial filtering and save metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: If trait is available, extract clinical features and save if trait_row is not None: # Assume 'clinical_data' is already loaded as a DataFrame in the environment selected_clinical_df = geo_select_clinical_features( clinical_data, trait="Trait", trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of selected clinical dataframe:", preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The listed identifiers (e.g., "ILMN_...") are Illumina probe IDs, not standard human gene symbols. # Therefore, they require mapping to gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify which columns from the gene_annotation match the gene expression IDs and the gene symbols prob_col = "ID" # column in gene_annotation matching the probe ID (e.g., "ILMN_...") symbol_col = "Symbol" # column in gene_annotation storing the gene symbol # 2. Generate a mapping dataframe using the library function mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=symbol_col) # 3. Apply the mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait_col="Trait") # 4. Determine whether the trait/demographic features are severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait="Trait") # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait data and gene data successfully linked." ) # 6. If the dataset is deemed usable, save the final linked data as a CSV file if is_usable: linked_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Dataset was not deemed usable; final linked data not saved.")