# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE235307" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE235307" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE235307.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE235307.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE235307.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # Based on the series summary stating “Gene expression ...”, we set is_gene_available=True. is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Assign row keys if data is available and non-constant. # Observing the sample characteristics, we identify: # - trait_row: 5 (where we see "Atrial fibrillation" vs "Sinus rhythm") # - age_row: 2 (ages vary) # - gender_row: 1 (male/female are present) trait_row = 5 age_row = 2 gender_row = 1 # 2.2 Define the conversion functions def convert_trait(value: str) -> Optional[int]: """Convert 'cardiac rhythm after 1 year follow-up' to binary (0 or 1).""" # Extract the substring after colon parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() # e.g. 'sinus rhythm', 'atrial fibrillation' if val == 'sinus rhythm': return 0 elif val == 'atrial fibrillation': return 1 else: return None def convert_age(value: str) -> Optional[float]: """Convert the age string to float.""" parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip() try: return float(val) except ValueError: return None def convert_gender(value: str) -> Optional[int]: """Convert gender to binary (0 for Female, 1 for Male).""" parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() if val == 'male': return 1 elif val == 'female': return 0 else: return None # 3. Save Metadata using initial filtering is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is not None) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected clinical features preview_result = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_result) # Save the clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Observing the given identifiers (e.g., '4', '5', '6', etc.), they do not match typical human gene symbols. # Therefore, they likely need to be mapped to recognized gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify columns in the gene_annotation dataframe corresponding to the probe IDs (matching gene_data.index) # and the gene symbols. probe_id_column = "ID" gene_symbol_column = "GENE_SYMBOL" # 2. Get a gene mapping dataframe from the gene annotation mapping_df = get_gene_mapping( gene_annotation, prob_col=probe_id_column, gene_col=gene_symbol_column ) # 3. Convert probe-level measurements to gene-level expression data using the mapping gene_data = apply_gene_mapping(gene_data, mapping_df) import pandas as pd # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Read the clinical DataFrame in a way that preserves the three rows (Arrhythmia, Age, Gender) # and interprets the first CSV row as the sample ID columns. clinical_df = pd.read_csv(out_clinical_data_file, header=0) # We know there are exactly 3 rows of data: [0]: Arrhythmia, [1]: Age, [2]: Gender clinical_df.index = [trait, "Age", "Gender"] # 3. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in the trait and remove any biased demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Perform final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait data is available; completed linking and preprocessing." ) # 7. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved linked data to {out_data_file}") else: print("The dataset is not usable; skipping final data output.")