# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE41177" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE41177" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE41177.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE41177.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE41177.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # Based on the background info ("microarray analysis..."), we consider that # this dataset likely contains gene expression data. is_gene_available = True # 2.1 Data Availability # The trait (arrhythmia) appears to be constant in all samples (all have AF), # hence it's not useful for association studies. trait_row = None # The 'age' variable is found at key=2 with multiple distinct values. age_row = 2 # The 'gender' variable is found at key=1 with multiple distinct values. gender_row = 1 # 2.2 Data Type Conversion def convert_trait(value: str): # The trait is not actually available (constant across all samples), # so we return None here. return None def convert_age(value: str): # Example entry: "age: 62Y" # We parse the substring after ':' then remove 'Y' and convert to float. try: parts = value.split(':', 1) age_str = parts[1].replace('Y', '').strip() if len(parts) > 1 else '' return float(age_str) except: return None def convert_gender(value: str): # Example entry: "gender: male" # Convert female -> 0, male -> 1 parts = value.split(':', 1) g_str = parts[1].strip().lower() if len(parts) > 1 else '' if g_str == 'male': return 1 elif g_str == 'female': return 0 return None # 3. Save Metadata (Initial Filtering) # trait_row is None => trait data is not available is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip the clinical feature extraction step. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the given probe IDs (e.g., "1007_s_at", "1053_at"), they are Affymetrix probe set IDs and not human gene symbols. # Therefore, gene mapping to human gene symbols is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns corresponding to the probe identifiers and the gene symbols # From the annotation preview, the 'ID' column matches the probe identifiers in our gene_data, # and the 'Gene Symbol' column stores the gene symbols. probe_col = "ID" symbol_col = "Gene Symbol" # 2. Extract the gene mapping DataFrame using the library function gene_mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col) # 3. Convert probe-level measurements to gene-level expression data gene_data = apply_gene_mapping(gene_data, gene_mapping_df) # STEP 7: Data Normalization and Linking import pandas as pd # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # Since trait_row is None (trait is not available), we cannot link clinical data or perform trait-based analysis. # We'll skip linking and bias evaluation of the trait. # We'll still perform the final validation to record that this cohort lacks trait data. placeholder_df = pd.DataFrame() # Empty placeholder is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, # trait not available is_biased=False, # No trait → can't evaluate trait bias, set to False to proceed df=placeholder_df, # Required argument, though empty note="No trait data available in the cohort." ) # If the dataset is usable (unlikely since trait is missing), we would save final linked data. if is_usable: # Normally we would have a "linked_data" DataFrame to save; # however, there's no trait, so no final data is produced. pass else: print("Trait not available; skipping final data linkage and output.")