# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE47727" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE47727" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE47727.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE47727.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE47727.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # The platform is Illumina HumanHT-12, indicating gene expression data. # 2. Variable Availability and Data Type Conversion # Based on the sample characteristics: # 0 -> "age (yrs): X" # 1 -> "gender: male"/"gender: female" # 2 -> "tissue: blood" # # There's no indication (key) that provides Arrhythmia status; all subjects are "control participants." # Thus, the trait is NOT available in this dataset. trait_row = None age_row = 0 gender_row = 1 # Data type conversion functions def convert_trait(x: str): """ For demonstration, we define the conversion but this dataset has no trait data. We return None to indicate unavailability. """ return None def convert_age(x: str): """ Extract the numeric age after 'age (yrs):' and convert to float. If there is any parsing error, return None. """ # Typically, these entries look like "age (yrs): 67" # We split by ':' and strip. try: val = x.split(':')[-1].strip() return float(val) except: return None def convert_gender(x: str): """ Convert 'gender: female' -> 0 and 'gender: male' -> 1. If other strings appear, return None. """ try: val = x.split(':')[-1].strip().lower() if val == 'male': return 1 elif val == 'female': return 0 except: pass return None # 3. Save Metadata # Perform initial filtering (is_final=False). Since trait_row is None, # trait data is NOT available. is_trait_available = False validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip extracting clinical features. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The gene identifiers (e.g., "ILMN_1343291") are Illumina probe IDs, not standard human gene symbols. # Thus, they require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. We identify that in the gene_annotation DataFrame: # - The "ID" column matches the Illumina probe IDs (e.g., "ILMN_1343291") found in gene_data.index. # - The "Symbol" column holds gene symbol information for mapping. # 2. Get a gene mapping DataFrame from gene_annotation by selecting the 'ID' column as the probe identifier # and the 'Symbol' column as the gene symbol. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 3. Convert probe-level measurements in gene_data to gene-level measurements # by applying the gene mapping, handling probes with multiple gene mappings. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking import pandas as pd # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # Since trait_row is None (trait is not available), we cannot link clinical data or perform trait-based analysis. # We'll skip linking and bias evaluation of the trait. # We'll still perform the final validation to record that this cohort lacks trait data. placeholder_df = pd.DataFrame() # Empty placeholder is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, # trait not available is_biased=False, # No trait → can't evaluate trait bias, set to False to proceed df=placeholder_df, # Required argument, though empty note="No trait data available in the cohort." ) # If the dataset is usable (unlikely since trait is missing), we would save final linked data. if is_usable: # Normally we would have a "linked_data" DataFrame to save; # however, there's no trait, so no final data is produced. pass else: print("Trait not available; skipping final data linkage and output.")