# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE53622" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE53622" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE53622.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE53622.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE53622.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Determine if gene expression data is available is_gene_available = True # This is an lncRNA microarray study, so we consider it to have gene expression # 2) Identify data availability and create conversion functions # The sample characteristics dictionary shows: # trait appears in row 10 with values "arrhythmia: no" or "arrhythmia: yes" trait_row = 10 # age appears in row 1 with multiple numeric values age_row = 1 # gender appears in row 2 with values "Sex: female" or "Sex: male" gender_row = 2 def convert_trait(raw_value: str): """ Convert arrhythmia values ('yes'/'no') to binary (1/0). """ value = raw_value.split(':')[-1].strip().lower() if value == 'yes': return 1 elif value == 'no': return 0 return None def convert_age(raw_value: str): """ Convert age values to float. If conversion fails, returns None. """ value = raw_value.split(':')[-1].strip() try: return float(value) except: return None def convert_gender(raw_value: str): """ Convert gender values ('male'/'female') to binary (1/0). """ value = raw_value.split(':')[-1].strip().lower() if value == 'male': return 1 elif value == 'female': return 0 return None # 3) Save metadata using initial filtering is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Extract clinical features if trait data is available if trait_row is not None: selected_clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save extracted clinical data preview_result = preview_df(selected_clinical_features, n=5) print("Preview of Selected Clinical Data:", preview_result) selected_clinical_features.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the numeric format of the identifiers, they do not appear to match standard human gene symbols. # Therefore, gene mapping is needed. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping # 1. From observation, the 'ID' column in 'gene_annotation' matches the gene expression data 'ID'. # The 'SPOT_ID' column holds the gene symbols (though they look unusual, we assume they contain relevant symbol info). mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SPOT_ID') # 2. Convert probe-level measurements to gene-level expression data using the mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. We refer to the clinical data variable from step 2 as 'selected_clinical_features' selected_clinical = selected_clinical_features # 3. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) # 4. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 5. Determine whether the trait (and potentially other features) is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 7. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")