# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE55231" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE55231" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE55231.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE55231.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE55231.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available is_gene_available = True # Based on study description (eQTL analysis, transcription profiling) # 2. Identify variable availability # Trait "Arrhythmia" is not listed in the sample characteristics, so treat it as not available. trait_row = None # Age is provided under key 2 age_row = 2 # Gender is provided under key 0 gender_row = 0 # 2.2 Define conversion functions def convert_trait(value: str): # Trait data is not available. Return None for all inputs. return None def convert_age(value: str): # Parse the string after colon and convert to float if possible parts = value.split(':', 1) raw = parts[1].strip() if len(parts) > 1 else parts[0].strip() try: return float(raw) except ValueError: return None def convert_gender(value: str): # Parse the string after colon and convert to binary (female=0, male=1) parts = value.split(':', 1) raw = parts[1].strip().lower() if len(parts) > 1 else parts[0].strip().lower() if raw == 'female': return 0 elif raw == 'male': return 1 return None # 3. Initial usability filtering and metadata saving is_trait_available = (trait_row is not None) cohort_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Since trait_row is None, skip clinical feature extraction. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on observation, the "ILMN_" prefix indicates Illumina probe IDs, not standard human gene symbols. # Therefore, they require mapping to gene symbols. print("These identifiers are Illumina probe IDs.\nrequires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in gene_annotation that match the probe ID and gene symbol probe_col = 'ID' gene_symbol_col = 'Symbol' # 2. Create the gene mapping dataframe gene_mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) # 3. Convert probe-level measurements to gene-level expression data gene_data = apply_gene_mapping(gene_data, gene_mapping_df) # Just for a brief preview, let's check the resulting shape print("Mapped gene_data shape:", gene_data.shape) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Check if we have a clinical dataframe called 'selected_clinical_df' (which only exists if trait_row was not None) if 'selected_clinical_df' in globals(): # We have trait data, so we can link and proceed with the final steps. selected_clinical = selected_clinical_df # 3. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) # 4. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 5. Determine whether the trait is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 7. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.") else: # Trait data was not extracted in Step 2 (trait_row was None), so no clinical linking or bias checks. print("No trait data found. Skipping linking, missing value handling, and trait bias analysis.") # Perform an initial metadata save (not final) since we lack a trait. is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False ) # Without trait data, this dataset won't move forward to final association analysis print("No final output generated due to missing trait data.")