# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE93101" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE93101" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE93101.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE93101.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE93101.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Decide whether gene expression data is available # From the background information, this submission represents transcriptome data. is_gene_available = True # 2. Identify rows for trait, age, and gender, and define conversion functions. # - trait_row, age_row, gender_row trait_row = 0 # "course:" with multiple diseases listed, including "Arrhythmia" age_row = 1 # "age:" gender_row = 2 # "gender:" def convert_trait(value: str) -> Optional[int]: """Convert the 'course' field to a binary variable: 1 if Arrhythmia, 0 otherwise.""" try: # Example: "course: Arrhythmia" val = value.split(":")[1].strip().lower() return 1 if val == "arrhythmia" else 0 except IndexError: return None def convert_age(value: str) -> Optional[float]: """Convert the 'age' field to a float.""" try: # Example: "age: 55.8" val = value.split(":")[1].strip() return float(val) except (IndexError, ValueError): return None def convert_gender(value: str) -> Optional[int]: """Convert the 'gender' field to 0 (Female) or 1 (Male).""" try: # Example: "gender: F" val = value.split(":")[1].strip().lower() if val == "f": return 0 elif val == "m": return 1 else: return None except IndexError: return None # 3. Perform initial filtering and save metadata # Trait data availability is inferred from whether trait_row is None. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. If the trait data is available, extract and preview clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, # Assume 'clinical_data' is our previously obtained pandas DataFrame trait, # Global variable: "Arrhythmia" trait_row, convert_trait, age_row, convert_age, gender_row, convert_gender ) # Preview the extracted clinical features preview = preview_df(selected_clinical_df, n=5) print(preview) # Save the clinical features to file selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the provided identifiers (e.g., "ILMN_1651209", "ILMN_1651228"), they appear to be Illumina probe IDs, not standard human gene symbols. # Therefore, mapping to gene symbols is needed. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which columns correspond to the probe ID and the gene symbol. # From the preview, the 'ID' column in 'gene_annotation' matches the expression data's row index, # and the 'Symbol' column appears to store the gene symbol. probe_id_col = "ID" gene_symbol_col = "Symbol" # 2. Get the gene mapping dataframe from the annotation. mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col) # 3. Convert probe-level measurements to gene-level expression data. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Use the 'selected_clinical_df' variable from step 2 to link clinical and genetic data selected_clinical = selected_clinical_df # 3. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) # 4. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 5. Determine whether the trait (and potentially other features) is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, # We do have a trait column is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 7. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")