# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE123086" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE123086" # Output paths out_data_file = "./output/preprocess/1/Asthma/GSE123086.csv" out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE123086.csv" out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE123086.csv" json_path = "./output/preprocess/1/Asthma/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if the dataset likely contains gene expression data # Based on the microarray-based gene expression description, set this to True. is_gene_available = True # 2. Identify availability of "trait", "age", and "gender" from the sample characteristics # After examining each row in the sample characteristics dictionary: # - The primary diagnosis row is key 1, which includes "primary diagnosis: ASTHMA" among others. # That will serve as our trait row, since it's not constant and contains "ASTHMA". # - Age values appear predominantly in row 3 (and some in row 4). We'll select row 3 for age. # - Gender data is scattered (partly in row 2, partly in row 3) and not presented in a single row, # so we set gender_row to None. trait_row = 1 age_row = 3 gender_row = None # 2.2. Define data conversion functions def convert_trait(x: str) -> Optional[int]: """ Convert trait data into a binary variable, 1 for ASTHMA, 0 otherwise. If not parsable, return None. """ parts = x.split(':') if len(parts) < 2: return None val = parts[1].strip().upper() return 1 if val == "ASTHMA" else 0 def convert_age(x: str) -> Optional[float]: """ Convert age data into a continuous float. If the string does not contain 'age:' or cannot be parsed, return None. """ parts = x.split(':') if len(parts) < 2: return None if "age" in parts[0].lower(): try: return float(parts[1].strip()) except ValueError: return None return None def convert_gender(x: str) -> Optional[int]: """ Convert gender data to 0 (female) or 1 (male). If not parsable, return None. """ parts = x.split(':') if len(parts) < 2: return None if "sex" in parts[0].lower(): val = parts[1].strip().lower() if val == "female": return 0 elif val == "male": return 1 return None # 3. Save metadata (initial filtering) # Trait availability is True if trait_row is not None, otherwise False. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. If trait data is available, extract clinical features and save them if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the resulting DataFrame preview_clin = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_clin) # Save the clinical data to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Observing the identifiers: they appear to be numeric and not standard human gene symbols. # Therefore, they likely need to be mapped to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping (Revised Debugged Code) def apply_gene_mapping_entrez(expression_df: pd.DataFrame, mapping_df: pd.DataFrame) -> pd.DataFrame: """ Convert measured data about gene probes (indexed by numeric 'ID') into gene-level data (using numeric Entrez IDs). Handles one-to-many or many-to-one mappings by splitting probe expression values equally among mapped genes, and summing where multiple probes map to the same gene. """ # Remove any duplicate probe entries in the mapping mapping_df = mapping_df.drop_duplicates(subset=['ID', 'Gene']) mapping_df = mapping_df.dropna(subset=['ID', 'Gene']) # Also ensure expression_df has a unique index expression_df = expression_df[~expression_df.index.duplicated(keep='first')] # Make sure mapping DataFrame is indexed by probe ID mapping_df.set_index('ID', inplace=True) # Some platforms may have multiple Entrez IDs joined by a delimiter. Split safely if needed. mapping_df['Gene'] = mapping_df['Gene'].astype(str) mapping_df['Gene'] = mapping_df['Gene'].apply( lambda x: x.split('//') if '//' in x else x.split(';') if ';' in x else [x] ) # Count the number of genes each probe maps to mapping_df['num_genes'] = mapping_df['Gene'].apply(len) # Expand to one row per (probe, gene) pair mapping_df = mapping_df.explode('Gene').dropna(subset=['Gene']) # Join expression values (probe-level) onto the mapping table merged_df = mapping_df.join(expression_df, how='inner') # inner join to keep only matched probes # Identify the columns containing actual expression values (the sample columns) # We'll exclude 'Gene' and 'num_genes' expr_cols = [c for c in merged_df.columns if c not in ['Gene', 'num_genes']] # Divide each probe's expression by the number of genes it maps to merged_df[expr_cols] = merged_df[expr_cols].div(merged_df['num_genes'].replace(0, 1), axis=0) # Finally, sum over genes to get gene-level expression data gene_expression_df = merged_df.groupby('Gene')[expr_cols].sum() return gene_expression_df # 1. Identify the columns in the annotation that match our needs probe_col = "ID" gene_col = "ENTREZ_GENE_ID" # 2. Build a mapping DataFrame mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col) # 3. Convert probe-level data to gene-level data # Using the debugged function that preserves numeric Entrez IDs gene_data = apply_gene_mapping_entrez(gene_data, mapping_df) # Check resulting shape and index print("Mapped gene_data shape:", gene_data.shape) print("First 10 gene identifiers in mapped data:", gene_data.index[:10].tolist()) # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library. # Replace 'df_clinical' with the correct clinical DataFrame variable 'selected_clinical_df'. linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features. is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct quality check and save the cohort information, passing the final unbiased data. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=unbiased_linked_data ) # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'. if is_usable: unbiased_linked_data.to_csv(out_data_file)