# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE185658" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE185658" # Output paths out_data_file = "./output/preprocess/1/Asthma/GSE185658.csv" out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE185658.csv" out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE185658.csv" json_path = "./output/preprocess/1/Asthma/cohort_info.json" # STEP 1 # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability is_gene_available = True # The background indicates Affymetrix microarrays for global gene expression # 2) Variable Availability and Data Type Conversion # Based on the sample characteristics dictionary, we only see a "group" field (row=1) that includes asthma vs healthy. trait_row = 1 age_row = None gender_row = None # Define the conversion function for the trait (binary: 1 for Asthma, 0 for Healthy, None otherwise). def convert_trait(value): parts = value.split(':') label = parts[-1].strip().lower() # Take text after ':' if 'asthma' in label: return 1 elif 'healthy' in label: return 0 return None # We do not have age or gender data, so these conversion functions are not used. convert_age = None convert_gender = None # 3) Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction (only if trait data is available) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, # previously obtained DataFrame of sample characteristics trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview_dict = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_dict) # Save the extracted clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the numeric format (e.g., '7892501'), these are likely not standard human gene symbols. # Therefore, we conclude that gene mapping is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which columns in the gene_annotation dataframe correspond to the probe ID and the gene symbol text. # From the preview, "ID" appears to match the probe identifier (same as gene_data index), # and "gene_assignment" appears to contain the gene symbols (though in a messy string). # 2. Build a mapping dataframe using these two columns. mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col="ID", gene_col="gene_assignment") # 3. Convert the probe-level measurements to gene expression data using the mapping, # distributing expression when a probe maps to multiple genes and summing the contributions for each gene. gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # STEP 7: Data Normalization and Linking # 1) Normalize gene symbols normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2) Link clinical and genetic data # We know from previous steps that we do have trait data in out_clinical_data_file. clinical_df = pd.read_csv(out_clinical_data_file, header=0) # The clinical CSV contains a single row with the trait values and columns as sample IDs. # Label that row with the trait name, so that geo_link_clinical_genetic_data can handle it properly. clinical_df.index = [trait] linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # 3) Handle missing values linked_data = handle_missing_values(df=linked_data, trait_col=trait) # 4) Determine bias trait_biased, linked_data = judge_and_remove_biased_features(df=linked_data, trait=trait) # 5) Final dataset validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Completed data preprocessing and quality checks." ) # 6) If usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("Data not usable. No final file was saved.")